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31  JMP menu map

Analyze

Fit distribution models for regular quantitative data, evaluate 

goodness of fit, predict % or PPM beyond given limits

Distribution

Reliability

and Survival

Life

Distribution

Fit distribution models for life data 

(time to failure), evaluate goodness of 

fit, predict failure probabilities

Calculate basic statistics, create statistical graphics, find % of 

data points beyond given limits

Hypothesis testing, comparing populations, testing for 

significant differences
Fit Y by X

Fit Model
Correlating variables, modeling Y as a function of one X or 

multiple Xs, prediction, optimization

Quality and

Process

Variability/Attribute Gauge Chart
Categorical MSA

without standards

Pareto Plot



4JMP menu map (cont’d)

Tables

Summary
Derive a smaller data table by calculating statistics over a 

subset of a larger data table

Extract a subset of a data tableSubset

Sort a data table by specified columns  Sort

Stack values from multiple columns into a single column Stack

Unstack values from a single column into multiple columns Split

Overlay Plot Plot one or more data series in time sequenceGraph

Preferences
Specify desired default settings 

for JMP analysis platforms
File Platforms

Create the design matrix for a designed experiment
DOE

Calculate the required sample size for a designed experiment 
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• Frequency histogram

• Cumulative distribution function

• Percentiles

• Box and whisker plot

• JMP distribution analysis

• Data validation

• Distribution analysis options

• Plotting data in time sequence

• Saving analyses and data tables

2  Basic Statistics and Statistical Graphics



6Notes

Y variables are characteristics of parts or transactions that determine customer 

satisfaction, or lack thereof. They provide the data from which project metrics are 

computed. In sections 2 and 3 we focus on quantitative Y variables. Examples 

include:

• Properties:  physical, chemical, electrical, optical, . . .

• Distance, time, dimensions, cost, quantity

• Event counts (when there is not a discrete number of opportunities for the 

event to occur)

JMP uses the term continuous for quantitative variables, and often uses the term 

nominal for categorical variables.



7Frequency histogram

LSSV2 data sets \ DI Water

Number of data points in each bin
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8Cumulative percentage histogram  
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Cumulative distribution function (CDF)

• Bins are so small they isolate 
individual data values

• For small sample sizes, the CDF 
looks like a staircase with a 
step at each data value

Continuous Y variable

• About 40% are 1600 or less

• About 5% are 1400 or less 
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11Percentiles

A percentile is a value that divides a population or data 

set into two groups, based on a stated percentage

10% are less than the 10th percentile, 90% are greater

25% are less than the 25th percentile, 75% are greater

50% are less than the 50th percentile, 50% are greater

75% are less than the 75th percentile, 25% are greater

90% are less than the 90th percentile, 10% are greater
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13Common percentile-based data summary
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14Box-and-whisker plot

1200 1400 1600 1800 2000

“Whiskers” show the minimum and maximum data points, 
not including outliers (see next slide)

“Inter-quartile range” (IQR)
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Investigate

for cause

Rule for plotting points separately

••

Ends of whiskers are determined by the highest and lowest data points 
that are inside the calculated ranges.

Points plotted separately are outliers, and should be investigated.

Median



16JMP distribution analysis

File → Open → All Files → Data sets \ lead time 1 → Open → Import*

Analyze



Distribution



*Needed only for 
  non-JMP files  



17Data validation 

Frequency histogram

• Outlier

• Not always visible in the histogram 

• Click on it

• Look in the data table

?
(later)



18Data validation (cont’d)

✓ Data entry error

✓ Enter the correct value

✓ Go to next slide



19Distribution analysis with data correction

Note the change in the histogram and the summary statistics



20Cleaning up the box plot (optional) 

• Right click in this 

space

• Select Customize

•  Select Box Plot

• Uncheck 

Confidence 

Diamond and 

Shortest Half → 

OK

• What remains is the box and whisker plot

• JMP calls it Outlier Box Plot because its main 

purpose in this context is to show outliers



21Distribution analysis options 

• Click on the red triangle next to Lead time while holding down the Alt key

• This will show the default analysis options for the Distribution platform 

• See next slide



22Default analysis options (cont’d) 

Just for practice:

 Uncheck Summary Statistics and Outlier Box Plot → Check CDF Plot → OK

This can also be done by just clicking on the red triangle, but requires more steps.



23Cumulative distribution function (CDF plot)

• Plots the proportion of data points  each value in the data set 

• The step size at each data value is usually 1/N, where N is the sample size

• If the same value occurs twice in the data set, the step size there is 2/N



24Modifying JMP plots

1. Double click on a number on the Y axis 

• change Increment to 0.1 

• check Major Grid Lines 

• uncheck Minor Tick Mark 

• Set Minimum to 0 and Maximum to 1

• OK

Lead time

Lead time

2. Double click on a number on 

the X axis 

• check Major Grid Lines

• uncheck Minor Tick Mark

• OK



25Calculating percentages

• Suppose we want to know the percentage of data points exceeding 9.8

• Click the Lead time red triangle → select Process Capability 

• Enter 9.8 for the Upper Spec Limit → click OK



26Percentages (cont’d)

Nonconformance shows: 

• Observed percent out-of-spec

• Expected (predicted), based on 

the Normal distribution

Capability indices are calculated:

• Within Sigma Capability can be 

used when small samples are 

collected, such as for an Xbar-R 

chart

• Turn this off by clicking on the 

red triangle next to Lead time 

Capability

• Turn off the Within curve on the 

histogram by clicking on the 

red triangle next to Histogram

We will cover distribution fitting in 

the next section



27Plotting data in time sequence 

Graph → Legacy → Overlay Plot

• You can have different left and right scales for plotting multiple 

Y variables
o Cast both Y variables into Y

o Select the one you want to display on the secondary (right) scale

o Click Left Scale/Right Scale.

o Arrows point to the Y-scale for each Y variable

• A date, time, or other sequencing variable could be cast into X



28Overlay plot (cont’d) 

• Modify the chart as follows:

• Double Click X-Axis: Minimum = 0, Maximum = 16, Increment = 1, Dec = 0

• Double Click on Y-Axis: Minimum = 9.4

• Right Click on Chart: Customize > Line > Line Color > Red

• Double Click on X-Axis Title: Change “Row” to “Time Sequence”



29Overlay plot (cont’d) 

• Good way to look for assignable cause 

patterns versus their time sequence

• Same as a line chart in Excel

• Overlay plot can be used to display 

different data sets on different Y-Axis



30Saving your analyses and data table

• Click on the thumbnail for the distribution analysis at the 

bottom of the data table 

• Click the red triangle next to Distributions

• Save Script → To Data Table → Name: Distribution → OK



31Saving things (cont’d)

• Click on the thumbnail for your overlay plot, click the red 

triangle next to Overlay Plot

• Save Script → To Data Table → Name: Overlay Plot → OK

• Go to your data table



32Saving things (cont’d) 

• Two scripts have been added to 

the left panel

• If you save the file (as JMP), the 

scripts will be saved with it

• The next time you open the file, 

you can run the scripts to recreate 

the analyses exactly as you left 

them 

• Close and save your data table 

now* 

*Use Save As to make sure you can find 
the file next time you want to open it

Lead time

Lead time
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Open Data sets \ quotation process. Perform the following data analysis tasks for the 

variable TAT (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on 

the outlier box plot. This pattern is common with asymmetric “ski slope” 

distributions that pile up near zero. These points are not assignable causes, so they 

would not be investigated or removed.

(b) Record the average, standard deviation, sample size, minimum, maximum and 

median.

(c) Turn off the outlier box plot.

(d) Find the % of data points exceeding 3. 

(e) Turn off the Within Sigma Capability.

(f) Save your analysis script. Close and save the data table.

Exercise 2.1
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Data sets \ DI water. Perform the following data analysis tasks for the variable 

Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch 

the graph if necessary). Use your mouse to draw a box around the suspicious data 

points. Right click in an uninhabited area of the plot, select Row Hide and 

Exclude. 

(b) Run a distribution analysis. Record the average, standard deviation, sample size, 

minimum, and maximum. 

(c) Turn off the outlier box plot. 

(d) Find the % of data points falling below 1500. 

(e) Turn off the Within Sigma Capability.

(f) Save your analysis scripts. Close and save the data table.

Exercise 2.2



353  Fitting and Using Distributions  

• Distribution curves  

• Checking goodness of fit

• JMP examples

• Fitting and using the Normal distribution

• Fitting and using the Lognormal distribution

• Finding the best fitting distribution(s)

• Using the best fitting distributions(s)
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A description of the data
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Continuous Y variable

Frequency histogram  



37Distribution curves

Possible descriptions of the population

Continuous Y variable



38Distribution curves (cont’d)

Area under the curve between y1 and y2

= % of the population with  y1 < Y   y2

y1 y2

Continuous Y variable



39Distribution curves (cont’d)

Area under the curve to the right of  y3

= % of the population with Y > y3

0 y3

Continuous Y variable



40Fitting a distribution curve to the data

• The Normal curve depends only on  and  (population mean and std. dev.)

• Plug the sample mean and std. dev. into the formula in place of  and 

( )

2

2

1
1

2

1 






 −
−

= σ

μy

e
σπ

yf

Continuous Y variable



41Distribution curves allow us to extrapolate . . . 

1200 1300 1400 1500 1600 1700 1800 1900 2000

0.12% 

(1165 ppm)

are predicted 

to fall on or 

below 1200

LSL

Minimum value in the data is 1267



42. . . but only if the distribution matches the data!

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Data CDF*
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Best fitting population CDF (assuming Normal)
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Data and population CDFs should match
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Checking goodness of fit (cont’d)
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CDFs plotted on a Normal distribution scale
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Normal Quantile Plot (also known as Normal probability plot)
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• Analyze → Distribution → 

Resistivity → Y, Columns → OK

•     Resistivity → Normal 

Quantile Plot 

• Fit is good − the points form a 

relatively straight line and stay 

within the hyperbolic band

o It is common for the data to 

curve up a little at the top and 

down a little at the bottom of 

the Normal Quantile Plot

o A curve throughout the graph 

indicates non-normal data

• Save the script to the data table

• File save as → DI water.jmp 

• Leave the data table open

JMP example:  Normal data 

File → Open → Data sets → DI water → Open → Import  



48JMP example:  non-Normal data

• Analyze → Distribution →          

Y, Columns → TAT → OK

• Distributions → Stack 

• TAT → Normal Quantile Plot 

• Fit is bad − the points do not 

follow the line and do not stay 

inside the hyperbolic band

• Save the script to the data table

• File save as → quotation 

process.jmp 

• Close the data table

File → Open → Data sets → quotation process → Open → Import  



49Is this data Normal?
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50Is this data Normal?
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51Fitting and using the Normal distribution

• Go to DI water.jmp

• The values of Resistivity in rows 

205 to 214 are constant at 1454

• These are not true measurements, 

so we use the red triangle to hide 

and exclude the questionable 

values

• This reduces the sample size from 

474 to 464

• Next slide:  

- Analyze → Distribution

- Red Triangle → Continuous Fit 

→ Fit Normal



52Normal distribution (cont’d)

Click on the Fitted Normal Distribution red triangle:

→  Select Diagnostic Plots → QQ Plot

→   Next slide



53Normal distribution (cont’d)

• The QQ Plot is similar to the Normal 

Quantile Plot

o When the distribution is a good 

fit, the data will fall in a line on 

the plot

• Click on the Fitted Normal 

Distribution red triangle again:

→ Select Process Capability 

→ Enter 1200 for Lower Spec Limit 

→ OK

→   Next slide



54Normal distribution (cont’d)

• Observed % shows that none of the 

measurements in the data set are less 

than 1200 

• Expected Overall % shows that 0.12%  

are predicted to fall below 1200 in the 

population (future production)

• Save script from the Distributions red 

triangle 

• Save and close the data table



55What if the Normal distribution isn’t a good fit?

Steps for fitting a distribution to data:

1. Analyze → Distribution

• Check Normal Quantile Plot—data in straight line indicates good fit

• If uncertain: Continuous Fit → Fit Normal

•    Fitted Normal Distribution → Goodness of Fit

• Anderson-Darling p-value > 0.05 indicates good fit

2. If Normal not a good fit: Continuous Fit → Fit Lognormal
•    Fitted Lognormal Distribution → Diagnostic Plots → QQ Plot 

• Data in a relatively straight line on the QQ Plot indicates good fit

• If uncertain:     Fitted Lognormal Distribution → Goodness of Fit

• Anderson-Darling p-value > 0.05 indicates good fit

3. If Lognormal is not a good fit: Continuous Fit → Fit All
• Check QQ Plot and view the curve on the histogram to make sure that the 

fit makes sense for the data. 

• Standard distributions are Weibull, Gamma, Normal, Lognormal, 

Exponential, Cauchy.

• JMP offers other specialty distributions that often don’t apply, so use 

caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)



56Fitting and using the Lognormal distribution

• Data sets → number & size of 

defects

• Analyze → Distribution → Max 

size

• Max size is not Normal

• The LogNormal distribution is the 

most common alternative

• Red triangle Max Size

   → Continuous Fit → Fit LogNormal

• Red triangle Fitted Lognormal Dist

   → Diagnostic Plots → QQ Plot



57Lognormal distribution (cont’d)

Click on the Fitted LogNormal Distribution 

red triangle

→ Select Process Capability

→ Enter 30 for the Upper Spec Limit

→ OK 



58Lognormal distribution (cont’d)

• None of the measurements in the 

data set are greater than 30

• 1.17% are predicted to exceed 30 

in the population (future 

production)

• Save script from the Distributions 

red triangle

• Save and close the data table
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If neither the Normal or Lognormal are a good 

fit to the data, you’ll need to find a better option. 

• Data sets \ alignment process

• Three similar alignment tools are used to attach 

orifice plates to computer chips. Y dev and X dev 

are the vertical and horizontal deviations from 

target in mils. 

• The alignment specification applies to the radial 

deviation calculated from X and Y. See slide 

below for the calculation of R dev.

• Analyze → Distribution → R dev

• Remove:

✓ Summary Statistics

✓ Outlier Box Plot

• Red triangle (R Dev) → Continuous Fit → Fit 

All

• Go to slide 61 to see the results

Finding the best-fitting distribution(s)



60Using the formula tool

Double click on the blank column header next to Y dev, click on Column 4, 

rename as R dev. Click on Column Properties, select Formula, Edit Formula. Use 

your mouse to create the formula for R dev as shown below. 

1

2

4 3

6

5

7

1 2 43 65 7



61Best-fitting distributions (cont’d)

• Distributions are ranked by AICc (“Akaike 

Information Criterion corrected” − will call it AICc 

from now on)

• AICc is a measure of lack of fit

o It helps us compare fit of models -- fit of 

distributions in this case

o Smaller values indicate better model fit

o AICc is not a hypothesis test—it doesn’t tell you 

how well a model fits, only which is better

Double click


Format


Fixed Decimal (1)


OK



62Best-fitting distributions (cont’d)

• Distributions with the same AICc (rounded to the nearest tenth) have the same 

lack of fit (or equivalently, the same goodness of fit)

• The distribution with the AICc Weight closest to one is the better fit



63Using the best-fitting distribution:  Weibull

What % of future parts will have R dev > 40?

• Click on the Fitted Weibull Distribution red triangle

• Select Process Capability

• Enter 40 for USL → OK



64Weibull fit (cont’d)

• 0.15% of the data values exceed 40

• 0.12% are predicted to exceed 40 in 

the population (future production), 

based on estimates made using the 

Weibull distribution



65What if we had assumed a Normal distribution?

• The curve throughout 
this Normal Quantile 
Plot indicates that this 
is not a good fit



66What if we had assumed a Normal distribution? (cont’d)

We would have 
underestimated the 
future % defective:

Expected 

% Defective

Weibull 0.12%

Normal 0.02%



67Steps for fitting a distribution to data

If the Normal or Lognormal is a good fit, use it!

1. Analyze → Distribution
• Check Normal Quantile Plot—data in straight line indicates good fit

• If uncertain: Continuous Fit → Fit Normal

•    Fitted Normal Distribution → Goodness of Fit

• Anderson-Darling p-value > 0.05 indicates good fit

2. If Normal not a good fit: Continuous Fit → Fit Lognormal
•    Fitted Lognormal Distribution → Diagnostic Plots → QQ Plot 

• Data in straight line on the QQ Plot indicates good fit

• If uncertain:     Fitted Lognormal Distribution → Goodness of Fit

• Anderson-Darling p-value > 0.05 indicates good fit

3. If Lognormal is not a good fit: Continuous Fit → Fit All
• Check QQ Plot and view the curve on the histogram to make sure that the 

fit makes sense. 

• Standard distributions are Weibull, Gamma, Normal, Lognormal, 

Exponential, Cauchy.

• JMP offers other specialty distributions that often don’t apply, so use 

caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)



68

Answer questions below. Save the analysis scripts, save and close the data tables. 

[When opening files, make sure JMP is looking for “All files” not “All JMP files.”]

a)  Data sets \ quotation process, variable TAT. What % of RFQs in the data set have 

TAT > 15? 

b) What % (or PPM) of future RFQs will have TAT > 15? 

c)  Data sets \ solution properties, variable SG coded. What % of solution vials in the 

data set have SG coded > 50? 

d) What % (or PPM) of future vials will have SG coded > 50? 

e)  Data sets \ number and size of defects, variable # Defects. What % of castings in 

the data set have more than 50 defects? 

Exercise 3.1
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f) What % (or PPM) of future castings will have more than 50 defects?

g)  Data sets \ casting dimensions, variable Length. What % of castings in the data set 

have length outside the interval [598, 602]? 

h) What % (or PPM) of future castings will have lengths outside this interval?

i)  Data sets \ casting dimensions, variable Diam. What % of castings in the data set 

have diameters outside the interval [49, 51]? 

j) What % (or PPM) of future castings will have diameters outside this interval?

Exercise 3.1 (cont’d)
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714  Introduction to Life Data

Life  =  elapsed time until the occurrence of some event

• Failure of an item on test

• Planned end of test

• Unplanned end of test

• Failure of an item in service

• Scheduled downtime

Definitions of “time”

• Seconds, minutes, hours

• Days, weeks, months

• Usage cycles, number of moves, distance



72Life data (cont’d)

Usually there is one event of primary interest

• Usually, failure of an item

Other events may preempt the event of primary interest

• Planned end of test

• Unplanned end of test

• These are called “suspensions”

• We say that the time to failure is “censored”



73Data sets \ failures and suspensions.jmp
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Event plot including censoring

• 15 items were tested

• 12 failures (x)

• 3 suspensions (        )

• This “event plot” distinguishes 

suspensions from failures and 

shows the event times

• If we don’t distinguish 

suspensions from failures, the 

calculated failure probabilities 

will be biased upwards

• This will make our reliability 

look worse than it really is


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Cumulative distribution function (CDF)

In this plot, all 
events are treated 

as failures
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• This is the correct plot

• It steps up only at failure times

• The step size increases after 
each suspension, because the 
number of items remaining on 
test decreases
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Overlay of CDFs

CDF treating all times as failures

CDF distinguishing suspensions from failures

After the first 
suspension, the solid 
line overstates the 
failure probabilities
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CDF distinguishing suspensions from failures

→==   0830    
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  height    step  Each .

This intuitive idea is 
actually worse than 
treating all times as 

failures





795  Analyzing Life Data

• The Exponential distribution

• The Weibull distribution

• Fitting life distributions in JMP

• Finding and using the best fitting life distribution
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81Notes

The Exponential distribution is the simplest life distribution. It has only one 

parameter: the mean time between/before failure (MTBF). The Greek letter  (theta) 

is often used to denote the population value of the MTBF.

Shown above are the failure functions F(t) for three different Exponential 

distributions. F(t) is the probability that an item will fail before time t. 

The reliability function is defined as R(t) =  − F(t). R(t) is the probability that an 

item will survive beyond time t. The Exponential reliability function is given by R(t) 

= exp(-t/). 
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83Notes

The Weibull distribution was introduced to the reliability engineering community in 

the 1950s by a man named Waloddi Weibull. Prior to that, most reliability work was 

based on the Exponential distribution. Due to its greater flexibility, the Weibull has 

become one of the most widely-used life distributions. 

The Weibull distribution has two parameters:  the characteristic life  (eta), and the 

shape  (beta). The characteristic life () has the same qualitative interpretation as the 

MTBF (). The shape parameter () determines which of two distinct failure modes 

are represented. When  < 1, we have a burn-in or infant-mortality failure mode. 

When  > 1, we have a wear-out failure mode. A Weibull distribution with  =  is 

identical to an Exponential distribution with  = .

Shown above are failure functions F(t) for four different Weibull distributions. F(t) is 

the probability that an item will fail before time t. 

The Weibull reliability function (probability that an item will survive beyond time t) 

is given by R(t) = exp[-(t/)]. 



84Fitting life distributions in JMP

Data sets \ failures and suspensions Analyze



Reliability and Survival



Life Distribution



Set up as shown below



OK



85Fitting life distributions (cont’d)

Identifies 
the times 
when 
suspensions 
occurred

• CDF plotting the 

failures

• Shows the corners of 

the steps, but not the 

“staircase”



86Fitting life distributions (cont’d)

↕ 95% confidence 

intervals for failure 

probabilities

↕ These intervals are 

“nonparametric”



87Notes

This analysis is referred to as nonparametric, meaning that it is not based on a 

statistical model (such as the ones listed on the left.) This is a good thing, because 

statistical models can be wrong. However, there are drawbacks: 

a) The nonparametric CDF is discontinuous.

b) Large numbers of failures are required to get margins of error small enough 

to be useful. 

In practice, it is preferable to use a statistical model that fits the data well. This 

provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the 

menu produced by the red triangle next to Life Distribution.



88Exponential fit ― linear probability scale

95% confidence 

interval for F(80) 

based on the 

Exponential 

model

Bad fit − the Exponential failure curve doesn’t match the data



89Exponential fit ― Exponential probability scale

• The Scale button allows the failure curve to plot as a straight line

• This used to be the only way to plot failure curves

95% confidence 

interval for F(80) 

based on the 

Exponential 

model



90Weibull fit ― linear probability scale

95% confidence 

interval for F(80) 

based on the 

Weibull model

A better fit



91Weibull fit ― Weibull probability scale

95% confidence 

interval for F(80) 

based on the 

Weibull model

• The Scale button allows the failure curve to plot as a straight line

• This used to be the only way to plot failure curves



92Finding and using the best fitting distribution

*You can’t have a negative time to failure!

• JMP plots the best 

fitting model on the 

corresponding 

probability scale

• In this case, 

Lognormal gives 

the best fit

• See next slide

• Click the Life Distribution red triangle → Fit All Nonnegative*



93Best fitting distribution (cont’d)

• As before, models are ranked by AIC (smaller is better)

• As before, round the AIC values to the nearest tenth

• In this case, Lognormal gives the best fit



94The distribution profiler

• The reliability function R(t) is defined as 1 – F(t)

• R(t) is the probability that an item from this population will not fail until after 

time t 

• For example, R(68) = 0.55 (55%)

t →

 Most
      likely

• F(t) is the probability that an 

item from this population will 

fail before time t

• The middle curve is the most 

likely value of F(t)

• For example, the most likely 

value of F(68) is 0.45 (45%) 

(shown in red on the left side 

of the profiler)



F(t)



95Distribution profiler (cont’d)

• The lower curve gives the best case value of F(t)**

• For example, the best case value of F(68) = 0.257 (2.57%)

• The upper and lower curves 

give 95% confidence intervals 

for F(t)

• The upper curve gives the 

worst case value of F(t)*

• For example, the worst case 

value of F(68) is 0.655 

(65.5%) 

 Worst
      case

 Best
      case

*For Engineering.                                                                                                **For Sales.



96Distribution profiler (cont’d)

• Suppose we are interested in F(80)

• Change the value 68 to 80 (click and 

edit)

• The most likely value of F(80) is 68.4

• The worst case value of F(t) is 85.6%

• The best case value of F(80) is 45.7%
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Data sets \ print life. The “time” to failure is Pages. 

a) Identify the best fitting non-negative distribution. Use that distribution to answer 

the following questions.

b) What is the most likely value of F(10,000)? 

c) With 95% confidence, what is the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.

Exercise 5.1
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Data sets \ probe reliability. The “time” to failure is Hits. 

a) Identify the best fitting non-negative distribution. Use that distribution to answer 

the following questions.

b) What is the most likely value of F(200)? 

c) With 95% confidence, what is the worst-case value of F(200)?

d) Save the analysis script, close and save the data table.

Exercise 5.2
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Data sets \ field reliability. The time to failure is Days in field.

a) Identify the best fitting non-negative distribution. Use that distribution to answer 

the following questions.

b) What is the most likely value of F(365)? 

c) With 95% confidence, what is the worst-case value of F(365)?

d) Save the analysis script, close and save the data table.

Exercise 5.3





1016  Categorical MSA Without Standards 

• It is preferable to base nominal MSA on a set of items whose 

true status is known (standards)

• With standards, we can determine the probabilities of passing 

bad items and failing good ones 

• Creating standards can be difficult and time consuming

• Lacking standards, “% agreement within and between 

appraisers” can serve as a proxy for “% agreement with 

standard”



102Example 1

• 50 parts

• Appraisers A, B, C 

• 3 inspections per part per 

appraiser 

• Part is actually nominal, since 

part numbers are only 

identifiers without a numerical 

relationship.  Change by:

• Right click on    next to 

Part and Select Nominal, or

• Right click on field name 

“Part” > Column Info >  

Data Type = Character

• Please be aware that JMP 

is occasionally inconsistent 

in its terminology

Data sets \ pass-fail no stds



103Agreement within & between appraisers

• 100% agreement

• 36 opportunities for pairwise agreement

• 16 pairwise agreements

• Agreement =  = 

• 36 opportunities for pairwise agreement

• 8 pairwise disagreements

• Agreement =  = 

①
②

③

⑤

④

⑥

⑧

⑦

⑨



104Analyzing a categorical MSA without standards

Analyze → Quality and Process → Variability / Attribute Gauge Chart



105Agreement report

• Plot of the agreement percentages for 
the items in the study

• It is helpful to rescale the vertical axis

• See next slide



106Agreement report (cont’d)

• The horizontal dotted line marks the “agreement grand mean”

• In this example, the agreement grand mean is a little over 90 (read off graph)

• Nowhere in the report is this number printed ― bad JMP!

• If the agreement grand mean is too low, follow-up should focus on the items with 
the lowest % agreement

• There are no recognized standards for the agreement grand mean. A lower bound 
of 95% is fairly common. 99% is often used in applications involving safety.



107Agreement report (cont’d)

• Percentage of items for which 
agreement was 100%

• This should not be used as a metric

• These are the agreement percentages 
for each appraiser

• The appraiser with the lowest 
percentage represents the greatest 
opportunity for improvement

• Sometimes the smallest % agreement 
among the appraisers is used as the 
metric



108Notes

Save the script, close and save the data table.

Agreement Comparisons:

Each rater compared to all others, using Kappa statistics

𝐾 ≥ 0.9 → Good measurement system 

𝐾 ≤ 0.7 → Bad measurement system
0.7 ≤ 𝐾 ≤ 0.9 → Marginal measurement system

Agreement across Categories: 

Agreement in classification corrected for the amount of agreement which would be 

expected by chance. Kappa assesses the agreement between a fixed number of raters 

when classifying items.  

When K = 1, perfect agreement exists.
When K  = 0, agreement is the same as would be expected by chance.
When K < 0, agreement is weaker than expected by chance; this rarely occurs and 
usually means that the appraisers have different definitions of the assigned 
categories.



109Example 2

• 15 employment applications

• 5 appraisers

• 2 inspections per application 

per appraiser

• Five point scale, higher is 

better 

• Change Rating to nominal

• For categorical MSA, we 

must unstack this data table

Data sets \ application rating no stds



110Unstacking a data table

Tables → Split



111Example 2 in required format



112Example 2 (cont’d)

Analyze → Quality and Process → Variability / Attribute Gauge Chart

Reminder of how 
data needs to be 
formatted



113Example 2 (cont’d)

Duncan

Hayes

Holmes

Montgomery

Simpson

Rater

49.8039

69.0196

79.2157

77.2549

74.9020

% Agreement

27.2673

43.9053

53.9935

51.9716

49.5997

95%

Lower CI

72.4205

86.3784

92.5247

91.4246

90.0500

95%

Upper CI

15

Number

Inspected

4

Number

Matched

26.667

% Agreement

10.897

95%

Lower CI

51.950

95%

Upper CI

Agreement Report

• The agreement grand mean is about 71 
― way too low

• Follow-up:  focus on application 1, 3 and 
10

• Greatest opportunity for improvement:  
further training of Duncan and Hayes



114Notes

Save the analysis script to the data table, close and save the data table as: 

application rating no stds unstacked 



115Exercise 6.1

Data sets \ print samples 1 no stds. In this study 3 appraisers inspected 18 print 

samples 3 times each.

a) Reformat the file as needed and run the analysis. 

b) Record the approximate agreement grand mean. 

c) Which sample(s) would be most useful in follow-up? 

d) Of the 3 appraisers, which has the highest % agreement? What is the highest % 

agreement?

e) Save the script, close and save the data table as print samples 1 no stds unstacked.



116Exercise 6.2

Data sets \ print samples 2 no stds. This is the follow-up study after the appraisers 

received additional training.

a) Reformat the file as needed and run the analysis. 

b) Record the approximate agreement grand mean. 

c) Of the 3 appraisers, which has the lowest % agreement? What is the lowest % 

agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.



1177  Comparing Populations − Continuous Y

• Example of comparing populations

• Analysis of variance (ANOVA) for comparing 

populations

• Interpreting P-values

• Degrees of freedom for signal and noise

• ANOVA in JMP



118Notes

Y variables are characteristics of parts, products or transactions that determine 

customer satisfaction, or lack thereof. They provide the data from which project 

metrics can be computed.

Comparison of statistical populations is equivalent to Y = f (X) analysis where the X 

variable is categorical. The distinct values of the X variable define the populations or 

sub-populations to be compared.

JMP uses the term continuous for quantitative variables. Except in the DOE section, 

JMP uses the term nominal for categorical variables.



119Example of comparing populations

Group Data Avg. SD

A 2.8

2.75 0.129
A 2.6

A 2.9

A 2.7

B 3.1

3.05 0.187

B 2.9

B 3.3

B 2.8

B 3.2

B 3.0

• We have two groups of data

• Could be a before/after comparison

• Could be a stratification analysis

• The sample means for the two groups are different

• Is this enough to conclude that the population means are different?

Data sets \ Anova 2 groups



120Example (cont’d)

• Plotting the data is helpful, but it doesn’t give a definitive answer

• How far apart do the sample means have to be before we can say 

the population means are different?

• How do we take into account the scatter around the means?



121ANOVA for comparing populations (1 of 6)

LSSV2 student files \ ANOVA two groups



122ANOVA (1 of 6, cont’d)

This worksheet shows all the calculations used to determine, based on the data, 

whether or not the population means are different. 

The first step is to calculate the Difference column by subtracting the grand mean 

from the Data column. The Difference is then decomposed into Group (the “signal”) 

plus Error (the “noise”). 

The Group column captures the portion of total variation caused by the difference 

between the sample means. 

The Error column captures the rest of the variation, variously called the residual, 

unexplained, or noise variation. 



123ANOVA (2 of 6)

LSSV2 student files \ ANOVA two groups



124ANOVA (2 of 6, cont’d)

The Data column consists of 10 mathematically independent quantities. We describe 

this by saying it has 10 degrees of freedom (DF). 

The Grand mean column consists of 10 values, but they are all identical. This column 

has 1 DF. 

The Difference column contains 10 values, but they are mathematically constrained 

to sum to 0. This column contains only 9 independent quantities, so it has 9 DF.

The Group column inherits the zero-sum constraint from the Difference column (it 

must sum to zero), and it consists of only 2 distinct values. This column contains only 

one independent quantity, so it has 1 DF.

The Error column has 8 DF, because DFs have to add up.

The DFs for Group and Error play a role in determining whether or not the 

population means are different.



125ANOVA (3 of 6)

LSSV2 student files \ ANOVA two groups



126ANOVA (3 of 6, cont’d)

The sum of squares (SS) is a measure of the magnitude of each column. It is the sum 

of the squares of the values in a column.

The sums of squares for the Difference, Group, and Error columns are usually much 

smaller than those of the Data and Grand mean columns.

The mean square (MS) is the statistically normalized measure (averaged, in a sense) 

of the magnitude of each column. It is the SS for a column divided by the DF for that 

column.

The mean squares for the Data and Grand mean columns play no role in determining 

whether or not the population means are different, so the MS is usually calculated 

only for the Difference, Group, and Error columns. 



127ANOVA (4 of 6)

LSSV2 student files  \ ANOVA two groups



128ANOVA (4 of 6, cont’d)

The Group MS measures the magnitude of the variation caused by the difference 

between the sample means. 

The Error MS measures the magnitude of the variation caused by everything except 

the difference between the sample means.

The F ratio is the Group MS divided by Error MS. It is a signal-to-noise ratio. 

The larger the F ratio, the stronger the evidence of a difference between the 

population means.



129ANOVA (5 of 6)



130ANOVA (5 of 6, cont’d)

The P-value is a probability calculation based on the F ratio, the DF for the Group 

column, and the DF for the Error column. 
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0.001

0.01

0.1

1

Interpreting P-values

None None

Some 85%  CL < 95%

Strong 95%  CL < 99%

Very strong CL  99%

0.05

0.15

0.01P
-v

al
u

e

0.0001

1.00

Evidence that populations are different 

or variables are correlated

Confidence level

(CL)



132P-values (cont’d)

As shown above, the P-value has fixed reference values for interpretation. 

The P value is inversely related to the F ratio:  

➢ The smaller the P-value, the stronger the evidence of a difference 
between the population means.

If there are 3 or more groups, the interpretation is:

➢ The smaller the P-value, the stronger the evidence of one or more 
differences among the population means.



133ANOVA (6 of 6)



134ANOVA (6 of 6, cont’d)

The Root Mean Square (RMS) for a column is the square root of the MS for that 

column. 

The RMS for the Difference column (0.221) is equal to the usual standard deviation 

of the data (STDEV function in Excel).

The RMS for the Error column (0.168) is the standard deviation of the noise 

variation (error, residual, unexplained, etc.). 

JMP uses the term Root Mean Square Error (RMSE) for the RMS of the Error 

column.* 

*Given that Statistics is a body of knowledge dedicated to quantifying and reducing 
variation, the variation in statistical terminology is appalling.



135Degrees of freedom for comparing populations

N  =  total sample size

      G  =  number of groups being compared

 G – 1  =  DF for the group column

N – G  =  DF for the error column

• The Error DF is more important than the Group DF

• It determines the accuracy of the predicted values

• Larger is better, 10 is OK, bare minimum is 5

• When DF is mentioned without a qualifier, it always means Error DF



136Exercise 7.1

LSSV2 student files \ ANOVA three groups. Enter the appropriate numbers and 
formulas into the white cells to produce an ANOVA for the data shown here. 

Group Error

(Group MS / Error MS)



137ANOVA in JMP

File → New → Data Table → Enter (or copy-paste) data as shown

From Exercise 7.1



138ANOVA in JMP (cont’d)

Analyze → Fit Y by X → Set up as shown → OK



139Explanation of “mean diamonds”

Flying saucers!

Upper cockpit
Upper body

Lower body
Lower cockpit

Population means are different

(with 95% confidence)

Saucers can fly horizontally

past each other with no contact

between their bodies



140Mean diamonds (cont’d)

“Fly by” interval 
for comparing 

population means

95% confidence
interval for a single

population mean

( )NRMSE2 mean  Sample 

( )NRMSE2  mean   Sample 

Approx. formula for “fly by” interval:

Approx. formula for 95% confidence interval:

N = sample size for each group



141Analysis details

Regression

P-value

RMSE

• Standard deviation of the  
variation about the fitted 
line (error, residual, etc.)

• Smaller is better

• Has units of the Y variable

• Indicates whether any of 
the model terms in the 
regression are significant



142Analysis details (cont’d)

Adjusted R2

• Proportion of the total variation in Y that is 
caused by (“explained by”) variation in X

• Larger is better

• Unitless



143How adjusted R2 is calculated

STDEV

Total variation
in the data

2

2

R Adjusted    0.872685   
STDEV

RMSE
  -  1    Xby  CAUSED  variationY ofroportion P ==








=

0.127315   
2558409.0

091287.0
   

STDEV

RMSE
    Xby  caused NOT  variationY ofroportion P

22

=







=








=



144Exercise 7.2

Data sets \ number and size of defects. Max size is the area in square centimeters of 

the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the 

P value and interpret the result. (Ignore the t Test section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

c) Give the value and the units of the RMSE in this example.

d) The RMSE is meaningful only if each group has roughly the same amount of 

variation. Is this true in this case?

e) Save your analysis script to the data table, close and save the data table.



145Exercise 7.3

Data sets \ quotation process. Supplier business units (BUs) receive requests for 

quote (RFQs) from customers. Account managers develop and submit the quotes. 

TAT is the turnaround around time in days. The shorter the TAT, the happier the 

customer.

a) Is the modeling type for BU correct? If not, change it to what it should be. 

b) Test for differences among the BUs. Give the P value and interpret the result. 

c) Use the “flying saucers” to determine which BUs represent best practice. 

d) What follow-up action should be taken?  

e) Save your analysis script to the data table, close and save the data table.



146Exercise 7.4

Data sets \ alignment process. If the modeling type for Aligner is incorrect, change it 

to what it should be. 

a) Test for differences among the three aligners with respect to R dev. Give the P-

value and interpret the results. 

b) Use the “flying saucers” to determine which aligner represents best practice. 

(Smaller R dev is better.) 

c) What follow-up action should be taken?

d) Save your analysis script to the data table, close and save the data table.



147Exercise 7.5

Data sets \ casting dimensions. We want to reduce variation in the length of 

cylindrical metal castings. The specification for Length is 600 ± 1.5. The wax 

patterns for these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Length.  Give 

the P-value and interpret the result. 

b) Use the “flying saucers” to determine which machine represents best practice? (It 

is helpful to draw a reference line at the nominal value. Right click on one of the 

numbers on the vertical axis, select Axis Settings, use the Reference Lines tool. ) 

c) What follow-up action should be taken?

d) Save your analysis script to the data table, but don’t close the data table.



148Exercise 7.5 (cont’d)

We also want to reduce variation in the diameter of the castings. The specification for 

Diam is 50 ± 0.75. 

d) Test for differences between the molding machines with respect to Diam.  Give 

the P-value and interpret the result. 

e) Use the “flying saucers” to determine which machine represents best practice. 

(Draw a reference line at the nominal value.) 

f) What follow-up action should be taken?

g) For each of the variables Length and Diam, a certain proportion of the total 

variation is caused by the difference between the machines. For which variable is 

this proportion highest?

h) Save your analysis script to the data table, close and save the data table.



1498  Comparing Populations ‒ Pass/fail Y

Raw data One part or transaction per row

Tabulated 

data

Multiple parts or transactions 

per row



150Raw data example

Data sets \ quotation process

We want to compare the account managers in terms of % late 

Analyze → Fit Y by X → set up as shown → OK

Nominal!



151“Mosaic plot” for pass/fail data

837

N

21

DF

32.411285

-LogLike

0.0687

RSquare (U)

Likelihood Ratio

Pearson

Test

64.823

62.018

ChiSquare

<.0001*

<.0001*

Prob>ChiSq

Tests

P-value

Horizontal
dimension is
proportional

to sample
size

• Very strong evidence of differences among account managers

• Who represents best practice?



152“Control chart” for pass/fail data

• Red triangle (Contingency Analysis) → Analysis of Means for Proportions

Vertical
dimension is
inversely

proportional
to sample

size

• “Flying saucers” are not available for pass/fail data

• Points outside the shaded region are significantly different from points inside

• AcctMgr 4 represents best practice (lowest failure rate)

• Find out what AcctMgr 4 is doing, make it the standard

• Save your analysis script to the data table, but don’t close the data table

Upper
Detection
Limit

Lower
Detection
Limit



153Exercise 8.1

a) Analyze TAT<=3 as a function of BU. Give the P-value and interpret the result. Is 

there best practice? If so, where is it?

b) Analyze PO as a function of BU. Give the P-value and interpret the result. Is there 

best practice? If so, where is it?

c) Right click on the PO header in the data table. Select Column Properties → Value 

Ordering → Reverse → OK. This reverses the Yes and No positions on the PO 

axis. Most people focus on the PO hit rate rather than the miss rate. 

d) Analyze PO hit rate as a function of TAT<=3 . Give the P-value and interpret the 

result.  

e) Save your scripts, close and save the data table.



154Exercise 8.2

Data sets \ ATE data. If necessary, change the modeling types for part number (P/N) 

and Tester.

a) Test for a difference between the part numbers (P/N) with respect to Result. Give 

the P-value and interpret the results.

b) Test for differences among the testers with respect to Result. Give the P-value and 

interpret the results. If significant differences exist, describe them. If possible,  

suggest causes of the differences.

c) Test for differences among the P/N-Tester groupings with respect to Result. Give 

the P-value and interpret the results. If significant differences exist, describe them. 

If possible,  suggest causes of the differences.

d) Save your scripts, close and save the data table.
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• Pass/fail data often comes in tabulated form

• Each row may represent a 

✓ Production lot

✓ Work order

✓ Time period

✓ Machine

✓ Work center

✓ Part number . . .

• This format is perfect for plotting % defective

• However, it is the wrong format for comparing 

populations in JMP

Tabulated pass/fail data 
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1. Create a new column called 

% Fail

2. Define it by the formula

3. To edit decimal places: Right 

click column → Column 

Info → Format to Fixed 

Decimal and Dec = 2

4. Use Graph → Legacy → 

Overlay Plot to create the 

plot on the next slide

Plotting % fail

Data sets \ out-of-box failures



157Plotting % fail (cont’d)



158Reformatting for comparing populations

1. Create a new 

column called Pass 

defined by the 

formula

2. Go to Tables → 

Stack

3. Use Fail and Pass 

as the Stack 

Columns

4. See next slide



159Reformatting (cont’d)

6. Change the name of 

the Data column to 

Freq and the Label 

column to Result

7. There are now two 

rows for each month. 

The Total and % Fail 

columns are no longer 

relevant, and may be 

deleted.

8. Save the new data table 

as out-of-box failures 

stacked



160Analyzing the data

Analyze → Fit Y by X → set up as shown → OK



161Data analysis (cont’d)

• Very strong evidence that processes 

A, B, and C do not all have the same 

failure rate

• The mosaic plot does not help us 

determine where the differences are

• Click on the red triangle at the top of 

the analysis window

• Select Analysis of Means for 

Proportions 

• See next slide



162Data analysis (cont’d)

• This plot shows that Processes B and C are significant improvements over Process A

• It does not tell us whether or not C is a significant improvement over B

• Save your script, but don’t close the data table.

• You may prefer to display the Result as Proportion Passed: Click on Red Triangle by 

Analysis of Means for Proportions and select Switch Response Level for Proportion



163Exercise 8.3

a) Exclude the rows for process A. 

b) Test for a difference between C and B. Give the P-value and interpret the result.

c) Close and save the data table. (No need to save the script again.)
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Data sets \ molding process - stratification.

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables → Summary → use PN as the Group variable → use Machine as 

the Subgroup variable → OK. 

c) Note that each part number runs on only one or two of the machines. A 

comparison of part numbers could be biased by differences among the machines, 

and a comparison of machines could be biased by differences among the part 

numbers. Because of this, we should use the concatenated variable PN-Machine 

as the X variable in the analysis.

Exercise 8.4



165Exercise 8.4 (cont’d)

d) Reformat the data for comparing populations (follow steps 1 through 7 in the 

worked example).

e) Test for significant differences among the PN-Machine groupings with respect to 

fraction defective. Give the P-value and interpret the results. 

f) Which three PN-Machine groupings would be the best focus for an improvement 

project? (Hint: highest fractions defective.)

g) Save your script, save the data table as molding process - stacked, then close it.
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• Data on defect types or failure reasons often is available 

only in tabulated form

• Each row may represent a production lot, work order, time 

period, machine work center, part number, . . . , or some 

combination thereof

• Common problem with tabulated data:  wrong format for 

Pareto analysis 

Appendix: Reformatting Data for Pareto Analysis



168Big example:  molding process - Pareto 

Each row  = Date, Machine, P/N, . . .  Total parts run  =  Good + Bad



169Big example (cont’d)

Counts for each type of defect                                               

Total defective  Cost per pc.



170Notes

One of the things we would want from a data set like this is a Pareto breakdown of 

defect types by frequency of occurrence. For this, we need to calculate the total 

number of defective parts for each defect type. With the format shown above, we 

cannot do this by means of a pivot table. As an alternative, we could calculate the 

totals for the columns representing the defect types. However, compared to a pivot 

table, this method is extremely tedious for doing anything else, such as comparing 

Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this is a Pareto breakdown of defect 

types by total cost. It is not impossible to do this with the format shown above, but, 

once again, it would be extremely tedious compared to a pivot table. 



171Small example

Open molding process - small (in JMP)


This is what we have

This is what we need →

→ How do we get there?



172Stacking a data table

Tables → Stack → Select the defect columns as the Stack Columns



173Editing the columns

Total defective and Total cost are 

now incorrect row by row

1. Right-click on Data 

2. Select Column Info

3. Rename as Freq → OK

4. Rename Label as Defect type

5. Delete Total defective

6. Right-click on Total cost

7. Select Formula → Cost per pc.*Freq 

8. Save as molding data small 

stacked.xls



174Pareto plot by frequency

Analyze → Quality and Process → Pareto Plot → set up as shown → OK



175Pareto plot by total cost

In this case the two plots 
are very similar



176Cost Pareto without calculating the total cost column
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Data sets \ molding process - Pareto. 

Use the method described in this section to reformat the file for Pareto analysis. Save 

the reformatted file as molding process - stacked. Create Pareto plots of defect types 

by frequency of occurrence and total cost.

Exercise: Appendix
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1791  Introduction to Regression

• Terminology

• Purposes of regression analysis

• Data collection for use in regression analysis

• The line of best fit

• Simple Regression

Regression analysis is used to create an empirical model of the 
relationship between process inputs (x’s) and outputs (y’s).

➢ It is the method for analyzing designed experiments.

➢ It can also be used with historical data to help identify some 
factors for an experiment, or to develop an empirical model 
with that data.

Topics:



180Terminology

• The term correlation is often used any time we speak of relating one variable 

to another

o Correlation is a measure of the relationship

o An input/output relationship between the two variables is not required 

(for example, two variables measured at the same point in a process)

o As a result, unrelated things can be “correlated.” Remember, 

correlation does not prove causation.

• Regression analysis yields a model equation of the input-output relationship, 

Y = f (X), which can be useful in prediction

o In the dataset, a series of inputs and their resulting output measures 

are aligned

o Regression is used to investigate and model the relationship



181Purposes of regression analysis

The result of regression analysis is an empirical 

model, created from the data/observations, that can 

be used to:

• Understand and describe the relationship between Y 

and X’s 

• Predict Y from X’s 

• Determine best setting for X’s (optimization)

• Reduce variation in Y by controlling X’s



182Data collection for use in regression analysis

Regression analysis is only as good as the data used.

Three basic sources of data are:

• Historical data (data that exists in routine collection systems)

• An observational study (data collected from uncontrolled processes for a 

specific purpose)

• A designed experiment (data from structured and controlled tests)

Regression analysis is a very big statistical topic and is commonly the 

analysis type for data from all three sources listed above.  

Designs of experiments (DOEs) is the best strategy for many problems we 

are trying to solve as it is constructed to eliminate many of the problems that 

exist with the first two sources.  However, historical and observational data 

is often easier to get and can still give powerful insights, although care must 

be taken with the analysis and conclusions drawn.



183Considerations when using historical data

Historical data is often plentiful and easily accessible. 

• It may be useful in identifying some variables that are critical to our process

However, there are several potential issues in using it:

• Some relevant data is not available, such as values of critical x’s that are not 

recorded as part of the on-going process

• Reliability of the data is often questionable, including data being missing or 

lost

• The nature of the data is not helpful in solving the problem, as in situations 

when an x variable is controlled, so its impact cannot be seen in the 

regression analysis

• Often, data is used in ways that were not intended, such as using available 

data as a surrogate for what was really needed

Caution: We will not be able to cover the many aspects of creating and 

validating regression models from historical data in this course. If you 

choose to do this, proceed with caution! Better yet, get additional help.



184Considerations when using an observational study

In an observational study, we would observe the process, 

with as little interaction or disturbance as possible, in order 

to obtain the data.

• With adequate planning, an observational study can yield accurate, 

complete, reliable data

• These studies can lead to ideas on what might be impacting the 

process

• However, these studies often provide limited information about 

specific relationships of interest, such as the impact of a variable that 

is tightly controlled in normal operation



185“Simple” regression

Simple linear regression refers to the case when there is only 

one regressor (variable) x used.

• In simple regression, the model equation is for a best-fit line

• The form of the model equation created is:

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑒𝑟𝑟𝑜𝑟

where 𝑏0 is the intercept and 𝑏1is the slope of the line.

• This may remind you of your early algebra days, when you learned 

the equation for a line between two points:

𝑌 = 𝑚𝑥 + 𝑏

• Because there is variation (and more than two points to create the 

line), there will be scatter around the best-fit line determined by 

regression analysis.



186Simple regression (cont’d)

Y = 0.8387 + 0.4891 X + “Error”

Slope


Intercept




187The line of best fit

The best-fitting line is the one that minimizes

the sum of the squared “errors”



188The line of best fit (cont’d)

• “Errors” are the vertical distances between each Y data 

value and the fitted line

• The line of best fit is the one that minimizes the sum of the 

squared errors

• This is the simplest example of least-squares model fitting

• The fitted line is often referred to as the predicted Y value
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Worksheet \ Prediction & error 1

LSSV2 student files \ ANOVA linear fit 

Finding the line of best fit



190Finding the line of best fit (cont’d)

In this worksheet we ignore the X variable completely, and use the average 

value of Y as the prediction. This is just the calculation of the mean and 

standard deviation of the Y variable. (The values in cells I14 and E17 are the 

same.) 

The sum of the squared errors (cell I12) can be dramatically reduced by using 

the X variable to “explain” more of the variation in the Y variable.



191Finding the line of best fit (cont’d)

Worksheet \ Prediction & error 2

Proportion of total Y variation caused 
by ("explained by") X variation



192Degrees of freedom for regression

N  =  total sample size

      G  =  number of parameters in the equation

          =  DF for the prediction column

N – G  =  DF for the error column

• The Error DF is more important than the Prediction DF

• It determines the accuracy of the predicted values

• When DF is mentioned without a qualifier, it usually means Error DF



193Steps in Simple Regression

1. Run Analyze > Fit Model in JMP to investigate the 

relationship between y and x

2. Check the p-value for the fit to determine whether the 

regression is significant. If not, then no need to go further.

3. If the regression is significant, determine the strength of the 

relationship, using the 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2

4. Check model adequacy by reviewing the residuals plots

➢ Residual Normal Quantile Plot

➢ Residual by Predicted Plot

➢ Studentized Residuals (in run order)

We’ll go through these steps and additional analysis details, 

for simple regression in the following example.



194Simple Regression in JMP

Open: Data sets \ simple regression - generic



195Simple Regression in JMP (cont’d)

Analyze → Fit Model  → Set up as shown → Run



196Analysis details

• P-value indicates 

whether the regression 

is significant

• This low p-value shows 

that it is significant

• The Root Mean Square Error 

(RMSE) is the standard 

deviation of Y caused by factors 

other than X

• It can be thought of as the 

standard deviation about the 

fitted line (or model)

• Also known as the “error” or 

“residual” standard deviation 

• Smaller is better



197Analysis details (cont’d)

R2

 “Coefficient of 

Determination”

• Proportion of the variation in Y that 

is “explained by” variation in X.

• Varies from 0 to 1.

• Larger is better

• Unitless



198Analysis details (cont’d)

• Adjusted 𝐑𝟐 also gives us 

the proportion of Y variation 

explained by the model (a 

line in simple regression)

• Varies from 0 to 1

• Larger is better

• Always use the Adjusted R2 

value, not R2

• Adjusted R2 takes the 

number of model terms into 

account and penalizes for 

including insignificant terms

• In this example, the simple 

regression model explains 

much of the variation in Y. 



199How R2 and RAdj
2  are calculated

𝑅2 = 1 −
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

𝑆𝑆𝑇𝑜𝑡𝑎𝑙

p = number of terms in the model (including the intercept)

n = sample size (number of measurements in the data set)

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is the sum of squares of the data (measurements in the data set)

𝑆𝑆𝐸𝑟𝑟𝑜𝑟 is the sum of squares of the Errors or residuals

𝑅𝐴𝑑𝑗
2 = 1 −

Τ𝑆𝑆𝐸𝑟𝑟𝑜𝑟 (𝑛 − 𝑝)

Τ𝑆𝑆𝑇𝑜𝑡𝑎𝑙 (𝑛 − 1)
= 1 −

𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉

2

We saw the sum of squares calculations earlier, in the ANOVA

Standard Deviation (STDEV)
of the data set



200Why use Adjusted R2 ?

There is a potential problem with R2:

• R2  always increases when terms are added to a model, even when the 

terms are not significant

• This is particularly a problem in multiple regression, as it can lead 

to “overfitting,” giving false confidence in using the model, especially  

for prediction.

• Adjusted R2 corrects for this by considering the number of terms in the 

model

• Adjusted R2 can actually decrease if non-significant terms are added to 

a model

Adjusted R2 is the recommended statistic for determining the 

proportion of variation in Y explained by the model



201P-values for the ANOVA and individual model parameters

• In regression of Y on a single X, 

the Analysis of Variance P-value 

is the same as the P-value for 

the slope of the line.

• The P-value for the slope of the 

line indicates the evidence of a 

correlation between Y and X.

• Significance of individual 

model terms are determined by 

testing whether their regression 

coefficient is equal to 0, using 

the t statistic. Hypotheses are:

𝐻0:  𝑏𝑖 = 0
𝐻1:  𝑏𝑖 ≠ 0

• This is a test of the contribution 

of the model term, given the 

other terms in the model.

Red triangle next to Response Y → Regression Reports → Parameter Estimates
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Estimates and P-values for 

the slope and intercept

P-values for individual model parameters

• In this example, the P-value for the slope of the line indicates very strong 

evidence of a correlation between Y and X.

• The P-value for the Intercept indicates that it is not significant.

➢ Best practice is to leave the Intercept in the model, whether or not the P-

value indicates that it is significant

o Regression equations are developed, and are only valid, over the region of the 

regressor variables (x’s) contained in the data set

o Forcing the model to pass through (0, 0) by removing the intercept, can create 

problems in the region being modeled

Model: 𝒀 = 𝟎. 𝟖𝟒 + 𝟎. 𝟓𝟎𝑿 + 𝒆𝒓𝒓𝒐𝒓



203Using Adjusted R2 and p-values

Both the Adjusted R2 and the p-values must be considered, 

in order to understand what has been learned in the analysis.

When the resulting model has:

• High Adjusted R2 and significant model term p-values, this is ideal.  

Factors driving the response have been identified and the variation is largely 

explained. A decent model has been created.

• Low Adjusted R2 and significant model term p-values, more work must be 

done.  Some significant factors influencing the response have been identified, 

but the low Adjusted R2 indicates that other important factors exist. These need 

to be found, for the model to be useful.

• High R2 and insignificant model terms, this is usually due to the data 

violating the assumptions of the regression analysis. There is more information 

on this scenario in upcoming slides.

• Low Adjusted R2 and insignificant model terms, no relationship between X 

and Y variables have been found.  Usually this means that new ideas about 

which factors influence Y must be developed, although it can occasionally be 

due to missing higher order terms.
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2052 Checking Model Adequacy

In least squares fit regression (continuous Y), the analysis  
methods used to calculate regressor coefficients and their 

p-values, depend on certain assumptions being met.

Assumptions:

• Errors (residuals) are normally and independently 
distributed with mean zero and constant variance (𝜎2)

• Observations are adequately described by the model

Whether performing regression from “file cabinet” data or 
analyzing the results of a designed experiment,

these assumptions must be validated.
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To validate that these assumptions have been met, 
the residuals are examined:

1. Normal Probability Plot of Residuals

• Validate that the residuals are normally distributed

• In JMP, this is the Residual Normal Quantile Plot

2. Residuals vs. Predicted (or Fitted) Values

• Validate constant variance and mean 0

• In JMP, this is the Residual by Predicted Plot

3. Residuals vs. Run Order 

• Verify independence of errors

• There should be no patterns over the timeframe of the data

• In JMP, the best graph to use is Studentized Residuals

• The JMP data table must be in run order for Studentized Residuals to 
graph the residuals in run order

Checking Model Adequacy (cont’d)



207Residuals Review

Residual (+)

Predicted value

Y

X

Residual (−)

Predicted value

Predicted Y  = b0 + b1X



208Notes

A fitted model, the equation generated during regression, gives the predicted mean 

value of the response variable as a function of the predictor variables. These predicted 

mean values are also called predicted values, or just predicted for short. The residual 

value is the data (observation) value minus the predicted value. Residual values are 

called residuals for short. 

These terms are easiest to visualize in the simple linear model shown above. A 

predicted value is the fitted line evaluated at some X value. A residual is the difference 

between a measured (observed) Y value and the predicted value at the corresponding X.  

Residuals contain information about the magnitude and direction of variability in the 

data relative to the fitted model. 

• An unusually large residual might signal a measurement error, data entry error or 

some other type of outlier. 

• A systematic trend or pattern in the residuals might signal an inadequacy in the fitted 

model.



209Residual Analysis

In viewing the Residual Normal Quantile Plot for the simple regression-generic, 
we can see whether the residuals are normally distributed.



210Notes

If residuals are normally distributed, the plot will be approximately a straight line.

Emphasis should be on the central values of the plot, rather than the ends

It is common for plots to bend upward at the high end and downward at the low 
end.

Small sample sizes, such as from experiments, often appear more non-normal

Use the “Fat Pencil” Rule: If a “fat pencil” placed over the central points would 
cover them on the plot, then the residuals are approximately normal (good 
enough). Hyperbolic bands displayed in JMP plots give these bounds.

A curve throughout the plot is a strong indication of non-normality. In this case, a 
transformation would be needed.

The plot above shows an error (residuals) distribution that is approximately 
normal, so it is not concerning.



211Residual Analysis (cont’d)

In viewing the Residual by Predicted Plot for the simple regression-generic, 
we can see whether the residuals have constant variance and mean 0.



212Notes

Here the residuals are plotted against the predicted values. This is a good all-around 

diagnostic plot. 

“Healthy” residuals look like random scatter around 0. There should be no 

obvious patterns. The amount of “scatter” or variance (how high and low the plot 

goes) should be consistent across the graph. This verifies the assumption of constant 

variance. If the variance is increasing or decreasing across the graph, a transformation 

is needed.



213Residual Analysis (cont’d)

In viewing the Studentized Residuals for the simple regression-generic, 
the best form for checking residuals by run order,

we can see whether there are any patterns over the timeframe of the data.

Note that the data table must be in run order for this plot.



214Notes

Again, on this graph, healthy residuals look like a random scatter around 0.

Runs (points in a row) of positive-negative-positive-negative residuals indicate 
correlation between runs. This implies that the assumption of independence has 
been violated. In designed experiments, randomization protects against this! 
Do it every time!

This plot can also show a change in variance over the time span of the 
experiment. This could be due to increased skill as the experiment progresses, a 
process drift, operator fatigue, tool wear, etc. This type of problem would show as 
an increase or decrease in spread or “scatter” of the residuals across the graph. 
Increasing or decreasing variance indicates the need for a transformation.



2153 Using the Model: RMSE and Prediction Profiler 

In this section, we’ll see how we can: 

• Use the Root Mean Square Error (RMSE) in predicting our 

future process variation,

• Use JMP’s Prediction Profiler to help us optimize our 

process, and

• Estimate our future % defective, using the t distribution 

calculator.
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When Y is correlated with a controllable X variable,

how can we use the regression to improve the Y capability?

Using the Model (cont’d)



217Using the Root Mean Square Error (RMSE)

Defective in the data:  33.3%

Predicted from distribution curve:  35.8%

Mean  =  27.9,  Std dev = 15.4

Suppose we are not happy with our current process capability

LSL                      Target                      USL
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USL

LSL

If we control X at 80, the mean will change from 27.9 to 40

Current
mean

RMSE (cont’d)

Target



219

LSL                 Target                 USL

RMSE (cont’d)

Mean  =  40.0

Std dev = 15.4

Defective in the data:  22.2%

     Distribution curve:  15.9%

• Moving mean Y to the center of the spec range does reduce % defective

• Is the mean the only thing that changes when we control X at 80? 
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 =  RMSE
     =  2.84

By definition, RMSE is the standard deviation of Y 

 that would result from eliminating the variation in X 

RMSE (cont’d)
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When we control X at 80, we don’t just move the mean from 27.9 to 40

― we also reduce the standard deviation from 15.4 to 2.84 !

RMSE (cont’d)

USL

LSL

Target
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2234. Introduction to the Prediction Profiler

JMP’s Prediction Profiler helps us use our regression model to 
make predictions and optimize our process.

Follow these steps to access the 
prediction profiler:

• Analyze > Fit Model > Y = Y, 
Model Effects = X > Run > Red 
Triangle > Factor Profiling > 
Profiler



224Introduction to the Prediction Profiler (cont’d)

• Calculates predicted mean Y as a function of X

• Calculates confidence intervals for predicted means 

JMP’s Prediction Profiler helps us use our regression model to 
make predictions and optimize our process.

Mean of Y

Confidence 
Interval



225Simple example of prediction of Mean Y

Continuing with the simple regression-generic data:

• Suppose we are interested in the predicted mean Y for X = 60

• Click on the 55.333, change it to 60

• Predicted mean Y (based on the data) is 30.19

• With 95% confidence, the population mean lies between 27.79 and 32.59



226Simple example of optimization

• Suppose we want to find the X value that predicts a mean Y value of 25

• Red triangle next to Prediction Profiler → Optimization and Desirability → 

Desirability Functions 
• Double click in here (don’t touch 
the line plot)

• Modify the Response Goal dialog 
as shown below

• Click OK



227Optimization (cont’d)

Red triangle

next to 

Prediction Profiler



Optimization and Desirability



Maximize Desirability 

• Predicted mean Y of 25 is achieved when X = 49.4

• With 95% confidence, this population mean lies between 22.6 and 27.4



228Confidence Intervals and Prediction Intervals

• The 95% Confidence Interval on the Mean Response gives the 

range which will contain the “true” mean, 𝜇, 95% of the time

• For a sample, the confidence interval is calculated:

ത𝑌 − 𝑡.025,𝑛−1

𝑠

𝑛
≤ 𝜇 ≤ ത𝑌 + 𝑡.025,𝑛−1

• For a regression, calculation of the confidence interval is 

similarly structured, but considerably more complicated, 

involving matrix math.

• A 95% Prediction Interval gives the range which will contain 

future individual response observations 95% of the time.

• The prediction interval is wider than the confidence interval, 

because it is to contain individual measurements, not averages.

• Calculation of this interval is complicated, involving matrix 

math.



229Exercise 4.1

a) Continuing with simple regression-generic, find the X value that predicts a mean Y 

value of 35. Give the confidence limits for the predicted mean.

b) The overall standard deviation of Y is 15.39. The RMSE from the regression is 

2.84. Which of these would be the standard deviation of Y if we controlled X to a 

constant value?

c) Save your script, close and save the data table.



230Exercise 4.2

Data sets \ production vs capacity. 

(a) Fit a regression for Production qty as a function of Capacity utilized (%) (using Fit 

Model, of course). Is there a correlation? Give the appropriate P-value and strength 

of evidence. 

(b) For this exercise, we will not review the residuals plots. Use your model to find the 

capacity utilization level that predicts a mean daily production quantity of 3500. 

Give the confidence limits.

(c) The overall standard deviation of Production qty is 733.5 (not shown in Fit Model 

output—calculated in Distribution Platform). The RMSE from the analysis in (a) is 

409.732. Which of these would be the standard deviation if capacity utilization was 

held constant?

(d) Save your scripts, close and save the data table.



231Estimating Improved % Defective

Once we determine the level at which we want to control 

our x, we can use the root mean square error (RMSE) and 

other regression results to estimate the % defective in the 

improved process.

Remember that by definition, the RMSE is the standard 

deviation of the improved process, with x’s held at desired 

levels.

The t distribution calculator helps us calculate the future 

% defective.



232LSSV2 student files  \ t distribution calculator 

PPM defective = 290

Error DF from the 
Analysis of Variance



233Exercise 4.3

Data sets \ production vs capacity.jmp. 

In this process data, on 75% of the days production quantity fell below 3000.

Based on the best fit distribution, the Lognormal, the expected % of days that 

production quantity will fall below 3000 is 71.8%.

a) We found earlier that capacity utilization 52.1% gives a mean daily production 

quantity of 3500. The RMSE was 409.7, the error degrees of freedom was 34. 

Assuming 52.1% capacity utilization, use the t distribution calculator to find the 

predicted % of days on which production quantity will be less than 3000.

b) Save your scripts, close and save the data table.



234Exercise 4.4

Open Data sets \ outgassing process. Current (the Y variable) is the current required 

to heat a filament to a target temperature. Resist (the X variable) is the electrical 

resistance of the filament. Machine is the processing unit. This example shows how to 

reduce % defective by separate optimization of each machine.

a) For this process, the % of Current data values that fall outside the interval (1.9, 

2.1) is 8.87%.

b) Fit a regression for Current as a function of Resist, using Machine as the By 

variable. For each machine, give the RMSE, the error degrees of freedom, and 

the resistance that predicts a mean current of 2. 

c) Assuming we use the indicated resistance values, use the t distribution calculator  

to find for each machine the % of Current values predicted to fall outside the 

interval (1.9, 2.1). 

Machine RMSE DF Resistance % Outside

A

B

C

d)  Save your scripts, close and save the data table.



2355  Multiple Regression

• Multiple regression model 

• Examples  

• Fitting regression models

• Interactive effects

• Predicted values and uncertainty

• Modeling and optimization



236Multiple regression model

Y = b0 + b1X1 + b2X2 + . . . + bkXk  + “error”

Y X1, X2, . . . , Xk b0 b1, b2, . . . , bk “Error”

Dependent 

variable

Independent 

variables

Intercept Regression 

coefficients

Residuals

Mean = 0

Response 

variable

Explanatory variables Parameter Parameters Standard deviation =  

(RMSE)

Output Inputs Distribution = Assumed to 

be Normal

Predictors

Regressors

Factors (in DOE)
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Y  = b0 + b1X  + “error” 

Model and error components, one X

Y

X

When X is 

fixed, predicted 

 of Y = RMSE

Predicted mean Y (X = 146)
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Y  = b0 + b1X1 + b2X2  + “error” 

Y

X1 

X2      

Predicted mean Y (X1 =  X2 = 1.2)

Model and error components, two Xs

When X1 and 

X2 are fixed, 

predicted  of 

Y = RMSE



239Multiple regression examples

Y X1 X2 X3 X4 X5

Life of 

cutting tool
RPM Tool type Material Feed rate

MPG
Displace-

ment
Horsepower Weight

Salary Education Experience Performance Seniority Gender

Vending

machine

service time

Amount of

product

stocked

Distance 

from truck to 

machine

Fill in examples of interest to you



240Regression model equations

Y X1 X2 X3 X4 X5

MPG
Displacement

(D)

Horsepower 

(H)

Weight

(W)

error  W b    Hb    Db   bMPG 3210 ++++=

error    Db    Tb    TDb    Db    Tb    b    Bond 2

5

2

43210 ++++++=

Y X1 X2 X3 X4 X5

Bond 

strength

Temperature

(T)

Dwell time

(D)
T  D T2 D2

Response surface model (RSM) with two continuous Xs.

TD is the interaction term for T and D, T2 and D2 show curvature.  



241Linearizing nonlinear models

Nonlinear model Equivalent linear model

( ) ( )  XXb Y 21 b

2

b

10= ( ) ( ) ( )  XlogbXlogbbloglog(Y) 22110 ++=

( ) ( )  bbb   Y
21 X

2

X

10= ( ) ( ) ( )  XblogXblogbloglog(Y) 22110 ++=

• In many cases, log(Y) transformations can successfully 
linearize nonlinear regression models

• This greatly extends the application of standard multiple 
regression models



242Fitting regression models

Y X1 X2

Height Age Gender

Weight Age Gender

Data sets \ teenage growth



243Fitting models (cont’d)

Say we want to 

model Height as 

a function of 

Age and Gender

Analyze



Fit Model



244How to change options (for Fit Model ) during analysis

• Alt-click on Response 

Height  red triangle (This 

technique works for may 

JMP platforms)

• Set up as shown on next 

slide



245Default options for Fit Model (cont’d)

In the last column on the 
right (not shown), select 

Effect Summary.



246Handling categorical X variables in the model

“Indicator” or “dummy” 
variables are used to 
represent categorical 

variables in regression.

Indicator variable

representing the

effect of Gender

in the equation



247Numeric coding for two-level categorical X

M  isGender    if

 F  isGender    if1+

‒1

Height  =  b0 + b1Age + b2Gender[F]  

b0 + b2 + b1Age  if  Gender is F  

b0 ‒ b2 + b1Age  if  Gender is M  
= 

Gender[F]  =

This results in one equation for Females and one equation for Males,
with equal slopes (b1) and different intercepts (b0 + b2 and b0 ‒ b2).

An additional indicator variable is added for each additional level of a 
categorical variable.

In JMP, two-level categorical factors are coded +1 and -1



248Constructing the model equation

  M =Gender   if Age651+6340

F =Gender   ifAge651+2138

=Height  

  ..

    ..
  

  

[ ]FGender 1.21  Age 651+4239=Height ..

If you want to verify the equation: 
      Response Y→ Estimates 
 → Show Prediction Expression



249The need for interaction effects

• With this model, the growth curves 

are parallel

• This is an assumption of the model, 

not a result of the analysis (no 

interaction terms were included in  

Fit Model)

• How do we test for parallel curves?
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[ ]

[ ]FGender*Ageb+                       

FGenderb+Ageb+b=Height

3

210

This product term allows different slopes for M and F

Interaction effects (cont’d)



251Adding an interaction effect

1. Highlight

3. Interactive effect 

added to model

2. Click



252Non-parallel growth curves

 M =Gender   ifAge 242+3032

 F =Gender   ifAge 041+6246
=Height  

   .    .

  .    .

[ ] [ ] )98.13Age(*F0.60GenderF1.23Gender Age 1.64+39.46=Height

The result is one model equation 
for Females and one for Males, 
with different slopes and intercepts

To verify the equation: 
      Response Y
     → Estimates 
     → Show Prediction Expression



253Testing the interaction effect

The p-value for Gender*Age  

indicates some evidence that 

growth curves for girls and 

boys have different slopes

✓ Adjusted R2 went up

✓ RMSE went down

• From now on we will use Effect 

Summary to find P-values. It gives 

the same information and allows 

model modification.



254Residuals Review

Residual (+)

Predicted value

Y

X

Residual (−)

Predicted value

Predicted Y  = b0 + b1X



255Notes

A fitted model, the equation generated during regression, gives the predicted mean 

value of the response variable as a function of the predictor variables. These predicted 

mean values are also called predicted values, or just predicted for short. The residual 

value is the data (observation) value minus the predicted value. Residual values are 

called residuals for short. 

These terms are easiest to visualize in the simple linear model shown above. A 

predicted value is the fitted line evaluated at some X value. A residual is the difference 

between a measured (observed) Y value and the predicted value at the corresponding X.  

Residuals contain information about the magnitude and direction of variability in the 

data relative to the fitted model. 

• An unusually large residual might signal a measurement error, data entry error or 

some other type of outlier. 

• A systematic trend or pattern in the residuals might signal an inadequacy in the fitted 

model.
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Predicted Y  = b0 + b1X1 + b2X2 

Y

X1 

X2      

Residuals Review: Same thing for any number of X’s

•

Residual (+)

Predicted value



257Same thing (cont’d)

Predicted Y values

R
es

id
u

al
s

Plot of residuals by predicted for any number of Xs

Lower left-hand

quadrant of the 

(X1, X2) plane

Upper right-hand

quadrant of the 

(X1, X2) plane



258Checking model adequacy

We can see points on the hyperbolic bands here, but there is not an obvious 
curve through the data. Given the small sample size, this is not too concerning.



259Checking model adequacy (cont’d)

In this plot, we can see that the variance in the residuals is decreasing as 
height increases. This indicates the need for a transformation. We will see how 

to do this a little later in the course.



260Checking model adequacy (cont’d)

There are no obvious patterns in residuals in run order, and they scatter about zero. 
There is no concern here. 

(Points outside the red limits are considered outliers, and should be investigated. 
Points outside the green limits but inside the red limits are possibly outliers, but 

with less certainty.)



261Variance Inflation Factor (VIF)

When historical or observational data is used to generate a regression 

model, an additional test is needed:

• The variance inflation factor (VIF) must be checked

• The VIF indicates whether the regressors (i.e. Xs or predictors) are 

correlated with each other

➢ 𝑉𝐼𝐹 = 1: regressor is independent of all other regressors

➢ 1 ≥ 𝑉𝐼𝐹 ≥ 5: regressor is moderately correlated to other regressors

➢ 𝑉𝐼𝐹 > 5: regressor is highly correlated with other regressors

• VIFs in the final model need to be less than 5

o When X variables are correlated (high VIFs), the analysis makes statistical 

determinations based on the noise between the correlated variables.  This 

will often result in high R2 values but insignificant p values.

o VIFs are often lowered when insignificant terms are removed from the 

model, and terms should be removed one at a time.  The first term removed 

should be the one with the highest p value unless theory implies removing a 

different one.

o High VIFs are not an issue in designed experiments, as the designs prevent 

high correlation between terms/regressors



262VIFs (cont’d)

The variance inflation factors for all terms in the model are below 5. 

There is no concerning level of correlation between model terms.

To display the VIFs, right click in the Parameter Estimates section, click 
Columns, then VIF.



263Predicted values and associated uncertainty

Predicted avg. height in the population of 14 year old girls 61.12

95% confidence interval for avg. height of 14 year old girls
[59.60, 62.64]

61.12 ± 1.52



264Notes

The model without interaction gave 61.25 ± 1.55 (slightly larger margin of error).

 



265Steps in Multiple Regression (backward elimination method)

1. Run Analyze > Fit Model in JMP to investigate the relationship 

between y and x’s. Use the Response Surface Model (all factors, 

all interactions, quadratic terms for continuous variables/factors)

2. Check model adequacy by reviewing the residuals plots:

➢ Residual Normal Quantile Plot

➢ Residual by Predicted Plot

➢ Studentized Residuals (in run order)

3. Transform the data and resolve other issues, if needed.

4. Verify all VIFs < 5. Address the issue if any are over 5.

5. Remove insignificant terms from the model, that are not needed 

to maintain model hierarchy (main effects must be included if a 

higher order term of that variable remains in the model). 

6. Use 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 to determine the amount of variation in Y that 

is explained by the model.



266Notes

Your instructor will go through Exercise 5.4 as an example.



267Exercise 5.1  

a) In the table below, record the Adjusted R2 and RMSE from the analysis of Height in 

this section. Also, record the P-values from Effects Tests. Run the same analysis for 

Weight and record the corresponding results. 

b) Which variable (Height or Weight) has the greater proportion of variation explained 

by Age and Gender? 

b) Explain why it wouldn’t make sense to compare the two models in terms of RMSE. 

P-values

Response Adj. R2 RMSE Age Gender Age*Gender

Height

Weight



268Exercise 5.1 (cont’d)  

d) Both Age and Gender were statistically significant for predicting Height. Is this true 

for Weight?

e) For Height we found evidence that the growth curves for girls and boys have 

different slopes. Is this true for Weight as well? Give the P-value that is relevant to 

this question and explain what it means.

f) Give the predicted average Weight in the population of 15-year-old boys. Give a 

95% confidence interval for this average.

g) Save your scripts, close and save the data table.



269Exercise 5.2

Data sets \ lead time 2.

a) Fit a model for Lead time including the terms 

Process Step, Operator, and their interactive 

effect. Be sure you have the correct modeling 

type for Operator. (If you got the upper right 

profiler, the modeling type for Operator is not 

correct. The lower right profiler is correct.)

b) Note anything concerning in the residuals plots.

c) Remove terms under Effect Summary with P-

values exceeding 0.15 (Remove button). Which 

terms are left? Any issues with VIFs?

L
e
a
d

 t
im

e
L

e
a
d

 t
im

e

d) Based on the profiler, which factor has the larger effect on 

lead time (steeper slope)? Does this correlate with the P-

values? Please explain.

e) Save your script, close and save the data table.



270Exercise 5.3

Data sets \ number and size of defects.jmp.

a) Fit a model for Max size including the terms Welder, # Defects, their interactive 

effect, and the quadratic effect for # Defects (cross it with itself). This is the 

Response Surface Model (RSM) for one categorical factor and one continuous 

factor. 

b) Do you see anything concerning in the residuals plots?

c) Using the Effect Summary, remove terms with P-values exceeding 0.15 (use the 

Remove button). Which terms are left in the model? Do all remaining terms have 

VIFs < 5?

d) Based on the profiler, which factor has the larger effect on Max size? Does this 

correlate with the P-values? Please explain.

e) Save your script, close and save the data table.



271Exercise 5.4  [Instructor to demonstrate]

In this example you will analyze data from an optimization experiment concerning the 

removal of excess metal from castings by belt grinding. 

The belt supplier had been recommending that belts be discarded when they are “50% 

used up.” This rule was based on tests conducted by the supplier to define the usage 

point at which the total of labor and belt costs will be minimized. One of the grinders 

thought the supplier’s rule caused grinders to discard belts too soon. Aside from being 

suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s 

tests did not take into account the time lost to belt changes. 

This grinder developed a new standard under which belts would be discarded only 

after they were “75% used up.” He wanted to do a comparative study to show that his 

method was cheaper overall. After he explains the study with his fellow grinders, 3 

additional factors are added to the experiment. 

Each casting in the experiment was weighed before and after the grinding operation. A 

technician kept track of how many belts were used and how long it took the grinder to 

complete each casting. From this information the total cost per unit of metal removed 

was calculated for each casting.

Data sets \ belt grinding.
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• Y variable:  cost per unit of metal removed

• X variables:

• Run the Fit Model script provided in the left panel, by clicking on the green 

triangle. This is the response surface model for 4 categorical X variables. 

• Check the residuals plots. Any problems?

• Using the Effect Summary, remove insignificant terms not needed to maintain model 

hierarchy, starting with the group of terms with P > 0.20, then one at a time. Which 

terms are left in the model? 

• Use the Prediction Profiler to find the minimum cost factor settings.

• What do you expect the mean and standard deviation of Cost to be after 

implementing the optimal factor settings? 

• Save your script, close and save the data table.

➢ Contact wheel land-groove ratio (LGR):           Low     or   High      

➢ Contact wheel material (MATL):                    Steel   or   Rubber  

➢ Belt usage limit (USAGE):                               “50%”  or   “75%”

➢ Belt grit size (GRIT):                                      30       or    50

Exercise 5.4 (cont’d)   [Instructor to demonstrate]



273Exercise 5.5

In this example you will analyze data from an optimization experiment concerning the 

bond strength of potato chip bags. 

Chips ‘R’ Us was receiving customer complaints about stale chips, especially from 

customers on airplanes. They traced the problem to the bag sealing process. The 

current process involved a temperature of 150C, a pressure of 100 psi and a dwell 

time of 1.1 secs. The current average bond strength was about 85 psi. 

Process Engineer Chip Kettle ran an experiment to increase the bond strength. 

Production Manager Justin Thyme reminded Chip that he would very much like to 

avoid an increase in the dwell time. 

Justin is able to free up a bag sealer for only so much time each shift. Chip realizes he 

will need two shifts to complete the experiment. He decides to include Shift as an 

additional variable in the analysis just in case there is an operator and/or equipment 

effect.

Data sets \ heat sealing 1.
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• Y variable:  bond strength 

• X variables and feasible ranges:

• Run the Fit Model script provided in the left panel. This is the response surface 

model (RSM) for 3 continuous X’s. Is anything concerning in the residuals plots?

• Remove from the model insignificant terms that are not needed to maintain model 

hierarchy (P > 0.15), using the Effect Summary. Which terms are left?

• Use the Prediction Profiler to maximize the average bond strength. If your solution 

requires a long dwell time, manually move things around in the profiler to find 

another solution with a short dwell time.

• What do you expect the mean and standard deviation of bond to be after 

implementing the optimal factor settings? 

• Save your script, close and save the data table.

➢ Temperature (TEMP):              120  to  180 

➢ Pressure (PRESS):                     50  to  150

➢ Dwell time (DWELL):                0.2  to  2.0

➢ Shift:                                          1   or  2

Exercise 5.5 (cont’d) 



275Exercise 5.6

Data sets \ outgassing process. Current (the Y variable) is the electrical current 

required to heat a filament to a specified temperature. Resist (one of the X variables) 

is the electrical resistance of the filament. Machine (the other X variable) identifies 

which of three processing units was used. We want to develop a model for Current as 

a function of Resist and Machine.

a) Fit a response surface model for Current. (The terms will be Resist, Machine, the 

interaction term Resist*Machine, and the quadratic term Resist*Resist. To get the 

quadratic term, highlight Resist both under Select Columns and under Construct 

Model Effects, then click Cross.) 

b) Do you see anything concerning in the residuals plots?

c) Remove any terms under Effect Summary with P value exceeding 0.15. (Use the 

Remove button.) Record the RMSE.

d) Use the Prediction Profiler to find the predicted average Current for each 

machine if we always use filaments with resistance 52.



276Exercise 5.6 (cont’d)

e) The target value for Current is 2. For each machine, we want to find the 

resistance for which the average current is 2. On the Prediction Profiler red 

triangle, select Desirability Functions. It should look like this:

f) Double click in the upper right hand 

panel of the profiler. (Try to avoid 

the plotted line.) You should get the 

dialog shown below.

g) Modify the dialog as shown to the 

right, then select OK. Proceed to the 

next slide.

Machine



277Exercise 5.6 (cont’d)

h) On the Prediction Profiler red 

triangle, select Reset Factor Grid. 

We want to lock the factor setting 

for Machine, so check the Lock 

Factor Setting box as shown here.

i) The vertical line for Machine should 

now be solid instead of dotted. This 

will hold the machine setting in 

place during Maximize Desirability, 

which allows you to optimize Resist 

separately for each machine. On 

the Prediction Profiler red triangle, 

select Maximize Desirability. 

Proceed to the next slide.
Machine



278Exercise 5.6 (cont’d)

j) The optimal resistance value for 

Machine A is 51.5. Drag the solid 

vertical line across to B, then click 

Maximize Desirability to find the 

optimal resistance value for 

Machine B. Do the same for 

Machine C.

k) What will the average current be if 

we always use the optimal resistance 

values for each machine?

l) What will the standard deviation of current be if we always use the optimal 

resistance values?

m) Save your scripts, close and save the data table.



2796 Dealing with Model Adequacy Issues

In this section, we will cover the most common model adequacy 

issues:

• Outliers

• Pattern in run order plot of residuals

• Multicollinearity (VIFs over 5)

• Unequal variance and non-normal residuals



280Issue: Outliers

Outliers can easily be seen on the Residual by Predicted and 
Studentized Residuals (residuals by run order) plots 

Remember, healthy residuals look like random scatter about zero.

Here, it looks like there might be a suspicious data point. 



281Issue: Outliers (cont’d)

• Investigate the data point.

o If it turns out to be just a data entry error, we simply enter the correct 

value, then all is well. Most of the time it’s not that simple. 

• If you have an outlier of unknown origin: 

o Run the analysis with and without the questionable data point. 

o If you’re lucky, the results will be pretty much the same both ways, 

hence no worries.  Leave the data point in.

• If excluding the outlier does make a significant difference in the 

results, then you have a hard decision to make. 

o The official rule is:  leave the data point in unless you can identify 

the cause.  The idea is to throw it out only if you can demonstrate  

that it does not come from the population you want to study. This is 

the “pure” approach. 

o This should be tempered with the following practical consideration:  

you don’t want your results to be unduly influenced by one extreme 

outlier, even if you can’t explain it.  



282Issue: Pattern in run order of residuals

Remember, healthy residuals look like random scatter about zero.

There are no patterns of concern here.



283Issue: Pattern in run order of residuals (cont’d)

• Runs (points in a row) of positive-negative-positive-negative 
residuals indicate correlation between runs in an experiment. 

o This implies that the assumption of independence has been violated. 

o Randomization of an experiment protects against this! Do it every 
time!

• This plot can show changes in variance over the time span of the 
experiment or data collection. 

o This could be due to increased skill as the experiment progresses, a 
process drift, operator fatigue, tool wear, etc. 

o This type of problem would show as an increase or decrease in spread 
or “scatter” of the residuals across the graph. 

o If there is x data available to support it, one remedy is to add a factor 
(time since tool change, number of hours of operator work, etc.)

o Increasing or decreasing variance can also indicate the need for a 
transformation.



284Issue: Multicollinearity (VIFs > 5)

• One aspect of factorial design 
experiments (often called 
DOEs) is that they are 
orthogonal designs. This results 
in the model terms being 
completely uncorrelated.

• Regressors that are completely 
uncorrelated with others have 
VIF = 1.

• High correlation is only a 
potential issue when using 
historical or observational data 
in regression analysis.

Remember, VIF < 5 is not concerning.



285Issue: Multicollinearity (cont’d)

Several strategies can be tried for resolving multicollinearity, but they may 

not be satisfactory, especially if the model will be used for prediction.

• Collect additional data in a way that breaks up the multicollinearity.

o Historical data may contain only certain combinations of x-variables, 

for example, only low levels of 𝑥1when 𝑥2 is at a low level and only 

high levels of 𝑥1when 𝑥2 is at a high level

o Note: it may not be feasible or possible to collect this additional data.

o In some cases, the factors (x’s) are inherently correlated, for example as 

may be the case with household income and house size.

• Respecifying the model, can help.

o If 𝑥1 and 𝑥2 are nearly linearly dependent, use one term, 𝑥 = 𝑥1 + 𝑥2, 

which preserves the information content of the original variables

o Try removing the term with the highest p-value, and look at that model. 

Then, replace it and remove the term with the highest VIF. See which 

gives the better model.

• Use ridge or principal-component regression (way beyond the scope of 

this course)



286Issue: Unequal variance and non-normal residuals

Remember, the variation in the residuals should be fairly constant across 

the Residual by Predicted Plot. There is no issue here.



287Issue: Unequal variance and non-normal residuals (cont’d)

In this plot, we can see an issue.

𝜎𝑌
2 proportional to mean Y → “sideways V”



288Basic model assumption: constant variance

𝜎𝑌
2 is constant (does not depend on the X’s)

X

Y



289

𝜎𝑌
2 is proportional to mean Y

X

Y

Most common violation of the basic assumption



290Issue: Unequal variance and non-normal residuals (cont’d)

• Often, when there is 

an issue with 

constant variance, 

there is also the 

issue of non-normal 

residuals.

• This can be seen in 

these two plots

• Fortunately, they 

usually both resolve 

with the same 

treatment—a 

transformation.
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The standard assumption in all comparison and correlation analyses involving a 

quantitative Y variable is that the noise (unexplained/error/residual) variation follows a 

Normal distribution with mean 0 and a standard deviation that does not depend on the 

X variables. 

This simple model has served us well. However, when Normality or constant  is 

grossly violated, something must be done. The most common remedy is to use log(Y) 

or sqrt(Y) as the dependent variable instead of Y. This is a transformation. This “trick 

of the trade” is simple and, in most cases, effective.



292Transforming the Y variable

Data sets \ actual vs estimated

We want to see

how accurately

we can estimate 

the time it takes 

to do certain 

tasks

 

Analyze



Fit Model



293Transforming Y (cont’d)

Variation

increases

 as average 

Actual Hrs

increases

Y = 0.835 + 0.632 X 



294Transforming Y (cont’d)

Response Actual Hrs        

> Model Dialog

• Click on Actual Hrs

• Click on Transform 

red triangle

•  Select Log

• Run the model

Log(Y) constantY proportional to mean Y



295Effects of log transformation

( ) ( ) ( )XX038.0898.0 04.145.2eeX038.0898.0expY ==+=( ) X038.0898.0YLog +=

Nonlinear model for Y



296Note on JMP notation, and impacts of the Log transformation

JMPs notation regarding Logs requires some clarification:

• Although JMP expresses the logarithm as “Log”, it is actually base e, or the 
natural log, which is usually written as Ln.  It is not a base 10 logarithm.

• However, the plots that use a log transformed X-axis display use base 10 log 
for the X-axis.  This does not change the interpretation of the chart.

The impact of transformation on R2 and p-values:

• In the previous example, a transformation was required because the 
residuals variance wasn’t constant over the range of the predicted values.

• After the transformation, the R2 value went down.  This can lead to a belief 
that the non-transformed model was “better”. However,

• Residuals showing this condition (heteroscedasticity) can cause p-values 
and R2 to be over or under stated.

• When this condition occurs, the problem must be corrected.  The resulting 
model, even if R2 is lower or p-values are higher, is the more “real” model.



297Steps in Multiple Regression (backward elimination method)

1. Run Analyze > Fit Model in JMP to investigate the relationship 

between y and x’s. Use the Response Surface Model (all factors, 

all interactions, quadratic terms for continuous variables/factors)

2. Check model adequacy by reviewing the residuals plots:

➢ Residual Normal Quantile Plot

➢ Residual by Predicted Plot

➢ Studentized Residuals (in run order)

3. Transform the data and resolve other issues, if needed.

4. Verify all VIFs < 5. Address the issue if any are over 5.

5. Remove insignificant terms from the model, that are not needed 

to maintain model hierarchy (main effects must be included if a 

higher order term of that variable remains in the model). 

6. Use 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 to determine the amount of variation in Y that 

is explained by the model.



298Exercise 6.1

Data sets \ number and size of defects.jmp

a) Fit a model for Max size including the terms 

Welder, # Defects, their interactive effect, and 

the quadratic effect for # Defects (response 

surface model for one continuous factor and 

one categorical factor). You should see a 

distinct sideways V. Do you see issues in any 

other residuals plots?

b) Select Model Dialog on the Response red 

triangle menu, apply a Log transformation to 

Max size, re-run the model. The sideways V 

isn’t completely gone, but close enough. Did 

other residuals plots improve?

c) Use Effect Summary to remove terms with P > 

0.15.

Remember to change the x-
axis on the plot, as well.



299Exercise 6.1 (cont’d)

f) Save your script, close and save the data table.

When you use a Log or square 

root transformation on Y, it is 

helpful to use same scale for 

the Y axes of the plots

d) Which terms are left in the 

model?

e) Now we have a log-linear simple 

regression.
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An aerospace manufacturer uses integral castings as structural components of jet 

engines. Integral castings give design engineers more flexibility and simplify the 

assembly process. Defect-free castings are known to have long cycle fatigue life, but 

defects often arise in the casting process and must be weld repaired. The engine 

manufacturer’s metallurgical team has proposed a finishing process of the following 

type to ensure adequate cycle fatigue life of weld-repaired castings:

The team wants to optimize the first two steps in this process to achieve maximum 

cycle fatigue life. Also, though other applications of similar processes have included 

peening, they would like to see if it can be omitted to reduce processing time and cost. 

Due to project time constraints and limited availability of test fixtures, the team can 

perform at most 12 cycle fatigue tests for their experiment.

Heat Treat Polish Peen

Exercise 6.2
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• Y variable:  Cycles (to failure)

• X variables:

• Data sets \ weldment fatigue.jmp.

• Run the Model script provided in the left panel, run the model. 

• Notice the extreme sideways V on the Residual by Predicted Plot. Are there issues in 

any of the other residuals plots? If yes, what are they?

• Rerun the model using a Log transformation on Cycles. Did residuals plots improve?

• Remove insignificant terms from the model (P > 0.15) that are not needed to 

maintain model heirarchy. 

• Use the Prediction Profiler to maximize the cycle fatigue life.

➢ Heat treat:               Anneal or Solution/age        

➢ Polish:        Chemical or Mechanical

➢ Peen:                       Yes or No

Exercise 6.2 (cont’d)
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A Black Belt wants to minimize the leak rate in plastic containers ultrasonically 

welded together. The X variables and ranges are:

Exercise 6.3

➢ Force:               70 to 150

➢ Energy:           275 to 325

➢ Amplitude:        70 to 90

• Data sets \ ultrasonic welding 1.jmp.

• Run the Model script provided in the left panel. 

• What problems do you see in the residuals plots?



303Exercise 6.3 (cont’d)

• Rerun the model using the Log transformation on leak rate. (Be sure to change the 

x-scale to Log on the Residual by Predicted Plot.)

• Rerun the model using the Sqrt transformation on leak rate. (Be sure to change the 

x-scale to Sqrt on the Residual by Predicted Plot.) 

• Which set of residuals plots looks better? Use whichever transformation looks like 

it worked better, going forward. 

• Remove insignificant term(s) from the model (P > 0.15), while maintaining model 

hierarchy.

• Use the Prediction Profiler to minimize the leak rate.
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3057  Simple Regression with Pass/Fail Y

When the response variable, Y, is binary (pass/fail, yes/no, 

success/failure, etc.), the regression model used for a 

continuous Y-variable cannot be used.

• A logistic response function must be used

• The resulting analysis yields an equation that allows us to calculate 

event probability:

𝑷𝒆𝒗𝒆𝒏𝒕 = 𝒇(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)

• This equation is used to answer questions such as:

o What is the probability of being in spec (at various levels of x)?

o What is the probability of getting the contract?

o What is the probability of a defect?



306Probability Function for Pass/Fail Y

This probability function, the logistic response function, has a 

much different behavior than a linear regression function:

• The y values of a linear regression 
can have any values

• The logistic response function is 
an S-shaped function that can only 
have values between 0 and 1

To be useful in prediction, the logistic response function must be 
transformed into an unbounded linear function



307Transforming the logistic response function (cont’d) 

The logit transformation is used to linearize the model:

𝑙𝑜𝑔𝑖𝑡 𝑃𝑒𝑣𝑒𝑛𝑡 = ln
𝑃𝑒𝑣𝑒𝑛𝑡

1 − 𝑃𝑒𝑣𝑒𝑛𝑡
= 𝑏0 + 𝑏1𝑥1+ . . . +𝑏𝑛𝑥𝑛

 
𝑃𝑒𝑣𝑒𝑛𝑡

1−𝑃𝑒𝑣𝑒𝑛𝑡
= 𝑒𝑏0+𝑏1𝑥1+ ...+𝑏𝑛𝑥𝑛

𝑃𝑒𝑣𝑒𝑛𝑡 =
1

1 + 𝑒−(𝑏0+𝑏1𝑥1+ ...+𝑏𝑛𝑥𝑛)

• This is the form of the final equation in the regression analysis

• The maximum likelihood method is used to estimate the parameters in this 

probability equation . . . JMP does this work for us

• We can use this equation (model) to predict the probability of an event for 

various levels of x1, x2, . . . , xn



308Using JMP for Simple Regression with Pass/Fail Y

We will see how to use JMP do the regression analysis when we 

have:

a) Raw data − each row represents one part or transaction

b) Tabulated data − each row represents multiple parts or 

transactions



309Raw data

Data sets \ target practice



Fit Model



Set up as shown



310Analysis output

• P-value for correlation 

(this is the one that 

matters)

• Very strong evidence of 

a negative correlation 

between the speed of the 

target and the 

probability of hitting it

Probability 
of a hit



311The prediction profiler

• Red Triangle → Profiler → Prediction Profiler 

red triangle → Optimization and Desirability → 

Desirability Functions

• Double-click in the blank area, enter 1 for Hit 

and 0 for Miss → OK → OK → next slide

                                              



312Prediction profiler (cont’d)

Prediction Profiler red triangle → Optimization and Desirability → 

Maximize Desirability

• The target speed of 200 produces 

the maximum hit probability of 

0.952

• The corresponding miss probability 

is 0.048

• The target speed of 320 produces 

the minimum hit probability of 

0.061

• The corresponding miss probability 

is 0.939
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Open Data sets \ quotation process.jmp.  

a) Fit PO by TAT. Which P-value in the output is the most reliable?

b) Does the PO hit rate increase or decrease as the TAT increases?

c) Find the PO hit rates for 3 day and 15 day turnarounds. 

d) Save your script, close and save the data table.

Exercise 7.1



314Tabulated data

Data sets \ cracking vs dwell time

1) Tables → Stack

2) Use Cracked and Not cracked as the stack columns

3) Change Label to Result, change Data to Freq → OK

4) Save as cracking vs dwell time stacked



315Stacked format

Analyze



Fit Model



See next slide



Set up as shown



316Fit Model

In this data set, instead 
of a row for each 

observation, the results 
are tabulated—there is 
a count of outcomes 

for each level of the X 
variable.

Using the Freq values 
tells JMP how many 
times to count each 

row. 
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Very strong evidence of positive 

correlation between dwell time

and probability of cracking

Analysis output

Dwell time

(mins)

Probability 

of cracking

5 0.020

10 0.049

15 0.114
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3198  Multiple Regression with Pass/Fail Y

• Project to reduce clogged nozzles 

in print heads

• Comparison of four types of 

adhesive and two print head 

designs 

• Each lot = 60 print cartridges

• “Pass” = no customer detectable 

print defects

• Data sets \ clogging pass-fail

• Run the Model script. If necessary, 

bring the Model Specification to 

the front.



320Example (cont’d)

Switch the 

Target 

Level from 

Fail to 

Pass, then 

run the 

model.



321Example (cont’d)

• The Adhesive factor was 

insignificant, but we left it in 

the model to preserve model 

hierarchy (Adhesive*Print head 

is significant)

• On the Prediction Profiler red 

triangle select Optimization and 

Desirability → Desirability 

Functions

• See next slide



322Example (cont’d)

• Double-click in 

the blank area

• Enter 1 for Pass 

and 0 for Fail → 

OK → OK



323Example (cont’d)

• Prediction Profiler red triangle → Optimization and Desirability → Maximize 

Desirability

• The failure rate predicted from the optimization was 0.025 or 2.5% (current 

state failure rate was 20% or more)

• Best combination was D1 with A1
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A Black Belt wants to minimize the occurrence of bubbles and ripples in the urethane 

coating on truck nameplates. The X variables and ranges are:

Exercise 8.1

➢ Badge temp:         20 to 40

➢ Mixing ratio:  92.6 to 94.6

➢ Curing temp:        30 to 55

• Data sets \ urethane coating pass-fail

• Run the Model script in the left panel. In the Model Specification, switch the Target 

Level from Fail to Pass, then run the model. 

• Remove insignificant terms from the Effect Summary (P > 0.15).

• Use the Prediction Profiler to find a factor combination that maximizes the yield.

• The current state yield was about 95%. What is the predicted yield for the improved 

process?



Presented by

Tab 3

Design of Experiments
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File cabinet data DOE

Data sets

Data collection

Information provided

Interactive effects?

Time period covered

Larger, “messy”

Routine operation

Correlations

Maybe

Longer

Smaller, “clean”

Controlled conditions

Cause and effect

Definitely

Shorter

1  Designed Experiments vs “File Cabinet” Data

All experiments are experiences, but not all experiences

 are experiments. − R. A. Fisher



328Notes

Ronald Fisher was an English geneticist and mathematician trying to increase crop 

yields in the 1920s. There were limited numbers of plots available for field trials, 

gradients in the soil, variable proximity to water sources, differing amounts of sunlight, 

and long lead times. To solve these problems, Fisher developed a body of statistical 

methods known as Design of Experiments (DOE).  

During World War II, Fisher’s techniques were extended and applied to military 

optimization problems. After the war, they were further extended and applied to 

industrial problems like improving the quality and reliability of manufactured 

products. For his lifelong contributions to science and statistics, Dr Ronald Fisher 

eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between 

observational studies (analysis of “file cabinet” data) and designed experiments. This 

distinction is as important today in Six Sigma as it was a century ago in agriculture. 

After all, both are concerning with increasing yields!



329Case study:  structural jet engine components

Typical

jet engine



330Case Study: Typical structural component of jet engine

• Back in the day:  many small 

pieces welded together

• Now:  one piece casting

• 3 to 6 feet in diameter

• Stainless steel, nickel alloys, 

titanium alloys
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• Value stream:  investment casting of nickel alloy structural 

components

• Process boundaries:  shell making through backend processing

• Experiencing “orange peel” surface condition violating 

customer smoothness requirements

• 12% scrap rate (big parts → big $$)

• Y = f (X):  analyze existing production data

Case study (cont’d)



332Investment casting process 
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Castings:

% with

“orange peel”

A big signal

654321

70

60

50

40

30

20

10

0

Furnace the shells were baked in



334Notes

The strongest correlation in the database involved one of the pre-heat furnaces used to 

bake the ceramic shells before transfer to the casting furnace. Furnace 2 was new and 

had come online just about the same time orange peel started occurring. Almost 

everyone agreed the new furnace was the problem. 

The casting area manager refused to take Furnace #2 off-line. He needed all six pre-

heats to keep the casting furnace running nonstop so he could meet his production 

quotas.

Process Engineer Dave (shown above) was skeptical that Furnace 2 was causing the 

problem. For one thing, the other pre-heats were also producing scrap castings. Also, 

he had spent the better part of the past three months evaluating and qualifying the new 

furnace. 
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654321

0

Bake

time

(hrs)

Furnace the shells were baked in

40

20

60

Another big signal



336Notes

Dave pointed out that the shell bake times were much longer for Furnace 2 than for the 

other furnaces. There was a minimum required bake time, but no upper limit. Dave’s 

theory was that orange peel was caused by long bake times.

Why did shells stay longer in Furnace 2? 

It turned out there wasn’t room to put the new furnace next to the original five, so it 

had to be located further away from the casting furnace. The fork-lift operators 

wouldn’t drive over there unless they had no shells ready from the closer furnaces, so 

shells tended to sit in Furnace 2 for a long time. 
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• The file cabinet data suggested some plausible hypotheses

• It could not establish the cause of the defect

Autopsy



 Short

bake

Long

bake

Furnace #2          Others

• The quantity of data was 

not the problem

• The data lacked the 

structure required to 

determine cause and 

effect



338Notes

There was lots of data in the upper right-hand and lower left-hand cells in the table 

above, but virtually nothing in the other two cells. Making sure that data tables like the 

one above are completely filled out is one of the basic principles of experimental 

design.  

Subsequently, engineers ran enough parts in the upper left-hand corner of the table to 

determine that long bakes were indeed causing the problem. An upper limit on the bake 

time was developed and put in place. Shells that exceeded this limit were scrapped. 

This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange 

peel problem go away.
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Y = f (X) 

analysis

• DOE is an effective way to collect data for 

identifying critical x’s, in a relatively short period 

of time

• In a Lean Six Sigma project, data collection in the 

Measure phase may have produced little or no 

useful information. 

Developing 

the future 

state

• May have multiple potential improvement ideas on 

the table

• DOE is an effective way to evaluate these ideas 

prior to defining the future state

The Role of DOE in Process Improvement
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• Titanium castings → strong & light 

• Ti develops surface oxidation during 

the cooling phase

• Large Ti castings were failing the 

customer O2 requirement

 

• Analysis of file cabinet data yielded 

no significant correlations

• Engineers developed a list of factors 

for a DOE

Example



341Example (cont’d)

Factor Levels
Current state

X variable

Possible future

state solution

Slurry for shell

Shell thickness

Shell bake time

Shell bake temp

Alloy grade

Alloy status

Heat shield steel

Cooling fan speed

Batch 1  vs  Batch 2

14 dips  vs  18 dips

6 hrs  vs  48 hrs

1950°  vs  2050°

Low $  vs  High $

New  vs  Revert

Mild  vs  SS

2400  vs  3200

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 
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3432  One Factor at a Time?

• In this approach, each factor is varied with all others held constant. 

This way, it is felt, we can see the “pure effect” of each factor. 

• This is one way to apply the scientific method, but it is not the only 

way, and not the best way!

• For any proposed one at a time experiment, there is usually a 

multifactor experiment providing:

✓More information

✓Better results

✓Same (or possibly smaller) total sample size

• One at a time trials are useful for determining feasible ranges for 

factor in a DOE
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• The current average bond strength of our potato chip bags is 86 psi

• Based on customer complaints, we need to increase the bond strength 

• The most important control factors in the bag sealing operation are 

temperature and dwell time (see below)

• Secondary objective:  decrease the dwell time if possible

Example:  potato chip bags

Factor Current level Feasible range

Temperature 150º 120 to 180

Dwell time 1.0 secs 0.2 to 2.0
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Bond

strength

100

60

86

Dwell time

0.2 2.01.0

Vary dwell time over its feasible range while holding temperature at 150

88

1.4

One-at-a-time experiment #1

N = 9



346Notes

Our process engineer Chip Kettle first studies the effect of dwell time while holding 

temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to 

2.0. Chip finds he can increase the bond strength by 2 psi by increasing the dwell time 

to 1.4. 

Our production manager Justin Thyme is not pleased with the prospect of a 40% 

increase in dwell time. 
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100

60

86

Temperature

120 180150

88

161

One-at-a-time experiment #2

N = 9

Bond

strength

Vary temperature over its feasible range while holding dwell time at 1.0



348Notes

Chip now studies the effect of temperature while holding dwell time constant. He seals 

and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can 

increase the bond strength by 2 psi by increasing the temperature to 161. 

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will 

increase the average bond strength by 4 psi (2 + 2). However, it is highly likely that 

Justin will oppose the increase in dwell time, in which case the increase in average 

bond strength will be only 2 psi.
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Temperature

Dwell

time

120 150 180

0.2

1.0

2.0

The multi-factor approach

✓ 9 design points (  )

✓ 2 bags sealed at 

each point

✓ Total sample size:   

N = 18 
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120 150 180

0.2

1.0

2.0

60

60

70

70

80

80

86

86

90

90

88

88

Contour plot of predicted average bond strength

Temperature

Dwell

time

Chip’s prediction of 
90 psi at 161° and 1.4 

secs was way off

Bond strength 
exceeding 90 psi 
at 180° and 0.2 

secs 



351Why one-at-a-time doesn’t work

The 3D perspective

Dwell  

Bond

Temp



352Notes

When we experiment with all factors, but one held constant, we optimize sequentially 

over one-dimensional profiles. The sequence of solutions generated by this process is 

highly dependent on the starting point. It has very little chance of finding a global 

optimum, and often fails to move a significant distance from the starting point.
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Experimental unit  

The outcome of a single application of the 

process being studied 

Sample size

The total number of experimental units 

(“number of runs”) 

Response variable

A Y variable measured or inspected on each 

experimental unit 

3  DOE Terminology

Process 

Y



354Notes

The experimental unit is often a part, lot, batch or single transaction of some kind. It 

may also be a test specimen or sample of material. It is important to identify the 

experimental unit—it provides the basis for counting sample size, and sample size is 

critical in determining the statistical significance of the results. 

The experimental unit is determined by the process on which we are experimenting, 

not the measurement plan used to evaluate the results. For example, suppose we test 

100 devices for product life. Suppose we measure a degradation parameter on each 

device every 10 hours until the end of the test at 100 hours. The sample size for the 

study is the number of units (100), not the number of measurements (1000).
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• 11 silicon wafers were subjected to vapor deposition at various temperatures, 

pressures, and Argon flow rates

• The thickness of the resulting layer was measured at 8 locations on each wafer

• What is the sample size?

...

Example

Temp Press Flow Thickness

180 0.3 30

180 0.3 30

180 0.3 30

160 0.4 10

160 0.4 50

160 0.2 50

160 0.2 10

200 0.4 10

200 0.2 10

200 0.2 50

200 0.4 50
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• The sample size is the number of experimental units, not the total number of 

measurements taken

• The response variables of interest may be statistical summaries of multiple 

measurements on each unit

Temp Press Flow Avg.

180 0.3 30

180 0.3 30

180 0.3 30

160 0.4 10

160 0.4 50

160 0.2 50

160 0.2 10

200 0.4 10

200 0.2 10

200 0.2 50

200 0.4 50

Example (cont’d)

Std. dev.

...
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Factor 
An X variable controlled in an experiment, 

varied on purpose to determine its effect 

on the responses  

Level
A particular value or setting of a factor to be 

used in the experiment 

Requirements
All levels of each factor must be logically 

and physically compatible with all levels of 

the other factors  

Temperature

120,150 or 180

DOE terminology (cont’d)
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Variables used as factors in a designed experiment may or may not be controlled in the 

routine process. What matters is that they can be controlled for the purpose of 

experimentation. 
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Time                                       Volume

Temperature                           Weight

Pressure                                 Length

Energy                                    Width

Voltage                                   Density

Resistance                              Rate

Concentration                         RPM

Flow                                        Intensity . . . 

Examples of continuous factors

DOE terminology (cont’d)
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• A factor is continuous if it can be varied within some range on a scale of 

measurement

• It is generally preferable to use 3 equally-spaced levels (low, medium, and high) 

for continuous factors

• Even though only two or three levels of a continuous factor will be used in an 

experiment, it is advantageous to identify it as continuous, rather than 

categorical

• Even when some levels of a continuous factor would not be applied to the process 

after the experiment, it is advantageous to still treat the factor as continuous in the 

experimental design and analysis

− Example: After an experiment, we find that the optimal temperature 

setting is 117.13º. We may choose to set the temperature to 115º or 120º. 

We still treat temperature as a continuous factor in our experiment.

− Example: We know that if we determine that the optimal Introductory 

Time Period for an offer is 3.37 months, it wouldn’t make sense to offer 

that to our customers. We would offer them an Introductory Time Period 

of 3 months. We still treat this factor as continuous in our experiment.
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Old or New

1, 2 or 3 

A, B, C or D

X, Y or Z

Bob, Carol, Ted or Alice

Cyan, Magenta or Yellow

Small, Medium or Large

Method

Tool set

Material

Supplier

Operator

Color

Size

Examples of categorical factors

DOE terminology (cont’d)
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• A factor is categorical if it is not possible to have it at all values on a measurement 

scale

• Treating a factor as continuous implies that any value in the range can be used in 

the process

• If the levels used in the experiment are the only possible values, even when the 

categories are described by numbers, the factor should be treated as categorical

− Example: Pizza pan sizes of 10”, 12”, 14”, 16” (10.26” doesn’t exist)

− Example: A control parameters for certain electron microscopes has to be a 

power of 2. 

− Some JMP DOE platforms now have the option of Discrete Numeric, in 

addition to continuous and categorical, to better handle these cases
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Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 2 - 3 levels

Region in factor space

Response surface modeling

Interpolate between design 
points

Categorical factors                        Continuous factors

DOE terminology (cont’d)
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Control factors                               Noise factors

DOE terminology (cont’d)

Cannot be controlled in 
the routine process 



Ambient conditions
Raw materials

Operators
Suppliers
Batches
Setups
Shifts 

Lots
.
.
.

Can be controlled in the 
routine process

              
Type of material

Temperature

Pressure

Method

Time
.
.
.

Is it good practice to include noise factors in experiments?

 Why or why not?
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Design point 

A particular combination of levels 

of the factors.

Design matrix

The set and sequence of design 

points to be used in the experiment.

Temp        Press 

  120           50

  120         150

  180           50

  180         150

Full factorial 

The set of all possible design points

for a given set of factors and levels.

DOE terminology (cont’d)
E

x
p

erim
en

tal u
n

its

✓ Full factorial

✓ 4 design points

✓ No repeats (replication)

✓ Sample size = 4 
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Replicate run
An experimental unit created independently 

of other units at the same design point

Replicate
A set of replicate runs, one for each unit in 

a given set (usually a replicate of a full 

factorial)

False repeat                             
• Repeated or multiple measurements on 

one unit

• Units in the same batch, when 

   optimizing a batch process for which 

there is very little within-batch variation 

Temp      Press 

  120        50

  120      150

  180        50

  180      150

  120        50

  120      150

  180        50

  180      150

DOE terminology (cont’d)
E

x
p

erim
en

tal u
n

its

✓ Full factorial

✓ 4 design points

✓ 1 replicate

✓ Sample size = 8 



367Exercise 3.1

A bank wants to increase the yield of its credit card offers. It plans to collect VOC data 

by means of a DOE involving the factors in the table below. The bank plans to send out 

1000 offers for each combination of the factor levels. Based on the data, they will 

determine the combination with the greatest % yield.

(a) What is the Y variable? 

(b) What is the experimental unit? (Consider how Y will be measured) 

(c) How many design points are in the full factorial? 

(d) What is the sample size? 

(e) For each factor, decide whether you would treat it as quantitative or categorical (give 

your answers and reasons in the table below).



368Exercise 3.1 (cont’d)

Factor Levels Continuous or categorical?

Introductory APR 0, 2.5 or 5%

Introductory time 

period
3, 6 or 9 months

Gift

iPhone, iPad, 

microwave or 

espresso machine  



3694 The Full-Factorial Design

The full-factorial design contains all possible combinations of the 

specified factor settings

Above is an image of a 23 full-factorial with center points (continuous factors)

• The full-factorial requires one run at each design point (8 for this 23)

• 3 – 5 center points are recommended in a 2𝑘 design

• Total runs required for this full-factorial are 11-13

A 2𝑘 full-factorial design can estimate main effects and interactions

A

B

C



370Full-Factorial Design (cont’d)

Above is an image of a 33 full-factorial

• The full-factorial requires one run at each design point

• “Center points” are part of the design points (the middle level of the factors)

• Total runs required for this 33 full-factorial is 27

• This type of design is useful when some factors are continuous, and some are 

categorical (there could be 3-level categorical factors in the picture above)

A three-level full-factorial (3𝑘) design can estimate main effects, 

interactions and quadratic effects, but is an inefficient design.

A

B

C



371Main Effect of a Factor in a Factorial Design

𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴 = 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐴 𝐻𝑖𝑔ℎ − 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐴 𝐿𝑜𝑤

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐴 =  𝛽1 =
𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 𝐴

2

Factor A

Factor B

Low
(-)

High
(+)

Low (-)

High (+)



372Example: Main Effect of a Factor

𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐵 = 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵 𝐻𝑖𝑔ℎ − 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵 𝐿𝑜𝑤

           =
50+72

2
−

40+60

2
=

122

2
−

100

2
= 11

What is the Main Effect of Factor A in this example?

Factor A

Factor B

Low
(-)

High
(+)

Low (-)

High (+)
50 72

40 60



373Example: Coefficient of a Factor

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐵 =  𝛽1 =
𝑀𝑎𝑖𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 𝐵

2
=

11

2
= 5.5

What is the coefficient for Factor A in this example?

Factor A

Factor B

Low
(-)

High
(+)

Low (-)

High (+)
50 72

40 60



374Example: Interaction Effect

A∗B Interaction Effe𝑐𝑡 = 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐴 ∗ 𝐵 𝐻𝑖𝑔ℎ − 𝐴𝑣𝑔 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐴 ∗ 𝐵 𝐿𝑜𝑤

A-B Interaction Effect =
72+40

2
− 50+60

2
= 112

2
− 110

2
= 1

Factor A

Factor B

Low
(-)

High
(+)

Low (-)

High (+)
50 72

40 60



375Example: Interaction Effect

To determine which values are for A*B High and Low, 

it can be helpful to refer to the experimental design matrix.

Multiply the + and – in the A and B columns in the design matrix

to get the + and – for the A*B column.

Run A B A*B Response

1 - - + 40

2 - + - 50

3 + - 60

4 + + 72

Factors



376Example: Interaction Effect

What is the A-B Interaction Effect in this example?

Factor A

Factor B

Low
(-)

High
(+)

Low (-)

High (+)
60 32

40 50

Run A B A*B Response

1 - -

2 - +

3 + -

4 + +

Factors



377Interaction Plots

Interaction Plots graphically show interaction

Factor A

- +

40

50

60

70

Factor A

- +

30

40

50

60

B -

B +

Interaction Plot for the first 
example

No interaction—slopes of 
lines are approximately equal

Interaction Plot for the data 
on the previous slide

Interaction present—lines 
have different slopes

B +

B -



378Creating a Full Factorial Design

DOE → Classical → Full Factorial Design

1. Define responses, factors, numerical ranges for continuous factors, and levels for 

categorical factors.



379Creating a full factorial (cont’d)

2. If desired, add extra center points*, request one 

or more replicates** and/or pre-sort the matrix. 

For a 2𝑘full-factorial, center runs are 

recommended. When you are ready, click Make 

Table.

*Each center point = one additional row (run) 

**Each “replicate” = one additional set of 36 rows



380Simulating response data (so we can see how analysis works)

3. Create two new columns called 

Sent and Returned.

4. Click on the Sent header → 

double-click on the Sent header 

Column Properties→ select 

Formula → enter the value 1000 

in the little box → OK → OK

5. The Returned column is where we 

would enter the number of offers 

accepted. To simulate the data, 

double-click on the header and 

name the column → Column 

Properties → Formula → Edit 

Formula

6. Enter the commands shown on 

the next slide, then click OK.



381Simulating response data (cont’d)

7. Define % Yes 

with the formula 

8. Run the Model 

script provided 

in the left panel. 

(Click on the 

green triangle) 

100
Sent

Returned










Formula:

OK → OK 



382Analyzing the simulated data

When you click Run, JMP will use regression to create a “model” for the 
process, that includes the terms under Construct Model Effects.



383Getting to “yes”

• Point and click to find the combination with the highest % Yes

• Because it is simulated data:

o your profiler won’t look exactly like this one

o don’t be alarmed if your “best” combination doesn’t  make sense
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Continuous

Y

Average Y as a function of X has no jumps or corners

(assumption of smoothness)

Continuous X

5  Statistical Assumptions
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A hypothetical smooth response function. 

We never know the true response function, but often we have information about its 

general properties. For continuous X and Y, smoothness of the Y = f (X) 

relationship is one such property. It means the function can be well approximated 

over sufficiently short intervals by a polynomial, usually linear or quadratic. This 

is necessary in optimization experiments where we want to interpolate between the 

experimental design points. 

These experiments are designed for continuous Y response. If you have a pass-

fail response, see if you can turn it into a continuous response. Here are a few 

ideas:

• If you measure something on a continuous scale, but only record whether it 

passed or failed in your normal operation, record the actual measurement 

during the experiment.

• If you typically use a go-no go gauge, actually measure the part during the 

experiment.

• Record the size of defect instead of whether there is or is not a defect.

• Other ideas?

Notes



387Non-smooth response function

Average Y as a function of X has jumps and/or corners

Quantitative 

Y

Quantitative X
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A hypothetical non-smooth response function. 

A function with jumps or sharp corners will not be well approximated by low-order 

polynomials in neighborhoods of the associated X values. This is a problem in 

optimization experiments because we want to interpolate. 

It may or may not be a problem in screening experiments, because there we are merely 

trying to identify factors with large first-order effects. Accurate approximation 

throughout the X range is not required, although we may not be able to see the impact 

of the factor under certain circumstances. (You can see in the picture above that the 

response, Y, is at nearly the same level across various X values.)

Jumps and sharp corners often occur outside the feasible operating range of the 

process. In fact, such discontinuities often define the feasible operating range. A 

smooth response function is usually a safe assumption as long as we are not operating 

too close to a “cliff.”

Notes
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“One should not increase, beyond what is 

necessary, the number of entities 

required to explain something.”

⎯William of Occam, medieval philosopher 

Occam’s razor

Exact “French curve” Linear plus noise



390Notes

Occam’s razor represents a preference for simple explanations over complex 

ones. This reflects a belief that simple hypotheses are more likely to be true 

than complex ones. This belief is not always justified, but it is efficient in that it 

leads to models with just enough complexity to explain a given set of 

observations.

We can always find a sufficiently complex curve passing exactly through any 

given set of data points. The predictive ability of this “over-fitting” method 

is notoriously poor. The more successful “Occam” strategy is illustrated by 

random variation superimposed on a simple linear model.
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✓ Y  =  f (X1, X2, X3, . . .)  + error

✓ Can’t assume f (X) explains everything (hence the error term)

✓ Can’t assume f (X) is linear, but quadratic model is almost 

always sufficient 

• f (X) may include second order interactive effects

• f (X) may include quadratic effects

✓ Don’t need cubic or higher order models

• Don’t need higher order interactive effects

Standard assumptions on the response function
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( ) 
 
 +++++−

bags 18

2 2

5

2

43210 DbTbTDbDbTbbY 

For each of 18 potato chip bags, we have data on

         T = bonding temperature

         D = bonding time (duration)

         Y = bond strength

The best fitting response surface model (RSM) is the one whose 

parameters

b0, b1, b2, b3, b4, b5

minimize the sum of squared residuals:

Review: Least squares model fitting



393Least squares fit of Response Surface Model (RSM)

( ) ( ) ( ) ( ) ( )22 D2.13T1.16TD8.31D7.7T3.887.2 YAvg. −−−++=

least squares 

modeling.xls

6 terms in model 
(equation shown above)

2.65 = 84.18/12
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3956  Statistical Models

Average Bond  =  67.2 + 8.3(TEMP) + 8.3(DWELL) 

Linear in the Xs

DWELL



396Notes

Response surface:  tilted plane.

Simple linear models like the one shown above are used in screening designs. In many 

cases, simple linear models fit the data poorly, and do not give accurate predictions. 

They should not be used for optimization experiments.

Simple linear model: 𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑘𝑥𝑘
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Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMP  DWELL)

Linear interaction model

DWELL



398Notes

Response surface:  saddle.

Linear interaction models like the one shown above usually fit the data much better 

than simple linear models. 

They include all main effects and all interaction effects.

They are good for optimization experiments where all factors are categorical, but they 

should not be used for optimization experiments involving quantitative factors. 

Linear interaction model: 

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑖𝑥𝑖 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + ⋯ + 𝑏𝑖𝑗𝑥𝑖𝑥𝑗
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Avg. BOND  = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMP  DWELL)

- 15.5(TEMP  TEMP)  - 12.9(DWELL  DWELL)

Response surface model (RSM)

DWELL
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Response surface:  ridge.

The response surface model (RSM) shown above is the standard model for 

optimization experiments. 

It differs from the linear interaction model in that it includes quadratic (squared) 

terms for all continuous factors, in addition to all main effects and interactions. 

Quadratic terms are never used with categorical factors. 

In experiments involving continuous factors, the RSM may fit the data much better 

than the linear interaction model. In other words, the response surface model may 

be a better model of the process.

Response Surface Model RSM):

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑖𝑥𝑖 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + ⋯ + 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

+𝑏11𝑥1
2 + 𝑏22𝑥2

2 + ⋯ + 𝑏𝑖𝑖𝑥𝑖
2
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Avg. TENSILE  = 22.5 - 3.3(RATE) + 3.4(RPM) - 3.6(RATE  RPM)

- 4.8(RATE  RATE)   - 5.6(RPM  RPM)

20

15

RATE

RPM

TENSILE

RSM for a different data set (process)



402Notes

Response surface:  hilltop. 

Other response surface shapes include inverted saddles, inverted ridges, and bowls.

You can’t tell from the plot alone, but in this example the RSM model does not fit the 

data very well. 
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Avg. TENSILE  = 22.4 - 8.5(RATE) + 8.6(RPM) - 3.2(RATE  RPM)

- 6.1(RATE2) - 4.8(RPM2)  - 7.0(RATE2  RPM)

+ 8.1(RATE  RPM2)

TENSILE

20

15

10

RATE

RPM

RSM plus quadratic interactions



404Notes

The shows a more complicated quadratic model fit to the same data as on the previous 

page. This model turns out to fit the data well.

Model terms like 

RATE  RATE  RPM

RATE  RPM  RPM 

RATE  RATE  RPM  RPM 

are called quadratic interactions. Adding one or more quadratic interactions is a good 

thing to try when an RSM model does not fit. 

It is also possible to add other higher-level terms (cubic, three-way interactions), if the 

sample size is large enough to support the extra terms . . . 



405Higher-order polynomial models?

3rd order polynomial (cubic) 

Avg. Y  = b0 + b1X + b2X
2 + b3X

3

4th order polynomial (quartic) 

Avg. Y  = b0 + b1X + b2X
2 + b3X

3 + b4X
4

X

Y

X

Y
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Even though third- or higher-order models may fit the data better than quadratic 

(second-order) models, they are rarely used in DOE. Why? They require much larger 

samples sizes for any given set of factors.  

It is much more common to use quadratic models in an iterative fashion. A quadratic 

model may not fit the data well over a large initial factor space, but it almost always 

tells us which subset of the initial factor space is most likely to give the results we are 

looking for. The next step is to run another quadratric experiment in the smaller 

region. The smaller the factor space, the better the quadratic model will fit the data.

This concept is illustrated on the next page.
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First experiment, wide ranges → “big picture”

Low X

Y 

(response to be 

minimized)

True
response
function

First quadratic
approximation

Medium X High X

Data points

Iterated quadratic experiments 
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Low X

Second quadratic
approximation

Medium X High X

Y

Second experiment, narrow ranges → accurate modeling

Iterated quadratic experiments (cont’d) 
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1      if  MATL = Steel

2      if  MATL = Rubber

1 2

Review: Models for categorical factors

Two-level categorical factor

MATL = Steel or Rubber

Average COST  =



410Equation form of model

Categorical factors are represented by indicator variables

(also known as dummy variables)

Average COST  =  b0  +  b1 MATL[Steel]

MATL[Steel]  =
1     if  MATL = Steel

−     if  MATL = Rubber
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Avg. COST  =  b0  

                     +  b1 LGR[Low]   

                     +  b2 MATL[Steel]

                     +  b3 USAGE[50%]

                     +  b4 GRIT[30]

Simple linear model with all factors categorical

• Analogy:  blue book pricing of used cars

• Base price + extra for power windows 

                    + extra for air conditioning

                    + extra for cruise control

                    etc.
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Avg. COST  =  b0 

                     +  b1 LGR[Low]        

                     +  b2 MATL[Steel]

                     +  b3 USAGE[50%]  

                     +  b4 GRIT[30]

                     +  b5 LGR[Low]  MATL[Steel]

                     +  b6 LGR[Low]  USAGE[50%] 

                     +  b7 LGR[Low]  GRIT[30]

                     +  b8 MATL[Steel]  USAGE[50%] 

                     +  b9 MATL[Steel]  GRIT[30]

                     +  b10 USAGE[50%]  GRIT[30]

Categorical interaction model

# Factors      4         5        6  

Full factorial (FF)    16       32      64

Min. sample size    11       16      22

% of FF     69       50     34
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•  Bold strategy

•  “Control group”

•  Replication

•  Randomization 

•  “Blocking”

7  Design Principles
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Continuous X

Continuous

Y

Bold strategy

Use the entire feasible operating range in a first experiment

Linear approximation 

Low High

True response function

(X, Y) data points
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Continuous X

HighLow

Not bold enough

Continuous

Y

• Low and high levels of X are too close together

• We mistakenly conclude that X has no effect on Y
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For each factor, one of the 

levels should match the 

current process

• Ideally, this is the middle 

level for continuous factors

• At least one run in the 

experiment should match the 

current process settings, for a 

“sanity check”

• In these types of designs, we 

don’t usually refer to this as 

a “control group”

Temp      Press    Dwell    Mat’l

 120         50       0.2       A

 120       100       1.1       B

 120       150       2.0       C

 150         50       1.1       C

 150       100       2.0       A

 150       150       0.2       B

 180         50       2.0       B

 180       100       0.2       C

 180       150       1.1       A

“Control group”



417Notes

The units involved in a DOE may turn out to be uniformly different from those in 

current production − either better or worse.  This can be due to the effects of noise 

variables on production units, or to special circumstances surrounding the creation 

and handling of experimental units. 

For each factor, one of the DOE levels should match the current state value of that 

factor. This allows valid comparisons between current state and experimental process 

settings. This is especially important when non-routine measurements, tests or 

inspections are applied to experimental units. 
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Temp      Press

  120        50

  120        50

  120      150

  120      150

  180        50

  180        50

  180      150

  180      150

Replication

Experimental

 units

1

2

3

4

5

6

7

8

Use a replicate or a 

replicate run to

quantify the error 

in the experiment.

This improves estimates 

of coefficients and 

precision in determining 

factor significance.



419Notes

Replication forces redundancy into the experiment. This is necessary for two reasons:

• To quantify the magnitude of error in the experimental data − differences between 

units at the same design point are, by definition, due to error (variation in the 

process that is not accounted for in the factors).

• To reduce the influence of error on the experimental results by estimating “pure 

error.” This increases the signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the 

validity of the results. Is there anything about the run order shown above that makes 

you nervous? Please explain.
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Use a random number 

generator to determine 

the sequence in which  

experimental units are 

created and tested

(JMP does this for you.)

Temp     Press

  120      150

  180        50

  180        50

  120      150

  180        50

  120      150

  180      150

  120        50

Randomization

Experimental

 units

1

2

3

4

5

6

7

8
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Benefits

• Reduces the chance of biased results due to nuisance variables 
(factors not included in the experiment that may be changing while 
the experiment is being conducted)

•Doesn’t require control of nuisance variables, which may be 

unknown or uncontrollable

•Results are more convincing to skeptics

What happens if you don’t randomize? 

• Nuisance (noise) variables may be changing during your experiment

• This increases the chance of drawing the wrong conclusions from 

your experiment (significant factors, best levels, etc.)

• Randomization guards against this

Drawbacks

• Impractical when some of the factors are hard to change

•We’ll see what to do about this later

Randomization
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Blocking allows you to 

account for some nuisance 

variables

Temp      Press

  120         50

  120       150

  180       150

  180         50

  180       150

  180         50

  120         50

  120       150

Blocking

• Nuisance variables or 
factors are used to divide 
the experiment into 
homogeneous “blocks”

• Effects of nuisance factors   
are separated from effects 
of other factors, for more 
accurate analysis of factor 
significance

1

2

3

4

5

6

7

8

Experimental

 units

Block 1  

      Operator  Bob

         Shift 1

  Machine    A

         Material   Lot 6

Block 2

      Operator  Carol

      Shift 2

Machine   B

      Material   Lot 7



423Agricultural origin of “blocking”

• Want to increase crop yields

• Experimental units are plots of land in a field

• Compare varieties, fertilizers, etc.

Block 1

Block 2

• Need 50 plots (runs), not 25

• Have to use a second field

• Differences in the soil will

  cause differences in yields

Plots

More plots
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• Use blocking when experimental runs cannot be completed within a 

timeframe (shift, time allotted on a machine, etc.) or some other 

constraint (batch of material, space, etc.)

• Blocking systematically eliminates the effect of known, controllable 

nuisance (noise) factors

o Makes predictions more reliable 

o Quantifies the effects of nuisance variables 

• Improves precision with which treatment means are compared, 

without increasing sample size

o Makes identification of important (significant) factors more 

reliable 

• Protects against variation due to known factors not included in the 

experiment

Why use blocking?



4258  The Custom Design Process

We saw the Full-Factorial Design earlier, and learned:

• A 2𝑘 full-factorial design can estimate main effects and 
interactions, but cannot estimate quadratic terms

• A three level full-factorial (3𝑘) design can estimate main 
effects, interactions and quadratic effects, but is an inefficient 
design.

Let’s look at some other designs.



426Response Surface Designs

The central composite design (CCD) is a 𝟐𝐤 factorial 

with added axial or star runs. 

It is (was) the most used response surface design when all factors are continuous

Above are images of two and three factor CCDs

• The CCD requires two axial runs for each factor, plus the 2k design runs

• 3 – 5 center points are recommended

• Total runs required for the 3-factor CCD are 8 + 6 + center points = 17-19.

A Response Surface Design can estimate main effects, 2-factor interactions 

and quadratic effects, with more efficiency than the 𝟑𝒌 full-factorial.



427Response Surface Designs (cont’d)

Box-Behnken designs (left) are spherical, and do not have any points on 

the corners of the “cube” contained by the limits of the factors. 

The face-centered cube (right) is a variation on the Central Composite 

Design, with axial points on the centers of the faces of the cube (for k=3).

• 3 – 5 center points are recommended for each of these designs

• Total runs required for the 3-factor Box-Behnken design is 15-17.

• Total runs required for the face-centered cube is the same as the CCD (17-19).

As Response Surface Designs, these can estimate main effects, 2-factor 

interactions and quadratic effects.



428Custom Designs

JMP’s Custom Design platform uses modern computing power to employ a 
coordinate-exchange algorithm for determining the best set of points to use in 

a Response Surface Design, creating an “optimal design.”

Often, fewer runs are required than the classical designs just presented.

When you look at the points chosen for your experiment, you may notice:

• Center points--all continuous factors at the middle level of the range given

• Points at the corners of the “cube”--all factors at high or low levels

• Points in the centers of the “cube” edges (Box-Behnken) or faces (face-centered 
cube)—some factors at the middle level, others at high or low levels

• You will not see axial runs extending beyond the “cube,” as in the original CCD

Because fewer runs are used in these designs, 
there will be some correlations and aliasing between terms. 

(See Design Evaluation > Color Map on Correlations)



429Steps for Creating a Custom Design

1. Specify the Responses and general goals (maximize, minimize, or match target).

2. Specify the Factors. 

• For continuous factors, specify the high and low levels. 

• For categorical factors, specify each level to be included in the experiment.

3. Specify the statistical Model (usually RSM). 

4.  Specify the blocking factor, if blocking is needed. (Click RSM again)

• Enter the maximum number of runs that can be completed in one block (timeframe, 

batch of material, etc.).

• JMP will evenly split required runs into blocks no larger than the number specified

5. Create the design matrix. (Make Design)

6. If desired, use Design Evaluation > Power Analysis to determine sample size.

7. Back up to make changes (Back), or create the data table (Make Table).

8. Save the table. 

Later:  Run the experiment in the order given. Enter results into table.



4301. Specify the Responses and general goals

DOE → Custom Design



4312. Specify the Factors

Do not use this option!!
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Do not label your blocks until 
after you have done this!

Response Surface Model

3. Specify the statistical Model (usually RSM)



4334. Specify the blocking factor, if blocking is needed.

Once you specify the Model, the Default and Minimum Number of Runs 
are displayed.

Use this information, or User Specified Number of Runs (another 
sample size you’ve determined), to decide whether Blocking is needed. 

It’s not a bad idea to split your experiment into blocks just in case, if it is 
likely to take several hours or more to complete. For example, you may 
have a block size equal to half of a shift, just in case there’s an 
evacuation, or the machine goes down, or you get called away urgently, 
and cannot complete the experiment all at one time.

If Blocking is needed:

1. Click User Specified Number of Runs, even if you want to use the 
Default (this prevents JMP from increasing the sample size to a 
multiple of the block size),

2. Go back up to Factors to enter a Blocking factor,

3. Specify Model (click RSM) again.



4344. Specify the blocking factor, if blocking is needed. (cont’d)

• Go back up to factor specification:

     Add Factor > Blocking > Select the maximum runs possible per block 

If your maximum is not listed, 
select Other… to Specify Number of Runs per Block

• Select User Specified Number of Runs to prevent an increase due to 
blocking 



4354. Specify the blocking factor, if blocking is needed. (cont’d)

• Name the Blocking factor, so you will recognize it in the Design Matrix and Table:

• You do not need to be concerned about how many “levels” are shown under 
“Values.”  JMP will handle this when it creates the design.

• Re-specify the Model. (Click RSM again.)  Click through JMP comments 
about categorical and blocking factors in RSM models.



4364. Specify the blocking factor, if blocking is needed. (cont’d)

DO NOT use this option for setting up a blocking factor!

NO! 
Don’t do it!

JMP will generate uneven block sizes, if this option is used.



4375. Create the Design Matrix.

Don’t worry about the order of the blocking 
factor (Shift). This will be reordered when 
you Make Table.
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Design Evaluation > Power Analysis

6. If desired, use Power Analysis* to determine sample size.

* Details of this procedure are presented later, in the Determining Sample Size section.



4397. Back up to make changes or create the data table.

• Click Back to back up 
and adjust sample size.

• Adjust User Specified 
Number of Runs

• Click Make Design

Once the design is as needed:

• Check Include Run Order Column

• click Make Table

JMP creates an editable table.



4408. Save the table.

• You can reorder columns and adjust any odd factor levels by entering the 
desired value

o Odd levels are an artifact of the procedure JMP uses to create custom designs

o Before creating the table, you can also back up to create another design, and 
see if that takes care of it

o In this example, temp of 152.7 would be changed to 150, press of 98.5 would 
be changed to 100

• Run your experiment in 
the order specified and 
enter data into this table.

• If data is entered directly 
into the table as the 
experiment is performed, 
it’s not a bad idea to print 
a copy of the table and 
keep a hard copy also, as 
you go . . . just in case.



441Exercises

Use the Custom Design process described on the previous slides to create Response 

Surface designs for the exercises on the following pages. In addition to special 

instructions given in each case, follow these general instructions:

• Determine whether each factor is continuous or categorical 

• Use the sample size given to determine if blocking is needed.

• For each exercise, have the instructor review your matrix when you are finished.

• Make and save each design table.
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• Response variable:  Cycles to failure

• Blocking factor:  none

• Experimental unit:  one small test piece

• Sample size: 12 (constraint due to availability of test fixtures)

Control factors                             Levels

        Heat treat Anneal             Solution/age        

        Polish            Chemical         Mechanical

        Peen                        Yes                  No

Exercise 8.1
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• Response variable:  Cost

• Blocking: At most, 10 runs can be completed in a morning or an 

afternoon. You want to split the runs evenly between two blocks.

• Blocking factor:  Time of day (morning vs. afternoon)

• Experimental unit:  one large casting

• Sample size: Use the default sample size. Enter it here _______

Control factors                                             Levels

Contact wheel land-groove ratio (LGR)           Low           High        

Contact wheel material (Material)                 Steel          Rubber        

Belt usage limit (Usage)                                   50%           80%

Belt grit size (Grit)                                            “30”           “50”

Exercise 8.2
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• Response variable: Leak rate

• Blocking constraint: Due to production needs, a maximum of 

20 containers can be molded in each tool cavity

• Blocking factor:  Cavity (parts are molded from 4 tool 

cavities)

• Experimental unit:  one welded plastic container

• Sample size for experiment:  68

Exercise 8.3

Control factors                           Ranges

           Force                                 70 to 150        

           Energy                             275 to 325

           Amplitude                          70 to 90



4459  Determining Sample Size for an Experiment

Sample size, N, is the total number of “runs” in the experiment.

How should sample size be determined?

• First, you must have at least one run for each model term. 

 More factors and more complex model → more terms and more runs

• Second, your purpose must be clear for a given experiment. 

Process optimization with RSM require more runs for each factor than 

experiments for screening for important factors

Less ambiguity in results → more runs

• Beyond that, there are several answers to the question of how to determine 

sample size. Two are presented on the following slides.



446How should sample size be determined? (cont’d)

1. The quickest answer that most statisticians experienced in 
experimentation give, is that the sample size depends on your budget. 
Run the best designed experiment you can, within your budgetary 
constraints.

• Think through your experimental strategy before running your first 
experiment

• Don’t use more than about 25% of your entire budget on your first 
experiment

• Compare potential designs with Design Diagnostics > Compare Designs

o Fraction of Design Space Plot, when prediction using the model, is a goal

o Color Map on Correlations, whenever less than a full-factorial is used



447How should sample size be determined? (cont’d)

2. Use JMP’s Design Evaluation > Power Analysis to ensure that:

• Main Effects (e.g. Temp, Dwell, X1) have a Power of 0.9 to 0.8

• Interactions (e.g. Temp x Dwell, X1*X2) have a Power of about 0.8

• Quadratic Terms (e.g. Temp x Temp, X1*X1) have a Power of about 0.5

• Use the Power Analysis as it is when you open it, without changing Anticipated 

RMSE or Coefficients (this allows good detection of effects with 𝛽𝑛 ≥ RMSE)

• Adjust Power by going Back and changing the User Specified Number of Runs



448Example: Using Power Analysis to Determine Sample Size

Set up Responses, Factors and Model, then click Make Design



449Example: Using Power Analysis to Determine Sample Size (cont’d)

Click on the triangle next to Design Evaluation, then on the triangle next to 
Power Analysis to open the Power Analysis report:

Review the Power Analysis to 

determine if all:

• Main Effects (e.g. temp, dwell, X1) 

have a Power of 0.9 to 0.8

• Interactions (e.g. temp*dwell, 

X1*X2) have a Power of about 0.8

• Quadratic Terms (e.g. dwell*dwell, 

X1*X1) have a Power of about 0.5

In this example, all Power values are too low. The sample size needs to be increased.



450Example: Using Power Analysis to Determine Sample Size (cont’d)

• Click Back. 

• Select User Specified and increase the Number of Runs.

• Click Make Design

• Review the Power Analysis report again, to determine whether the power 
levels meet the requirements.

o This may require several iterations

o If you overshoot, go back and reduce the number of runs



451Example: Using Power Analysis to Determine Sample Size (cont’d)

It took 25 runs for all model terms to exceed the desired power.

(Because every design is a little different, it’s possible that a design of 24 or 26 
runs could (eventually) be generated that exceed the desired power levels.)

An experimenter may choose a slightly smaller sample size, as the desired 
power levels are approximate (“about 0.8”) and are usually conservative.



452Power Analysis with Categorical Factors at more than 2 Levels

When categorical factors are at more than two levels, 
the Power Analysis report gets a little messy.

• Use the upper part of the Power Analysis, as 
before, for all continuous factor:

o main effects 

o interactions 

o quadratic terms

• Use the little table below for all categorical factor: 

o main effects

o interactions that include categorical factors
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We are planning an experiment to optimize a monofilament extrusion process with 4 

continuous factors X1 to X4. The response variable is tensile strength. 

• Optimization experiment = Response Surface Model needed

• Use the Custom Design platform to design this experiment

• Using the Power Analysis method, determine the sample size (number of runs) 

required in this experiment [For consistency among class participants, find the 

smallest sample size that puts all factors over the recommended power levels.]

Exercise 9.1 
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We are planning an experiment to optimize an ultrasonic welding process with 3 

continuous factors and a 4-level categorical factor. The response variable is 

the weld depth. 

 

• Optimization experiment = Response Surface Model needed

• Use the Custom Design platform to design this experiment

• Using the Power Analysis method, determine the sample size (number of runs) 

required in this experiment [For consistency among class participants, find the 

smallest sample size that puts all factors over the recommended power levels.]

Exercise 9.2
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Larger number of factors

Main and interactive effects if 

categorical factors at only 2-levels;

otherwise main effects only

All factors have 2 levels (usually)

Identify the “active” factors

Smaller number of factors

Main and interactive effects

Quantitative factors have 3 levels

Identify the best factor levels

Optimization                    Screening

10  Screening Experiments



456About screening experiments

• They are usually conducted early in the process of optimization

• They involve a relatively large number of factors 

• Their objective is to identify a smaller set of influential factors for 

further experimentation

• It is likely that many factors considered have little or no effect on the 

response (sparsity-of-effects)

• They use the smallest feasible design for the given number of factors − 

saves time and money

• They are based on main-effect models, although with some designs, 

factors with interactions and quadratic effects can be identified

• They usually consist of factors at only two levels 

• They rank the factors by the size of their estimated effects
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Two-level categorical X

Y

Bold strategy

Levels of X are far enough apart to quantify the effect 

A B

Data points
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Two-level categorical X

BA

Not bold enough

Y

Levels of X are too close to quantify the effect
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• Titanium castings → strong & light 

• Ti develops surface oxidation during 

the cooling phase

• Large Ti castings were failing the 

customer O2 requirement

 

• Analysis of file cabinet data yielded 

no significant correlations

Example



460Example (cont’d)

Black Belt
    “We should brainstorm factors 

for a DOE.”

Plant manager
    “We can’t experiment with such 

an expensive part!”

Ti metallurgist
    “The problem doesn’t replicate 

on smaller parts.”

Part engineer
    “What have got to lose? It’s 

been weeks since we shipped 
any of these!”



461Example (cont’d)

Process area Factor Levels
Current state

X variable

Possible future

state solution

Shell making

Casting

Slurry

# Dips

Bake time

Bake temp

Alloy cost

Alloy status

Heat shield

Fan speed

Batch 1  vs  Batch 2

14  vs  18

6 hrs  vs  48 hrs

1950°  vs  2050°

Low  vs  High

New  vs  Revert

Mild  vs  Stainless

2400  vs  3200

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 
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Above is the list that emerged from the brainstorming session. 

• Three of the factors are variables in the current state. 

• The other five are possible improvement ideas for the future state. 

• Total: 8 factors

• Plant manager agreed to 16 castings

• All factors are at two levels

Example (cont’d)



463Steps in creating a Screening Design

1) DOE → Classical → Two Level Screening → Screening Design

2) Responses → Response Name → O2 → Goal → Minimize

3) Factors → Add all factors as in previous designs (continuous or 
categorical, number of levels for categorical)

4) Enter factor names and levels from the table on the previous page → 
Continue

5) Choose Screening Type → Construct a main effects screening design 
→ Continue → Make Design → Make Table

6) (The matrix below has been sorted by Slurry, # Dips, Bake time and 
Bake temp)

7) Save as Ti casting alpha case



464Design matrix



465Analyzing the Screening Experiment . . . 

. . . two months (and many sleepless nights) later…

DOE participant files \ Ti casting alpha case with data



466The model dialog

• Can’t analyze 
interactive 
or quadratic 
effects in 
this 
screening 
experiment

• Just click on 
Run



467Analysis

“Big hitters”

Slurry

Bake temp

# Dips

Pareto Plot 

• Slurry is a variable in the current state

• The O2 values for castings made from Batch 1 shells were much lower 

than those from Batch 2

• The operators did not report any differences in the make-up of the two 

batches 

Red triangle

Effect screening
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To interpret screening experiments, use the Effects Screening analysis element as 

shown above. It shows showing the relative magnitude of the factor effects. The idea is 

to use the factors with the largest effects in a subsequent optimization experiment.  

The interactive and quadratic effects are left out of the model. This biases the signal-to-

noise ratios downward. The P-values are not to be trusted, so factors appear less 

significant than they really are. 

Notes
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• Do a screening experiment in the shell-making area 

• Include Bake temp, # Dips and the important shell-

making variables in an optimization experiment 

Ideal follow-up plan



470What actually happened

• They changed Bake temp to 1950 and # Dips to 14 (easy)

• The problem immediately went away

• 13 of the 16 DOE castings were good to ship as is

• Only 1 eventually scrapped

• Worst-case annual cost avoidance:  $20.8M

• No immediate follow-up



471Root causes

• Investigation of the slurry effect eventually lead to the root 

cause of the problem

→ The density of the ceramic powder used to make the 
shell had increased over time, resulting in heavier shells

→ The increase had been noted, but no action was taken 
because the densities were still within spec limits

→ At the time, shell weights were not monitored

• Why no significant correlations in the “file cabinet” data?

→ The O2 data in the engineering database was post rework 
rather than first pass



472Control limits vs. spec limits

USL

LSL

Density

UCL

LCL

• The data was trying to tell us something

• Disaster could have been averted

?
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a) Create a standard screening design matrix for the 10 factors shown below. 

Note: A sample size of 16 would have been adequate, but the project team 

decided to use a sample size of 24. 

b) Save the table of factors for use in the next exercise:

      Click the red triangle next to Screening Design > Save Factors (table opens)

   File > Save as… > extrusion design factors

c) Save your design matrix as extrusion design 1.jmp.

d)  DOE Participant Files \ extrusion 0.jmp.  Analyze the data as shown for 

standard screening designs. 

e) Based on the results for Strength and Ductility, find the best set of 4 factors for 

a subsequent optimization experiment.

Exercise 10.1
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Polymer variables

Smoother                 0.0   to   0.5    

Filler                           2.0   to   4.0  

Viscosity                     60    to   80  

              Moisture               0.1   to   0.25

Process variables

Zone 1 temp              260   to   320

Zone 2 temp              260   to   320 

Zone 3 temp              260   to   320 

Zone 4 temp              260   to   320 

Rate                          100   to   200
RPM                          150   to   300 

Factors                 Feasible ranges

Responses are Strength and Ductility of the extrusions

Exercise 10.1 (cont’d)



475Another way to analyze

The experiment in the previous example was conducted years ago.

JMP can now analyze this experiment differently, 

giving more information!

The O2 experiment can be analyzed using JMP’s Fit Two Level Screening

• Requirement for this type of analysis: All factors are at 2 levels

• Reports and interpretation are very different

• Based on the assertion that relatively few of the effects are active

• Most are inactive (insignificant), meaning their effects are negligible

• Often, in screening experiments, there are no degrees of freedom for 

error

• Estimates of inactive effects are used to estimate random error in this 

analysis

• Some information can be gained about 2-factor interactions

• 2-Factor interactions are aliased with each other



476Fit Two Level Screening

DOE participant files \ Ti casting alpha case with data

• DOE > Classical > Two Level Screening > Fit Two Level Screening

• Set up as shown (all factors are cast into X)

• Click OK



477Fit Two Level Screening (cont’d)

Below is the Contrasts report:

• Contrast column shows the regression parameter estimate
o An asterisk shows estimate is not the same as the regression estimate

o An asterisk would indicate that we need to use the Fit Model platform

o There are no asterisks in this report 

• Individual p-Values indicate significant effects

• Bar Chart shows terms significant at the 0.10 level

• Analysis may not be exactly the same if re-run, due to the analysis process

• Note that there is an interaction that is significant!

o We cannot tell if the significant interaction is Bake temp*Fan speed

o It could be any of the interactions under Aliases

o The estimate of the effect (Contrast) is actually the sum 

     of all of the aliased interactions

o This is because this is a screening design

o Additional experimentation is needed determine the active interaction



478Contrasts report



479Fit Two Level Screening (cont’d)

The Half Normal Plot graphically identifies significant effects

• Significant effects or terms fall off (away from) the blue line

• The additional point off the line is # Dips, which was near the cut-off

• Here, it appears to be significant

• One could choose to carry this term forward



480Fit Two Level Screening (cont’d)

• Click Make Model

• Fit Model window will come up

o Significant terms have been carried forward

o Terms can be added to the model

o # Dips could be added (probably should be, based on Half Normal Plot)



481Fit Two Level Screening (cont’d)

• Click Run

• This familiar report comes up

• This analysis got us further

o Presence of interaction

o Need higher level terms

• Additional experimentation to:

o Determine interaction

o Optimize



482Definitive Screening Design

A Definitive Screening Design is a very effective screening design

• Factors must be either continuous or two-level categorical

• It can be a good alternative to a Custom Design when six or more factors

“A minimum run-size DSD is capable of correctly identifying active terms with high 
probability if the number of active effects is less than about half the number of runs 
and if the effects sizes exceed twice the standard deviation. However, by augmenting 
a minimum run-size DSD with four or more properly selected runs, you can identify 
substantially more effects with high probability. . . . Extra Runs substantially 
increase the design’s ability to detect second-order effects.”

--From JMP’s Overview of the Fit Definitive Screening Platform

“Effect sizes exceed twice the standard deviation” →
𝑏𝑛

𝜎
 ≥ 1, 

which means that the difference between the average response at the high level and 
at the low level is 2, or 2 * std dev. (Remember, the coefficient is the effect/2.)

“Second order effects” include 2-level interactions and quadratic terms.



483Example

Using the same situation as in the previous example:

• Enter response and factors, as usual

• Set up Design Options, as shown. (4 Extra Runs are recommended!!!)



484Example (cont’d)

This Definitive Screening Design requires 22 runs

• In the previous example, only 16 runs were required

• However, a follow-on optimization experiment was needed

The Definitive Screening can be run, then augmented, if needed

• This requires many fewer runs (and other resources) overall



485Analyzing the Definitive Screening Design

When you create a Definitive Screening Design in JMP,

the Table will contain a script for analysis

Help > Sample Data Library       Design Experiment / Extraction 3 Data

• Run the 
experiment

• Enter data into 
the table

• Click on the 
green triangle to 
analyze the data 
(run the script)

• You must use 
Fit Definitive 
Screening for 
the analysis, to 
take advantage 
of the design 
structure



486Analyzing the Definitive Screening Design (cont’d)

• JMP does all the work:

o Stage 1 tests Main Effects

o Stage 2 tests interactions and

    quadratic terms of significant

    Main Effects

o Combined Model includes both

Click Run Model



487Analyzing the Definitive Screening Design (cont’d)

A familiar report comes up

• Proceed as before: Check residuals and remove insignificant terms

• Note that interactions and quadratic terms are estimated!

• This is what is meant by Definitive Screening

• In this case, an additional optimization experiment is not necessary!



488Full Factorial vs. Definitive Screening Design (not randomized)

Full Factorial Design with 
4 Center Runs:

Definitive Screening Design with 
4 Extra Runs and 2 Center Runs:

Note the structural differences in these two classes of designs.



489Exercise 10.2

Using the same factors and levels as Exercise 10.1, create a Definitive Screening 
Design.

• When you are ready to enter the factors:

➢ Click the red triangle next to Definitive Screening Design > Load Factors 
(select the file extrusion design factors saved during Exercise 10.1)

• Be sure to add the recommended 4 runs! 

• The previous experiment required 16 runs, but they used 24 runs. Further 
experimentation would be needed with that screening design.

• How many runs does this Definitive Screening Design require?
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Polymer variables

Smoother                 0.0   to   0.5    

Filler                           2.0   to   4.0  

Viscosity                     60    to   80  

              Moisture               0.1   to   0.25

Process variables

Zone 1 temp              260   to   320

Zone 2 temp              260   to   320 

Zone 3 temp              260   to   320 

Zone 4 temp              260   to   320 

Rate                          100   to   200
RPM                          150   to   300 

Factors                 Feasible ranges

Responses are Strength and Ductility of the extrusions

Factors from Exercise 10.1



49111. LSS BB Workshop – Trebuchet Exercise
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49312.  Experiments with Hard-to-Change Factors

Sometimes it’s not feasible to completely randomize, 

because a factor is hard-to-change

There are many situations when this is the case. Here are a few examples:

• Temperature in a furnace takes a very long time (hours) to stabilize after 

changing

• Special material needed (a factor) are made in large batches and cannot be 

stored, or it is run in a continuous flow through the process

• Material or part used in a machine is difficult to change, requiring a 

complete breakdown and cleaning

• Type of irrigation on a plot of land is very difficult and costly to change (an 

example of the origin of split-plot designs)

What are examples in your workplace?



494Experiments with Hard-to-change factors (cont’d)

When you have hard-to-change factors that cannot be randomized, 

you need to create and analyze your experiment as a “split-plot” design

If you don’t do this (if you design and analyze as usual), you are more likely to:

• Conclude that unimportant factors are important among the hard-to-change factors

o You think that a factor (X) is impacting your response (Y), when it is not

o This is a Type I error

o Hard-to-change factors are those in the “Whole Plots” or main treatments, that 

were not randomized

• Fail to recognize factors that are significant among the easy-to-change factors

o You think that a factor (X) is NOT impacting your response (Y), when it is

o This is a Type II error

o Easy-to-change factors are those in the “Subplots” or split-plots, that were 

randomized



495Experiments with Hard-to-change factors (cont’d)

The decision to consider a factor as “hard-to-change” 

should not be taken lightly

• Subplot (easy-to-change) factors are compared with higher precision

o Usually, subplot error is smaller than whole-plot error

o Whenever possible, the treatment(s) or factors we are most interested in 

should be assigned to the subplots

• To increase the precision of the test on whole-plot (hard-to-change) 

factors, additional replicates of the experiment or additional whole-plots 

are needed

o Clearly, this takes more time and resources

o Several (3-6) replicates could be needed to gain an adequate level of 

precision

o So, you could be back to changing that hard-to-change factor many times



496Creating a Split-Plot Design

• DOE > Custom Design

• Enter the factors as usual, except double-click on “Changes” and change to 

Hard for the hard to change factor

• Click Continue



497Creating a Split-Plot Design (cont’d)

• Click on RSM.

• JMP will suggest a reasonable number of Whole Plots for the number of 

factors and levels entered

• The number of Whole Plots shows the number of times the hard-to-change 

factor will need to be changed in the experiment

• Click Make Design



498Creating a Split-Plot Design (cont’d)

• The design is presented. 

• As before, click Back to make adjustments. Click Make Table.

• Run the experiment in the order shown in the table.

Table:



499Blocking in a Split-Plot Design

What if there are too many runs to complete in one day (or lot of material, or 

by one tester, etc.)?

• Once you see that there are too many runs, click Back (before making the table)

• Add a Categorical Factor with the number of levels as the number of batches or 

days or shifts, etc. needed for the experiment (In this example, two days will be 

needed to run the experiment, so a 2-Level Categorical Factor was added.)

• Name the factor something that you can easily pick out of the lists of terms (Here it 

is named REMOVE.)

• Set Changes for this factor to Very Hard

• Click Continue



500Blocking in a Split-Plot Design (cont’d)

• Click RSM

• Remove from the Model every term that contains the Categorical factor that 

you added

• Highlight the term then click Remove Term



501Blocking in a Split-Plot Design (cont’d)

• Change the number of Whole Plots to the number of levels of the 

Categorical Factor

• In this example, two days were needed

• So, a 2-Level Categorical Factor called REMOVE was added

• Now, the Number of Whole Plots is changed to 2

• Click make Design



502Blocking in a Split-Plot Design (cont’d)

• The Design is developed

• Whole Plots show the number of days required

• REMOVE is still in the table, as it was entered as a factor

• Click Make Table

If you get this warning, 

it’s okay to ignore it, IN 

THIS CASE, because you 

are not trying to estimate 

effects of the whole plot



503Blocking in a Split-Plot Design (cont’d)

• The table is generated

• Click on the column of the Categorical Factor (“REMOVE” in this example).

• Cols > Delete Columns to delete the column from the table



504Blocking in a Split-Plot Design (cont’d)

• If you open the Column Info for Whole Plots, you’ll see that the Design 

Role is Random Block (JMP is pretty smart!)

• Rename the Whole Plots column with the name of your block



505Blocking in a Split-Plot Design (cont’d)

• This shows the final table, with Whole Plots renamed to Day

• This experiment is designed to be run in two days

• What you actually have now is a split-split-plot design



506Analyzing the Split-Plot Design

• For the Split-Plot or the Split-Split Plot design, click on the green triangle 

next to Model after entering data into the table.



507Analyzing the Split-Plot Design

• The Fit Model window will look a little different. Leave as is!

• Click Run

• Analyze the residuals and remove terms as with other experiments



508

This slide intentionally left blank



50913  Multiple Response Optimization

• Experiments may have more than one response 

variable

• You can optimize each response separately . . . 

• . . . but you will get different answers for each 

response!



510

It is not uncommon to have multiple response variables in a DOE. If you think you 

have just one, you might want to solicit feedback from one or more knowledgeable 

colleagues.

In this section we introduce and illustrate the most widely used technique for joint 

optimization of multiple responses.

Notes



511Example 1:  heat sealing process

• DOE Participant Files \ 

heat sealing 2.jmp

• Run the Model script 

• Response variables:

✓ Bond (bond strength)

✓ Print (higher-is-

better cosmetic 

quality rating) 

• Shift is the only factor we 

can eliminate

• All other factors are 

significant for at least one 

response



512Example 1 (cont’d)

• The Effect Summary 

displays the lowest 

p-value from each of 

the response’s 

Effects Tests

• This makes it easy to 

find terms to remove 

from the model

• Remove 

insignificant terms, 

as before, using the 

Effect Summary

 



513Example 1 (cont’d)

We want Bond = 80 and Print as large as possible.

Here is a solution based on manually exploring the Prediction Profiler.



514

In this example is it easy to find solutions by manually exploring the Prediction 

Profiler. 

✓ Press should be set to 150, because this increases Print without significantly 

affecting Bond. 

✓ The baseline value for Dwell was 1.0. Reducing this to 0.5 increases 

throughput while staying above the lowest feasible dwell time (0.2)

✓ Once these settings are in place, we can manipulate Temp to achieve 

something very close to 80 psi for Bond. 

Joint optimization of response variables was not needed in this example. In most 

applications, however, manual optimization will not achieve the desired results. 

Extreme versions of this are illustrated in the next two examples.

Close the analysis window and the data table without saving.

Notes
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(Visc, Temp, Rate, RPM)  (80, 297, 100, 243)

Ductility  13

Example 2:  extrusion process

Data sets \ extrusion 2



516

This example is based on data from an experiment to optimize the mechanical 

properties of an extruded plastic material. We want Strength to be as high as possible 

while maintaining a lower bound of 20 for Ductility.

The solution for Strength (29367) shown above was found by visually exploring the 

Prediction Profiler. However, this approach resulted in an unacceptably low Ductility 

(13).

Notes
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(Visc, Temp, Rate, RPM)  (64, 260, 200, 300)

   Strength  6080

Example 2 (cont’d)



518

The solution for Ductility (35) shown above was found by visually exploring the 

Prediction Profiler. However, this approach resulted in an unacceptably low Strength 

(6080).

Notes



519Joint optimization of responses

•  Each response has a goal (minimize, maximize or target)

•  Define a “desirability function” for each response

•  Combine the individual desirabilities into a single overall

    desirability function

•  Maximize the overall desirability to jointly optimize all

    responses



520

Desirability is a unitless quantity between 0 and 1, defined so that higher is better. JMP 

supplies default desirability functions based on the experimental data for your response 

variables. You must redefine the desirability functions so that they represent your 

objectives for each response variable. 

You start by setting the general goal for each response: Maximize, Minimize or Match 

Target. Then you specify low, middle, and high data values to fine tune the shape of the 

desirability functions.

Notes
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0

0.5

1

Low Mid High

Default desirability functions

Low Mid High

0

1

Low Mid High

0.5

Maximize Minimize

Match Target

0

0.5

1
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The desirability function is increasing for Maximize responses and decreasing for 

Minimize responses. It is bell-shaped for Match Target responses. 

For Minimize responses with a lower bound of 0, it is a good idea to make the Low 

value equal to 0. Examples are number of defects, fraction defective, cycle time, 

standard deviation, cost of waste, etc.

The low and high values for a Match Target response are used to define the allowable 

deviation from the target value.

Notes



523

• The overall desirability function for  the response variables (Y1, 

Y2,   ) is 

Overall desirability

( ) ( ) ×tydesirabili Y×tydesirabili Y 21

• It is the geometric mean of the desirability functions for all the 

individual response variables

• With a geometric mean, the overall desirability will be zero 

whenever any individual response desirability is zero

. . .



524

A weighted geometric mean can be used. The weights (called importance in JMP) 

allow users to specify relative priorities for the responses. The higher the importance,  

the greater the influence the response has in determining the overall solution found by 

the optimization algorithm. 

The vast majority of users do not go into this level of detail.

Notes



525Example 2 (revisited)

DOE Participant Files \ extrusion 2.jmp  → Model script → Model 

Specification → Run



526Example 2 (cont’d)

• Alt-click on Response Strength red triangle → 

uncheck Parameter Estimates, Effect Details, Plot 

Effect Leverage → OK

• Repeat for Response Ductility



527“Pruning” the models

• The Effect Summary 

combines the P-values for all 

responses

• Removing terms here applies 

to the Effects Tests for one or 

more responses

• The usual threshold is P > 

0.15



528“Pruning” the models (cont’d)



529Example 2 (cont’d)

Desirability

 functions

Overall

desirability



530

Here is the default Prediction Profiler for the four-factor extrusion experiment. The 

individual desirability functions are shown in the right-most column. In this case 

they are both increasing functions because our general objective for both responses is 

Maximize.

The overall desirability is a function of the experimental factors, and is shown in the 

bottom row. By default, it is the unweighted geometric mean of the individual 

desirability functions.

Notes



531Example 2 (cont’d)

Optimization and Desirability Maximize Desirability



532

Shown above is the Prediction Profiler after selecting Maximize Desirability from the 

red triangle menu. We have increased average Strength to 25930, and decreased  

average Ductility to 21.5.

Notes



533Example 2 (cont’d)

Using a Match Target objective (see next slide)



534

To obtain the results shown above, double-click in the individual Desirability pane

(on the right) for Ductility. Change the specifications as shown below, click OK, run 

Maximize Desirability again.

Notes

Predicted average Strength is now

25359, predicted average Ductility is 

22. 

The 95% confidence interval is 

(19.5, 24.4). This is an improvement 

over the previous confidence interval 

(19.0, 24.0), which would have 

allowed Ductility to vary a little further 

below 20.

Least Squares Fit red triangle →  Save Script → To Data Table → Save Script As → 

Name: Fit Least Squares → OK.

Note: Due to the iterative process used in the prediction profiler, results may 

vary slightly from what’s shown in the above slide.
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(a)  DOE Participant Files \ heat sealing 2. Run the model script. Use the Effect 

Summary to remove model terms with P > 0.15. 

(b) Go to the Prediction Profiler. Our target for average Bond is 80, with a tolerance 

of ±5. The highest possible value for average Print is 5. Average Print must exceed 

4. Modify the desirability functions for Bond and Print accordingly. Click 

Prediction Profiler red triangle → Optimization and Desirability → Save 

Desirabilities.

(c) Click Prediction Profiler red triangle → Optimization and Desirability → 

Maximize Desirability. 

d) The Production Manager is unhappy with our solution. It achieves excellent bond 

strength (80) and print quality (4.8), but the proposed increase in dwell time would 

reduce throughput from 300 to 50 bags per minute! 

     To look for a compromise, select Reset Factor Grid on the Prediction Profiler red 

triangle. We want to hold Dwell at a low value, say 0.5. Type 0.5 for Current Value, 

check the Lock Factor Setting box, then click OK. The vertical line on the Dwell 

profile should now be solid. 

Exercise 12.1
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e) Run Maximize Desirability again. The optimal factor settings are shown in the 

Current Value row. The response averages are 80.08 for Bond and 4.35 for Print.

f) Save your script, close and save the data table.

Exercise 12.1 (cont’d)
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a) Assembly of inkjet print cartridges includes an ultrasonic welding operation with 

X variables Force, Energy, Amplitude, and Cavity (identifies the tool cavity in 

which each plastic cartridge was molded). The response variables are Weld depth 

and Leak rate. 

b)  DOE Participant Files \ ultrasonic welding 2. Run the model script. Use a Log 

transformation for Leak rate. Use Effect Summary to prune the models.

c) Go to the Prediction Profiler. The target for average Weld depth is 0.20, with a 

tolerance of ± 0.05. The lowest possible value for average Leak rate is 0. We 

require mean Leak Rate to be no larger than 0.10.

d) Modify the desirability functions for Weld depth and Leak rate accordingly. Click 

Prediction Profiler red triangle → Optimization and Desirability → Save 

Desirabilities. 

e) Click Prediction Profiler red triangle → Optimization and Desirability → 

Maximize Desirability. See next slide.

Exercise 12.2
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f) Least Squares Fit → Save Script → To Data Table → Name: Fit Least Squares → 

OK

g) Save data table.

Exercise 12.2 (cont’d)
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a)  DOE Participant Files \ electron microscope. Run the Model script. In this case, it 

will take you directly to the Model Dialog. Apply Log transformations to all 4 

response variables, then run the model. 

b) Click Least Squares Fit red triangle → Effect Summary → prune the models. See 

slide below.

c) Go to the Prediction Profiler. We want to minimize all 4 responses. Use the same 

desirability functions for all 4 responses:  High = 2, Middle = 1, Low = 0. Click 

Prediction Profiler red triangle → Optimization and Desirability → Save 

Desirabilities.

d) Click Prediction Profiler red triangle → Reset Factor Grid →  Factor Settings → 

click the Lock Factor Setting box under Tool → OK. See next page.

e) Run Maximize Desirability separately for each Tool (A, B, C). Give the average 

values of the 4 responses for each tool. See next page.

f) Save your script, close and save the data table.

Exercise 12.3 (Homework)



540

(b) Effect Summary

Exercise 12.3 (cont’d)



541Exercise 12.3 (cont’d)

(d) Reset Factor Grid



542

Tool S-Height S-Width D-Height D-Width

A 1.33 1.13 1.10 0.95

B 1.41 0.76 1.36 1.08

C 1.48 1.32 1.94 1.57

Exercise 12.3 (cont’d)

(e)  Average responses by tool
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