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Tab 1
Statistical Analysis Graphs
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1 JMP menu map 3
4 I
Calculate basic statistics, create statistical graphics, find % of
L data points beyond given limits )
Distribution p <
Fit distribution models for regular quantitative data, evaluate
L goodness of fit, predict % or PPM beyond given limits )
. Hypothesis testing, comparing populations, testing for
FitY by X e )
significant differences
<
. Correlating variables, modeling Y as a function of one X or
Fit Model . e L
multiple Xs, prediction, optimization )
Analyze )
. e : tegorical MSA
) Variability/Attribute Gauge Chart —[Sviﬁggtn;zn dards
Quality and < )
Process
Pareto Plot

Reliability
and Survival

: Fit distribution models for life data
Life . :
Distributi (time to failure), evaluate goodness of
Istribution fit, predict failure probabilities




JMP menu map (cont'd) 4

File

Preferences

Specify desired default settings
Platforms for JMP analysis platforms }

Summa Derive a smaller data table by calculating statistics over a
Yy subset of a larger data table

Subset

Tables

Extract a subset of a data table }

Sort

DOE

Sort a data table by specified columns }

Stack

Stack values from multiple columns into a single column }

G

(

Split

Graph

| Unstack values from a single column into multiple columns }

Calculate the required sample size for a designed experiment }

Create the design matrix for a designed experiment ]

Overlay Plot

4[ Plot one or more data series in time sequence }




2 Basic Statistics and Statistical Graphics

* Frequency histogram

e Cumulative distribution function
« Percentiles

* Box and whisker plot

» JMP distribution analysis
 Data validation

 Distribution analysis options
 Plotting data 1n time sequence

* Saving analyses and data tables



Notes

Y variables are characteristics of parts or transactions that determine customer
satisfaction, or lack thereof. They provide the data from which project metrics are
computed. In sections 2 and 3 we focus on guantitative Y variables. Examples
include:

 Properties: physical, chemical, electrical, optical, . . .
 Distance, time, dimensions, cost, quantity

« Event counts (when there 1s not a discrete number of opportunities for the
event to occur)

JMP uses the term continuous for quantitative variables, and often uses the term
nominal for categorical variables.



Frequency histogram

LSSV2 data sets \ DI Water
Number of data points in each bin
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Cumulative percentage histogram

Percentage of data points < upper limit of each bin
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Cumulative percentage histogram (cont'd)

Made the bins smaller
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Cumulative distribution function (CDF) 10

* Bins are so small they isolate
individual data values

100 » For small sample sizes, the CDF _ qaoo®
_ looks like a staircase with a yf
80 ] step at each data value Y
- i
_CCU i
% |
2 | .’;
< o . » About 40% are 1600 or less
8B 40 —< f,
D | |
. | ! « About 5% are 1400 or less
20 — :
Je-mmm s e o i
O — o o o000 : :

' ' ' | ' ' ' ' ' ' T ' - ' T
1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable



Percentiles 11

A percentile 1s a value that divides a population or data
set into two groups, based on a stated percentage

10% are less than the 10 percentile, 90% are greater
25% are less than the 25th percentile, 75% are greater
50% are less than the 50 percentile, 50% are greater
75% are less than the 75 percentile, 25% are greater

90% are less than the 90 percentile, 10% are greater



Percentiles (cont'd) 12

Hlustration of 20" and 95" percentiles

100 —

Percent less than




13

Common percentile-based data summary
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Box-and-whisker plot

14

-(___________

“Inter-quartile range” (IQR)
I I

< g

(___________

T
1200

“Whiskers” show the minimum and maximum data points,
not including outliers (see next slide)



Rule for plotting points separately 15

Investigate
for cause

!

Median
\ 2 2

Ends of whiskers are determined by the highest and lowest data points
that are inside the calculated ranges.

Points plotted separately are outliers, and should be investigated.



JMP distribution analysis

File = Open — All Files — Data sets \ lead time 1 — Open — Import”

-

FZ] lead time 1 - JMP [2] EEE T
File Edit Tables PRows Cols DOE Apnalyze Graph Tools View Window Help
w | |lead time 1 [:’I ] b
| Sounce - Lead time
1 9.61
2 9,71 Analyze
3 8,54 \L
Col 1/0) I 4 9.67
| Columns (1/
; - 5 8,75 . . .
4l Lead time . 9.49 DlStI'lbuthIl
Fi 8,55 \L
g8 84.2
g8 89.58 p -
10 g6 | - Distribution - JMP [2] [ = | = |_ﬂ_]
11 0.87 | |The distribution of values in each column
¥ |Rows I 12 0.93 Select Columns Cast Selected Columns intoc Roles Action
All rows 15 12 0.81 1 Columns :
\f'-’ Columns ‘LEEd fime
s : TIT > K
Labelled 3 ] Histograms Only ontional numeric
|
%
Hel
Needed only for
hon-JMP files 20O




Data validation

== lead time 1 - Distribution of Lead time - JMP [2] B
A = | Distributions
A = |Lead time
7 — A= Summa isti
! o . - ry Statistics
(later) > s . Mean  15.343333
Std Dev  21.815551
N 15
Minimum 0.449
Maximum a4z
—
0, 20 40 60 &0 100
SE [
| |
\
e Qutlier
Frequency histogram « Not always visible in the histogram

 Click on 1t
* Look in the data table



Data validation (cont'd)

I-__".';l lead time 1 - JIMP [2]

=]

IS

File Edit Tables Rows Cols DOE Analyze Graph Teols View Window Help
= |lead time 1 [}I 4 —
= o - Lead time
1 9.6l
2 071
3 9,54
- 4 9.67 -
* | Columns (1/0) I : 975 I.'_"'_;"l lead time 1 - JMP [2] | — M
Lead ti '
A Lead time ] 9,44 File Edit Tables Rows Cols DOE  Analyze Graph Tools View Window Help
F) 8.35 *|lead time 1 [}’I q —
o2 e | ead ime
g 9.58 - 9.61
10 0.61 2 9.71
11 0.87 . 9.34
4 0.67
» | Bows I 12 0,493 - [:_Dlumﬂs_[l_,-"[]) I : 975
All rows 15 13 9.81 | |4 Lead time '
Selected 1 14 0.89 6 5.49
Excluded 0 7 8,55
Hidden 0 : 9.4 9,42
Lakelled 0 0 58
10 0.61
/ 11 0.87
= |Rows 12 0,93
All rows, 15 13 a8l
v 2glaeted 1 14 0.89
Data entry error “luded 0 -
. 15 0,04
/ Hidden 0
v Enter the correct value Labelled 0

v" Go to next slide




Distribution analysis with data correction

1o |

== lead time 1 - Distribution of Lead time - JMP [2] BE—

A = Distributions
A = Lead time

A = Summary Statistics

] T == | Mean  9.6913333

Std Dev 0.1671555

M 15
Minimum g.4z2
Ml a1 mn G.04
04 8.5 8.6 a7 a8 a.g 10
SE [

Note the change in the histogram and the summary statistics




Cleaning up the box plot (optional) 20

. D . r|_ lead time 1 - Distribution of Lead time - JMP [2] = | B |-
 Right click 1n this
Space \\.d - Distributions
) A = Lead time
e Select Customize —
: ! A = Summary Statistics
|7 o l— —| M 0.6913333
M 15
* Uncheck miﬂirﬂum g;‘i
4 1T .
Confidence
Diamond and
Shortest Half —
OK 54 95 95 87 98 98 10
- EH v

* What remains is the box and whisker plot

« JMP calls it Outlier Box Plot because i1ts main
purpose in this context 1s to show outliers



Distribution analysis options

== lead time 1 - Distribution of Lead time - JMP [2] B

£ = Distributions
A «|Lead time
A = Summary Statistics

/ — —] Mean  0.6913333

Std Dev  0.1671355
N 15
0.42

Minimum
Maximum 0.4

04 8.5 0.6 9.7 0.8 0.9 10

28 O

e

 Click on the red triangle next to Lead time while holding down the A/t key
e This will show the default analysis options for the Distribution platform

» See next slide

o



Default analysis options (cont'd)

=% Select Cptions and click OK

|| Show Percents

| Show Counts
Mormal Quantile Plot

Cutlier Box Plot

|| Quantile Box Plot

|| Stem and Leaf

[C] CDF Plot

[] Test Mean

] Test Std Dev

|| Confidence Interval ||:| a0

|| Prediction Interval

|| Tolerance Interval
| Capability Analysis

Display Cpticns

] Quantiles

"] Set Quantile Increment
|| Custom Quantiles
Summary Statistics

| Customize Summary Statistics
Heorizontal Layout

|| Axes on Left

Histogram Cptions
Histogram

| Shadowgram
[ Vertical

|| Std Error Bars
[] Set Bin Width
| Count fxis
| Prob Axis

"] Density Axis

Just for practice:

Continuous Fit

| Remove
| Mermal

"] LogMormal
] Weibull

| Weibull with threshold
| Extrerne Value
[ Exponential
| Gamma

| Beta

|:| Smooth Curve
|:| Johnson Su
| Johnson Sh
| Jehnson S

] GLog

Wy

|:| Save | Level Mumbers

' |

I QK || Cancel |

Uncheck Summary Statistics and Outlier Box Plot — Check CDF Plot — OK

This can also be done by just clicking on the red triangle, but requires more steps.



Cumulative distribution function (CDF plot)

23

== lead time 1 - Distribution of Lead time - IMP [2] T

£ = Distributions
A= Lead time

4 CDF Plot

C LTI

4 9.5 Q.6 9.7 0.8 0.9 10 o6

Cum Prob

04

0.2 -

04 05 0.6 a7 oa o0
Lead time

* Plots the proportion of data points < each value in the data set
» The step size at each data value is usually 1/N, where N 1s the sample size

« If the same value occurs twice 1n the data set, the step size there 1s 2/N



Modifying JMP plots 24

CDF Plot
1. Double click on a number on the Y axis

i » change Increment to 0.1
N » check Major Grid Lines
s [ « uncheck Minor Tick Mark
Y « Set Minimum to 0 and Maximum to 1
. e OK

0.2 r

0.8

Cum Prob

. CDF Plot
04 05 06 0.7 0.8 0.9

Lead time ™

0.9 3
:'.E _I_
07

2. Double click on a number on o 06 —
the X axis % 05 —
 check Major Grid Lines S 04 |
e uncheck Minor Tick Mark 03 ——=
« OK 0.2 |
01 |
9.4 05 95 0.7 9.8 0.3

Lead time



Calculating percentages

25

== lead time 1 - Distribution of Lead time - JMP [2] =

£ = Distributions

jv Lead time

y < CDF Plot

/ 09 :
D.E _l_
0.7

04 9.5 9.6 9.7 08 89 10 o6

05 T

04
0.3
0.2 B
0.1

Cum Prob

04 a5 0.6 07 03 g
Lead time

28 Ov

* Suppose we want to know the percentage of data points exceeding 9.8
 Click the Lead time red triangle — select Process Capability
* Enter 9.8 for the Upper Spec Limit — click OK




Percentages (cont'd) 26

4 | Lead time Capability Kcnconformance shows: \

£ = Histogram
2 « Observed percent out-of-spec
USL Density )
- - - Overall * Expected (predicted), based on
the Normal distribution
"""" Capability indices are calculated:
Within Sigma Capability can be
‘ used when small samples are
collected, such as for an Xbar-R
0.4 0.5 0.6 a7 oz 0.9 10.0 h it
Lead time Ccha
. . L
4/ Overall Sigma Capability Turn 'FhlS off by clicking on the
Index Estimate Lower 95% Upper 95% red triangle next to Lead time
Cpk 0.217 0.027 0.400 Capablhty
Cpu 0.217 0.027 0,400
| Nnncnnfnrmanm e Tum Off the Wlthln CurVe On the
] p—— histogram by clicking on the
Portion Observed % Within % Overall % . .
Above USL 33.3333 154871 25.7816 red triangle next to Histogram
Total Cutsid 33,3333 15.4871 25,7816 . . . . . c
T ) We will cover distribution fitting in

Qnext section /




Plotting data in time sequence

L

Graph — Legacy — Overlay Plot

* 1 Columns
Al ead time

Options
Sort X
A Log Scale
Left ¥ Log Scale
Right ¥ Log Scale

%" Overlay Plat - JMP [2] B
The Plot of ¥ as X vanes continucusly
Select Columns Cast Selected Columns into Roles Action

| Y | 4m | ead time

| OK el

| Left Scale/Right Scale | | | Cancel |

| X | ppitional
| Grouping | nptional
| By | optional

|Flerr1-:n.re|
| Recall |
| Help |
#

1 L

* You can have different left and right scales for plotting multiple

Y variables
Cast both Y variables into Y

©)
©)
©)
©)

A date, time, or other sequencing variable could be cast into X

Select the one you want to display on the secondary (right) scale

Click Left Scale/Right Scale.

Arrows point to the Y-scale for each Y variable



Overlay plot (cont'd)

28

272 lead time 1 - Overlay Plot of Lead time - JMP - O X

4 '~ Graph Builder

Lead time vs. Row
10.0

9.9

9.8

9.7

Lead time

9.6
9.5
9.4

9.3
0.0 2.5 5.0 7.5 10.0 12.5 15.0

Row

* Modify the chart as follows:

2 lead time 1 - Qverlay Plot of Lead time - JMP

4 = Graph Builder

Lead time vs. Row

10.0

9.9

9.8

9.7

Lead time

9.6

9.5

0 1 2 3 4 5 6

7 8 9
Time Sequence

0 11 12 13 14 15 16

* Double Click X-Axis: Minimum = 0, Maximum = 16, Increment = 1, Dec =0
* Double Click on Y-Axis: Minimum = 9.4

 Right Click on Chart: Customize > Line > Line Color > Red

* Double Click on X-Axis Title: Change “Row” to “Time Sequence”



Overlay plot (cont'd)

1 % lead time 1 - Overlay Plot of Lead time - JMP

4 = Graph Builder

10.0

9.9

9.8

9.7

Lead time

9.6

9.5

Lead time vs. Row

7 8 9
Time Sequence

M0 N

12 13 14 15 16

* Good way to look for assignable cause
patterns versus their time sequence

e Same as a line chart in Excel

» Overlay plot can be used to display
different data sets on different Y-Axis

N

1 ¥ Qwerlay Plot - JMP - O >
The Plot of ¥ as X varies continuously
Select Columns Cast Selected Columns into Roles Action
=1 Columns
| Left Scale/Right Scale |
Options X optional
g Sort X optional
X Log Scale
optional -Recall
[ ] Left Y Log Scale
{ []RightY Log Scale Help

=
[l
«




Saving your analyses and data table 30

E ead time 1 - Distnbubon of Ieal G i EEREE X

4 |=| Distributions
-|Lead time
£ CDF Plot A [=| Capability Analysis

S pecification Value Portion % Actual
r Lower Spec Limit . Below LSL

0.9 '

_l_ Spec Target . Above USL 33.3333
08 Upper Spec Limit 8.8 Total Cutside  33.3333
07 [* Long Term Sigma

04 0.5 0.6 9.7 0.8 ag 10 0e
0.5 |

04
03
0.2 r
01

Cum Prob

a4 95 96 a7 a8 99
Lead time

* Click on the thumbnail for the distribution analysis at the
bottom of the data table

* Click the red triangle next to Distributions

* Save Script — To Data Table — Name: Distribution — OK



Saving things (cont'd)

5 lead time 1 - Overlay Plot of Lead time - JMP [2] BEE—

A = Overlay Plot
10

- A
08 v

9.7 o

Lead time

9.5 N
9.4
9.3

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
Time sequence

B [

e Click on the thumbnail for your overlay plot, click the red
triangle next to Overlay Plot

» Save Script — To Data Table — Name: Overlay Plot — OK

* Go to your data table



Saving things (cont'd)

32

File Edit Tables PRows Cols DOE  Analvze Graph Tools  Yiew  Window  Help

« Cycle times

Motes ChDocuments and Se

= | Distribution
» Cwverlay Plot

» Columns (1/0)
A | ead time

w |Hows

All rovs
Selected
Excluded
Hidden
Labelled

s Y s [ |

w

oo -l mm| = R —

—_ | = = = —= | —
M = L ka = O O

Lead time

H.61
H.71
9.54
967
89.75
849
8.55
842
858
8.61
887
843
9.81
9.549
8.54

Two scripts have been added to
the left panel

If you save the file (as JMP), the
scripts will be saved with it

The next time you open the file,
you can run the scripts to recreate
the analyses exactly as you left
them

Close and save your data table

*

now

“Use Save As to make sure you can find
the file next time you want fo open it




Exercise 2.1 33

Open Data sets \ quotation process. Perform the following data analysis tasks for the
variable TAT (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on
the outlier box plot. This pattern 1s common with asymmetric “ski slope”
distributions that pile up near zero. These points are not assignable causes, so they
would not be investigated or removed.

(b) Record the average, standard deviation, sample size, minimum, maximum and
median.

(¢) Turn off the outlier box plot.

(d) Find the % of data points exceeding 3.

(¢) Turn off the Within Sigma Capability.

(f) Save your analysis script. Close and save the data table.



Exercise 2.2 34

Data sets \ DI water. Perform the following data analysis tasks for the variable
Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch
the graph if necessary). Use your mouse to draw a box around the suspicious data
points. Right click 1n an uninhabited area of the plot, select Row Hide and
Exclude.

(b) Run a distribution analysis. Record the average, standard deviation, sample size,
minimum, and maximum.

(c) Turn off the outlier box plot.

(d) Find the % of data points falling below 1500.

(e) Turn off the Within Sigma Capability.

(f) Save your analysis scripts. Close and save the data table.



3 Fitting and Using Distributions

35

Distribution curves

Checking goodness of fit

e JMP examples

Fitting and using the Normal distribution

Fitting and using the Lognormal distribution

Finding the best fitting distribution(s)

 Using the best fitting distributions(s)



Frequency histogram

A description of the data

0 — |

1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable



Distribution curves

37

Possible descriptions of the population

e

Continuous Y variable



Distribution curves (cont'd)

38

Area under the curve between y, and vy,

= % of the population with y, <Y < vy,

A

Y1 \p)

Continuous Y variable



Distribution curves (cont'd)

39

Area under the curve to the right of vy,
= % of the population with Y >y,

Continuous Y variable



Fitting a distribution curve to the data 40

A

Continuous Y variable

* The Normal curve depends only on p and o (population mean and std. dev.)

* Plug the sample mean and std. dev. into the formula in place of wand



Distribution curves allow us to extrapolate . . .

41

LSL
/\
/] \
\\
0.12% / \
(1165 ppm) V4
are predicted /| \
to fall on or // \\
below 1200 ~ ~
< _ - l\_
1200 1300 1400 1500 1600 1700 1800 1900 2000

Minimum value in the data 1s 1267



... but only if the distribution matches the data!

42

=

N

N

—~——

3210123458678 9 10

11 12 13 14 15 16



Checking goodness of fit

43

Data CDF”

100

oo
o

(@)
o

Percent less than
AN
o

N
o

1200 1400 1600 1800 2000

“Cumulative Distribution Function



Checking goodness of fit (cont'd)

100

Percent less than
LN (@) (@)
o o o

N
o

o
1

Best fitting population CDF (assuming Normal)

/

1200

1400

1600

1800

2000



Checking goodness of fit (cont'd)

100
30
c
®
=
w 60
%
Q@
=
g 40
@
ol
20

Data and population CDFs should match

1200

1400 1600 1800 2000



Normal Quantile Plot (also known as Normal probability plot)

46

99.9
99
95
80

Percent less than
@)
o

CDFss plotted on a Normal distribution scale

LSL

Population

1400

1600

1800

2000



JMP example: Normal data 47

File - Open — Data sets — DI water — Open — Import

e Analyze — Distribution — Resistivity
Resistivity Y, Columng — OK
« V Resistivity — Normal 7 233
Quantile Plot 0.98
s 1
* Fit is good — the points form a [f' - {55, 0.93
relatively straight line and stay 4 0.86
within the hyperbolic band | 0T
o It 1s common for the data to -
curve up a little at the top and 0.45
down a little at the bottom of -0.67- -
the Normal Quantile Plot /—' . '
-L28—0.1
o A curve throughout the graph s 1641005
indicates non-normal data £ |
-2331-0.,01

» Save the script to the data table

 File save as — DI water.jmp . ' 0.002
 Leave the data table open 1300 1400 1500 1600 1700 1800 1900 2000



JMP example: non-Normal data

48

File —» Open — Data sets — quotation process — Open — Import

e Analyze — Distribution —
[Y, Columns} — TAT — OK

Distributions — Stack

TAT — Normal Quantile Plot

Fit 1s bad — the points do not
follow the line and do not stay
inside the hyperbolic band

Save the script to the data table

File save as — quotation
process.jmp

e Close the data table

TAT

o 2 4 & & 10

12

14

-1.28-
-1 64-

-233-

16

233-

184~
128 -

0.99

0.95
0.9

e 0.8

551 0.55

ss7 0.3

0.14
0.07

0.02

0.004

B 0,000



s this data Normal?

233, 0.99
1 0.98

16411 0.95
128 0.9

- 0.8
- 0.7

0.67

0041 0.5

- 0.3
0.2

-0.67 -

-1.2841 0.1
16411 0.05

0.02
-2.334}

15 20 25 30 35 40 45 50




s this data Normal?

50

2.334

1.64 -

1.28 1

0.67 -

0.0-

-0.67 -

-1.28 1

-1.64 -

-2.33-

10

15

20

25

30

- 0.99
- 0.98

[ 0.95
0.9

- 0.8

- 0.7

- 0.6
- 0.5
- 0.4

0.3
0.2
0.1
0.05

- 0.02
- 0.01



Fitting and using the Normal distribution

]

Go to DI water.,jmp

The values of Resistivity in rows
205 to 214 are constant at 1454 ~_

These are not true measurements, /
so we use the red triangle to hide

and exclude the questionable

values

This reduces the sample size from
474 to 464

Next slide:
- Analyze — Distribution
- Red Triangle — Continuous Fit

Eﬂ DI water - JIMP

File Edit Tables
* | O water b
= Source

* | Columns (3/0)

th Day

4l Hour

all Resistivity

* | Rows

All rows 474
Selected 10
Excluded 10
Hidden 10
Labelled 0

Bows Cols DOE  Analyze Graph Tools
¢ -

- Day Hour Resistivity

202 | 4-F 13890

203 | 4-F 15520

204 | 4-F 16160

) q-F 10 14540

v q-F 10 14540

-1 207 ESs 10 14540

-1 208 pes 11 14540

-1 200 s 11 14540

- 210 pes 12 14540

Ml 4-F 12 14540

212 Ees 12 14540

m E] q-F 13 14540

- 214 Ees 13 14540

215 |4-F 14 16250

216 | 4-F 14 15630

217 | 4-F 14 16425

218 | 4-F 15 18570

219 4-F 15 15165

220 | 4-F 15 17480

— Fit Normal .



Normal distribution (cont'd) 52

£ = Resistivity
A = Summary Statistics 4, ~ Fitted Normal Distribution

- Mean 1632.5245 Parameter Estimate Std Error Lower953% Upper953%
B Std Dev 14206717 Location p 16325248 6.,595303 16195982 16454513
M 404 Dispersion o 14206717 0.3919007 141.30114 142.65648
Minirmumm 1267 Measures
Maximum 2000 -2*Loglikelihood 3915.2214
Median 1628.75 AlCc 5910,2474

1300 1400 1500 1600 1700 1800 1900 2000 BIC 5927.5011

suonnquisig atedwony -

Click on the Fitted Normal Distribution red triangle:
— Select Diagnostic Plots — QQ Plot

— Next slide



Normal distribution (cont'd) 53

A = |Fitted Normal Distribution

Parameter Estimate 5td Error Lower953% Upper 33%
Location p 1632.5248 6.595303 1619.5982 1645.4513

Dispersicn o 142.06717 0.3919007 141.30114  142.65648 e The QQ Plot 1s similar to the Normal
Measures .
-2*Loglikelihood 5915.2214 Qua’ntlle PIOt
AlCc 5019.2474
i sl o When the distribution is a good
4QQ Plot : : :
2100 fit, the data will fall in a line on
2000 the plot
1900
1800 @
:g 1700
;ﬁ 1600
1500 * Click on the Fitted Normal
1400 Distribution red triangle again:
1300
1200 — Select Process Capability
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
Fitted Quantile — Enter 1200 for Lower Spec Limit
— OK

— Next slide



Normal distribution (cont'd)

54

4 = |Resistivity Capability
A =|Histogram

L5L

1200 1300 1400 1500 1600 1700 1800 1900 2000
Resistivity

< Overall Sigma Capability

Index Estimate Lower95% Upper953%
Cpk 1.015 0.043 1.087
Cpl 1.015 0.943 1.087

<A Nonconformance
Expected Expected

Portion Observed %  Within % Owerall %%
Below LSL (.0000 0.0683 0.1165
Total Cutside (.0000 0.0683 0.1165

Density
== = Overall

» Observed % shows that none of the
measurements in the data set are less

than 1200

» Expected Overall % shows that 0.12%
are predicted to fall below 1200 1n the
population (future production)

 Save script from the Distributions red
triangle

» Save and close the data table



What if the Normal distribution isn't a good fit? 55

Steps for fitting a distribution to data:

1. Analyze — Distribution

Check Normal Quantile Plot—data in straight line indicates good fit
If uncertain: Continuous Fit — Fit Normal

V¥ Fitted Normal Distribution — Goodness of Fit

Anderson-Darling p-value > 0.05 indicates good fit

2. If Normal not a good fit: Continuous Fit — Fit Lognormal
V¥ Fitted Lognormal Distribution — Diagnostic Plots — QQ Plot
Data in a relatively straight line on the QQ Plot indicates good fit
If uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

3. If Lognormal is not a good fit: Continuous Fit — Fit All
- Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense for the data.
Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.
JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)



Fitting and using the Lognormal distribution 56

* Data sets — number & size of 4~/ Max size
- 0.98 B
defects : . 5
1644-0,05 =
g
e Analyze — Distribution - Max > S
o 1)
size o
0.7 2
0.6
» Max size is not Normal o
R
T 0.2
» The LogNormal distribution 1s the
most common alternative o
164--0,05
. 0.02

« Red triangle Max Size

— Continuous Fit — Fit LogNormal

» Red triangle Fitted Lognormal Dist —
— Diagnostic Plots — QQ Plot 0 3 15 20 25 30



Lognormal distribution (cont'd)

57

Max size

\ M
[ Minimum

\"“x Maximum

F—— 1 Median

I Summary Statistics
Mean
Std Dev

Fitted Lognormal Distribution
Parameter Estimate 5td Error Lower 95% Upper953%

Scale p 1.6799251 0.1096067 1.4607293 1.899121
Shape g 07593775 00773036 0.6295191 0.9408779
Measures

-2*Loglikelihcod  271.06631
275.33298
278.80872

AlCc
BIC

QQ Plot

Max size

Click on the Fitted LogNormal Distribution

red triangle

— Select Process Capability

— Enter 30 for the Upper Spec Limit

— 0K

30

25

20

15

10

5

0 3 10 15 20 25 30
Fitted Quantile
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Lognormal distribution (cont'd)

4 »|Max size(Lognormal) Capability

Monnormal capability indices calculated with the Percentiles methed.

A =|Histogram
LSL Density
o = = = Cherall
..: ‘-% <
"""" * None of the measurements in the
0 5 10 13 20 23 30 35
Mast size data set are greater than 30
<4 Qverall Sigma Capability < Parameter Estimates e 1.17% are predicted to exceed 30
Index Estimate Parameter Estimate in the p Opulati on (future
Cpk 0.524 Scale p 1.6799251 .
Cpu 0.524 Shape o 0.7503775 production)
4 Nonconformance . o .
Expected  Save script from the Distributions
Portion Observed % Overall % red triangle
Above USL 0.0000 1.1705
0.0000 1.1705
» Save and close the data table

Total Cutside



Finding the best-fitting distribution(s)

59

| 410 Cols | ™

* 8780 Rows

[ R = R S - P R X

LS L e L e T e e e e T s T e L I T T e e L A
e DU o R e R O o N L P T o R e Y o N e T IR S ) IR <SS T e R = L =)

Aligner

1
2
3
2
2
2
3
2
2
2
1
2
2
3
2
2
3
3
1
2
3
3
2
2
2
1
2
3
1
3

Adev
-17
-7
-10
0
-10

Y dev

4

&

-21

-1

5

0

-15
-17

R dev
17 464249197
8 2195444573
23.259406699
1
11.180339887
7
20518284529
17.262676502
8.5440037453
10.630145813
12.529964086
&
8.602325267
11.180339887
31622776602
8.94427191
20
21.893171214949
14.317821063
11.3137084949
23.086792761
24 207436874
11.401754251
10
10.295630141
13.601470509
8.5440037453
16
24 69817807
8.94427191

If neither the Normal or Lognormal are a good
fit to the data, you’ll need to find a better option.

» Data sets \ alignment process

Three similar alignment tools are used to attach
orifice plates to computer chips. Y dev and X dev
are the vertical and horizontal deviations from
target in mils.

The alignment specification applies to the radial
deviation calculated from X and Y. See slide
below for the calculation of R dev.

Analyze — Distribution — R dev

Remove:
v' Summary Statistics
v Outlier Box Plot

Red triangle (R Dev) — Continuous Fit — Fit
All

Go to slide 61 to see the results



Using the formula tool

Double click on the blank column header next to Y dev, click on Column 4,
rename as R dev. Click on Column Properties, select Formula, Edit Formula. Use
your mouse to create the formula for R dev as shown below.

~ B
59 R dev - JMP 2 e = | O
(3] | =4 Columns = flm= | X || o |27 3224 (8= ]| Q0)S)18)(X) (D)
A Aligner 6 y
* Row Cdxdev | 2
¥ Mumeric F1v d 5
b Transcendental 4 B dev
* Trigonometric
¥ Character & : 2 2
» Comparison | Xdev — + Ydev
» Conditional
b Probability | Table Variat ~
# Discrete Probability Motes _
» Statistical
» Random ' ’ )
# Date Time - OK || Cancel || Apply || Help ]

1 > 2 —> 3 > 4 > 5 ——>{ 6 > 7




| | | ] n | | | ] ’
Best-fitting distributions (cont'd) 61
4 |~ Distributions
A =R dev
- 4 Compare Distributions
T T Show Distribution AlCc ~ AICcWeight .2 4 .6 .8 BIC -2*Loglikelihood
Weibull —— 4543333 0.9524 45523585 45393202
] Johnson Sh 4550.2829 0.0296 | : | 4568.3001 45422235
L] SHASH ——— 45514929 0.0161 | 4569.5101 45434335
[] Mormal 3 Mixture 45560329 0.0017 45919708 4539.8176
[] Mormal 2 Mixture —— 4550.8833 0.0002 458238093 45497941
0 5 10 15 20 25 30 35 40 L] (amma - 4571173 0 45801935 45671552
[] Mormal = 43544040 0 45035154 45804771
] Legnormal — 4676.7723 0 4685.7928 4672.7545
[] Cauchy —— 482289 0 4831.7106 48186723
[] Exponential —— 5055.8892 0 5060.4024 5053.8832

* Distributions are ranked by AICc (“Akaike
Information Criterion corrected” — will call it AICc
from now on)

 AICc 1s a measure of /ack of fit

o It helps us compare fit of models -- fit of
distributions in this case

o Smaller values indicate better model fit

o AICc 1s not a hypothesis test—it doesn’t tell you
how well a model fits, only which is better

J
Format
J

\J

& OK

f\ Double click \

Fixed Decimal (1)

/




Best-fitting distributions (cont'd)

A= R dev
- <4 Compare Distributions
. Show Distribution AlCc ~ AICc Weight .2 4.6 .8
s ot Weilsull —— 45433 00524 ]
[] Johnson Sk 45503 00206 o0
[] SHASH — 45515 o011 | i
] MNormal 2 Mixture 45560 p0017| | i P
] Mormal 2 Mixture — 45599 0.0002
0 5 10 15 20 25 30 35 40 ] Gamma — 45712 0
[] Mormal —— 45845 0
[] Legnormal —— 46768 0
[]  Cauchy — 48227 0
[] Exponential —— 50558 0

« Distributions with the same AICc (rounded to the nearest tenth) have the same
lack of fit (or equivalently, the same goodness of fit)

» The distribution with the AICc Weight closest to one 1s the better fit



Using the best-fitting distribution: Weibull

63

What % of future parts will have R dev > 407?

£ [=|Fitted Weibull Distribution

4 Compare Distributions
Show Distribution

HiEEnNE

Weibull

Johnson Sb
SHASH

Mormal 2 Mixture
MNormal 2 Mixture
Gamma

Mormal
Legnormal
Cauchy
Exponential

AlCc ~ AlCcWeight .2 4.6 .8 BIC -2*Loglikelihood
4543338 0.9524 45522585 4539220
4550.2820 0.0296 | : i1 | 45683001 4542 245
—— 45514020 0.0161| i i 45695101
45560329 0.0017| | g : | 45919708 176
— 45598833 0.0002( i | i i |45823898 49 7041
— 4571172 of : i i i |45801935 A1567.1552
—— 45844949 0| i i § |459351%4 45804771
46767723 0 46857928 46727545
—— 482240 0 48317106 48186723
—— 5055.8802 0 5060.4024 5053.8832

Parameter
Scale
Shape
Measures

Estimate 5td Error Lower 93% Upper 95%

a 17.246152 0.3070044
B 2.2716665 0.0672977

-2*Leglikelihoed 4539.3202

AlCc
BIC

4543338
45523585

 Click on the Fitted Weibull Distribution red triangle

» Select Process Capability
* Enter 40 for USL — OK

16.650713
2.1415545

17.855926
2.4053358



. . )
Weibull fit (cont’d) 64
A =R dev(Weibull) Capability
Monnormal capability indices calculated with the Percentiles method.
4 =/ Histogram 4 Process Summary
LSL Density USL 40
= = = Owerall M 678
Sample Mean  15.28776
Je ""-4.‘ Sample S5td Dev  7.097424
(] N e o
0 3 10 15 20 23 30 33 40
R dev
4 Overall Sigma Capability < Parameter Estimates
Index Estimate Parameter Estimate
Cpk 1.016 Scale a 17.246152
Cpu et Sl | EEULILE * 0.15% of the data values exceed 40
< Nonconformance
Expected ° 0 1 1
S 0.12% are predlcted to exceed.40 in
Above USL 01475  0.1158 the population (future production),
Total Cutside 0.1475 0.1158

Weibull distribution

based on estimates made using the



What if we had assumed a Normal distribution? 65

A= R dev
* T 4/=/Summary Statistics
[
005> @  Mean  15.287761
008 % Std Dev  7.0974238
1642005 O N 675
1 0.9 TEE- Minimum 1
0.8 5 Maximum 40.804412
" Median  14.422205
0.6
0.5
04
0.3
0.2
0.1
0.05
0.02
Ll e The curve throughout

this Normal Quantile
Plot indicates that this
1s not a good fit

0 5 10 15 20 25 30 35 40



What if we had assumed a Normal distribution? (cont'd) 66

A =R dev Capability

A = Histogram

LSL Density
= = = Therall
-t‘F “i
-I" »
l‘ r"
,,r’ “"'
T B e e ot
0 5 10 15 20 25 30 35 40
R dev

A Overall Sigma Capability

Index Estimate Lower953% Upper95%
Cpk 1.161 1.094 1.227
Cpu 1.161 1.094 1.227
4 Nonconformance

Expected Expected
Portion Observed % Within % Owerall %
Abowve LSL 0.1475 0.0240 0.0249
Total Cutside 0.1475 0.0240 0.0249

< Process Summary

USL 40
M 678
Sample Mean 15.28776
Within Sigma  7.078084
Cwerall Sigma 7.097424
Stability Index 1.002732

Within sigma estimated by average moving range.

We would have
underestimated the
future % defective:

Expected
% Defective
Weibull 0.12%
Normal 0.02%




Steps for fitting a distribution to data 67

If the Normal or Lognormal is a good fit, use it!

.

Analyze — Distribution
Check Normal Quantile Plot—data in straight line indicates good fit
If uncertain: Continuous Fit — Fit Normal
V¥ Fitted Normal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

If Normal not a good fit: Continuous Fit — Fit Lognormal
W Fitted Lognormal Distribution — Diagnostic Plots — QQ Plot
Data 1n straight line on the QQ Plot indicates good fit
If uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

If Lognormal 1s not a good fit: Continuous Fit — Fit All
Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense.
Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.
JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)



Exercise 3.1 68

Answer questions below. Save the analysis scripts, save and close the data tables.
[When opening files, make sure JMP is looking for “All files” not “All JMP files.”]

a) Data sets \ quotation process, variable TAT. What % of RFQs in the data set have
TAT > 15?

b) What % (or PPM) of future RFQs will have TAT > 15?

c) Data sets \ solution properties, variable SG coded. What % of solution vials in the
data set have SG coded > 507?

d) What % (or PPM) of future vials will have SG coded > 50?

e) Data sets \ number and size of defects, variable # Defects. What % of castings in
the data set have more than 50 defects?



Exercise 3.1 (cont'd) 69

f) What % (or PPM) of future castings will have more than 50 defects?

g) Data sets \ casting dimensions, variable Length. What % of castings in the data set
have length outside the interval [598, 602]?

h) What % (or PPM) of future castings will have lengths outside this interval?

1) Data sets \ casting dimensions, variable Diam. What % of castings in the data set
have diameters outside the interval [49, 51]?

1) What % (or PPM) of future castings will have diameters outside this interval?
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4 Introduction to Life Data

71

Life = elapsed time until the occurrence of some event
* Failure of an item on test
* Planned end of test
* Unplanned end of test
* Failure of an item in service

* Scheduled downtime

Definitions of “time”
* Seconds, minutes, hours
* Days, weeks, months

* Usage cycles, number of moves, distance



Life data (cont'd)

72

Usually there 1s one event of primary interest
* Usually, failure of an item

Other events may preempt the event of primary interest
* Planned end of test

* Unplanned end of test
* These are called "suspensions”

* We say that the time to failure is "censored"”



Data sets \ failures and suspensions.jmp

73

Label

S =~ N W b~ O O N © ©

16
15
14
13
12

—
o -

>
¢
¢
¢
b4
X
D ................................................
¢
¢
b4
D
¢
x
b ¢
b ¢
0 10 20 30 40 50 60 70 80 90 100

Time

15 1items were tested
12 failures (X)
3 suspensions ( >---)

This “event plot” distinguishes
suspensions from failures and
shows the event times

If we don’t distinguish
suspensions from failures, the
calculated failure probabilities
will be biased upwards

This will make our reliability
look worse than it really is



Cumulative distribution function (CDF) 74

1.0
0.9- ‘
1

1
Each step height =— = — = 0.067
0.7+ PR =N 715

In this plot, all
0.4- events are treated

as failures
0.2- ’—l

0.1

0.0

40 45 5 55 60 65 70 75 80 8 90 95
Time



CDF distinguishing suspensions from failures 75

Failing

1.0
0.9 (
0.8
0.7 Suspensions at times 58 and 71
0.6
«0.086
0.5-
0.4-
0.3 v |<0.073
T - This is the correct plot

0.2

» It steps up only at failure times
0.1- «0.067

+ The step size increases after
0.0 . . . . . . . each suspension, because the

40 45 50 55 60 65 70 75

Time

number of items remaining on
test decreases



Overlay of CDFs

76

Failing

CDF treating all times as failures

CDF distinguishing suspensions from failures

1.0

0.9+

0.8

0.7

0.3

0.2+

0.1

Suspensions at times 58 and 71

.............

......

=

..............

After the first
suspension, the solid
line overstates the
failure probabilities

0.0

40

45

50 55 60 65 70 75 80
Time

85 90 95



Can'’t we just ignore the suspensions?

77

Failing

1.0

CDF ignoring the suspensions

------ CDF distinguishing suspensions from failures

0.9+

0.8+

0.7+

0.3-

0.2+

0.1+

Each step height = é = 0.083 —>

............

This intuitive idea is

actually worse than

treating all times as
failures

Time

75 80

85 90 95
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5 Analyzing Life Data

79

* The Exponential distribution

e The Weibull distribution

e Fitting life distributions in JMP

* Finding and using the best fitting life distribution



Failure curves for the Exponential distribution

0.8 0 =20

Failure probability
o
i

0.0 I | | | | | | | | I
0 5 10 15 20 25 30 35 40 45

Time to failure




Notes 81

The Exponential distribution is the simplest life distribution. It has only one
parameter: the mean time between/before failure (MTBF). The Greek letter O (theta)
1s often used to denote the population value of the MTBF.

Shown above are the failure functions F(t) for three different Exponential
distributions. F(?) 1s the probability that an item will fail before time .

The reliability function is defined as R(¢) = 1 — F(¢). R(¢) 1s the probability that an
item will survive beyond time 7. The Exponential reliability function i1s given by R(7)
= exp(-/0).



Failure curves for the Weibull distribution

1 O N < /"‘> _‘_____‘___,........‘-...‘-.....;========-n
94 n=5p=05
> n=5p=2
0.8 .
2 07- . n=20,p=05
O
®© ‘
S 0.6-
© 4
0.5
E e na F(e)=1-¢ M)
© 0.4- ' =20,B=2
N 0.3 ' L ) N = characteristic life
| 7 B = shape
0.2 \\ j/
0.1+
OO T T T T T T I | |

0 5 10 15 20 25 30 35 40 45

Time to failure



Notes 83

The Weibull distribution was introduced to the reliability engineering community in
the 1950s by a man named Waloddi Weibull. Prior to that, most reliability work was
based on the Exponential distribution. Due to its greater flexibility, the Weibull has
become one of the most widely-used life distributions.

The Weibull distribution has two parameters: the characteristic life n (eta), and the
shape [3 (beta). The characteristic life () has the same qualitative interpretation as the
MTBF (0). The shape parameter () determines which of two distinct failure modes
are represented. When 3 < 1, we have a burn-in or infant-mortality failure mode.
When 3 > 1, we have a wear-out failure mode. A Weibull distribution with f =1 1s
identical to an Exponential distribution with 6 = n.

Shown above are failure functions F(¢) for four different Weibull distributions. F(?) 1s
the probability that an 1tem will fail before time ¢.

The Weibull reliability function (probability that an item will survive beyond time )
is given by R(?) = exp[-(¢/n)P].



Fitting life distributions in JMP

Data sets \ failures and suspensions Analyze
;,l failures and suspensions - JMP I. =R Lﬂhr \L
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help Rehablhty and SurVival

A 200 Cols [»

"

| 15/0 Time Suspension . . . .
1 42 0 Life Distribution
2 449 0
3 54 0 \L
4 55 0 Set up as shown below
5 58 1
B Bl 0 Oﬁ(
i B3 i
- . | Life Distribution - JMP X
g 71
10 & Life Distributi C G
1 a1 ife Distribution = Compare Groups
12 a7
13 89 Select Columns Cast Selected Celumns into Roles Action
14 a3
¥ 2 Columns -
LS 24 ATime ¥, Time to E"E” IR ok |
A Suspension | Cancel |
Censor Code: |1 - Suspension
Censor (I: P >
Select Confidence Interval Method S — @|
ailure Cause
Wald - P B @|
Label optional




Fitting life distributions (cont'd) 85

£ = Life Distribution
> Event Plot

<4 Compare Distributions

Distribution Scale .
Monparametric (@) . . * «—— [dentifies

[ | Lognormal — the times

[ ] Weibull

[ ] Leglogistic when .
Suspensions

[ | Frechet
[ ] Mormal 0.8 — . occurred

[ ] SEV _
[ ] Logistic - .

Prabability
P
Ly

]
P

e CDF plotting the — 0.0 * T
failures —

* Shows the corners of ; —
the steps, but not the 40 50 60 70 30 a0
% : 9 Time
staircase




Fitting life distributions (cont'd)

|~ failures and suspensions - Life Distribution of Time - JMP

4 = Life Distribution
> Event Plot

4 Compare Distributions

Distribution  Scale
V| Nonparametric © .
| Lognormal
| Weibull
"] Loglogistic
| Frechet
| Normal
| SEV
" | Logistic
] LEV v

m

08

Probability
=
(o]

o
N

fi 95% confidence

intervals for failure
probabilities

] These intervals are
“nonparametric”

/

02

/ 40

80

90




Notes 87

This analysis 1s referred to as nonparametric, meaning that it 1s not based on a
statistical model (such as the ones listed on the left.) This 1s a good thing, because
statistical models can be wrong. However, there are drawbacks:

a) The nonparametric CDF is discontinuous.

b) Large numbers of failures are required to get margins of error small enough
to be useful.

In practice, it 1s preferable to use a statistical model that fits the data well. This

provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the
menu produced by the red triangle next to Life Distribution.



Exponential fit — linear probability scale 88

A Compare Distributions

Distribution Scale
Leglogistic

Frechet

Mormal

SEV

Legistic

LEV 0.8 - A ) 95% confidence
| Exponential

LogGenGamma interval fOI’ F(SO)
ZEniTiT . - / based on the
06 - Exponential

model

Prabability

04 Yy
0.2

40 50 60 70 &80 agd
Time

Bad fit — the Exponential failure curve doesn’t match the data



Exponential fit — Exponential probability scale 89

4 Compare Distributions
Distribution Scale

Leglogistic )
Frechet —
Maormal —_—
SEV —_
Legistic —
LEV -_ =
9] Exponential [ l— o
LogGenGamma —
GenGamma —_—
0.94
Fary
5 0.91
]
o
= - 95% confidence
0.8 interval for F(80)
based on the
065 Exponential
0.5 model
0.35
0.2 . a
0,001 7= ——
40 50 60 70 &0 ag

Time

* The Scale button allows the failure curve to plot as a straight line

* This used to be the only way to plot failure curves



Weibull fit — linear probability scale

<4 Compare Distributions
Distribution Scale

Monparametric @ — '
"] Lognormal —_— —
Weibull —_— —
"] Loglogistic —_— = — //
| Frechet —
] Normal e 0.8 A V4
Efw. . — _ 95% confidence
t ' = .

= B B — — ' interval for F(80)
T 0.6 41— / . based on the

£ : Weibull model

2 v

T 04 /x’

0.2 /'// —
; . _
40 50 a0 70 80 a0
Time

A better fit



Weibull fit — Weibull probability scale 91

4 Compare Distributions

Distribution Scale
| Monparametric

Legnormal
¥ | Weibull T

Leglogistic 0.3 o
Frechet
Meormal
SEV
Logistic
LEV

95% confidence

03 // .
, interval for F(80)
05 — % based on the
B e Weibull model
0.26 * / -
0.18 // —

01 / -

0.035
0.024
0.016

I I I I I I | I I

Prabability

0.009

5 £ 70 = =
100

Time
* The Scale button allows the failure curve to plot as a straight line

 This used to be the only way to plot failure curves



Finding and using the best fitting distribution 92
e Click the Life Distribution red triangle — Fit All Nonnegative®
o IMP plots the best g oeroeere

fitting model on the =~ £ Nenparametric —

. ognormal o —
corresponding Webul - [TT—
probability scale Frechet -
om0 =[] o -

* In this case, ooEe —_| T /

Lognormal gives _ oss :

the best fit 5 '
« See next slide 0.25 _

0.08 /

[> Statistics

“You can't have a negative time to failure!

0.01

Time

" 100



Best fitting distribution (cont'd)

£ Statistics
A Model Comparisons
Distribution AlCc -2Loglikelihood BIC
Legnormal 1126 107.57926 112.99536
Weibull 1128 107.81732 113.23342
Loglogistic 1133 108.23193  113.74804
Frechet 1138 108.75681 114.17291
(eneralized Gamma 115.7 107.517/91  115.64206
Exponential 1334 131.06658 133.77463

T

* As before, models are ranked by AIC (smaller 1s better)
* As before, round the AIC values to the nearest tenth

* In this case, Lognormal gives the best fit



The distribution profiler 94

~ Distribution Profiler
e F(¢) 1s the probability that an
item from this population will

fail before time ¢ ) Lo
£ 0.449951 06
 The middle curve is the most o E., B%EEE'EE* 0.4
likely value of F(¢) - .
* For example, the most likely .
value of F(68) 1s 0.45 (45%) c g 2 g g
(shown in red on the left side Tf”
of the profiler) "
[ —>

 The reliability function R(?) is defined as 1 — F(¢)

* R(¢) 1s the probability that an item from this population will not fail until after
time ¢

* For example, R(68) = 0.55 (55%)



Distribution profiler (cont'd) 95
~ | Distribution Profiler
 The upper and lower curves ' — \é\g‘;'"es*
give 95% confidence intervals 08
for F(?) £ 0449051 06 [ Best
S [0.25735, ’ case
20.65542] 04
* The upper curve gives the 09|
worst case value of F(£)" *
0
* For example, the worst case 2 8 R 8 8
value of F(68) is 0.655 Sy
(65.5%)
» The lower curve gives the best case value of F(£)"
 For example, the best case value of F(68) =0.257 (2.57%)
“For Engineering. ““For Sales.



Distribution profiler (cont'd) 96

- | Distribution Profiler

1
0.8
E 0.683682 06
S [0.457,
2085634 04
* Suppose we are interested in F(80) -
* Change the value 68 to 80 (click and ’
edit) 2 @8 R 8 &
—> 50
Time

» The most likely value of F(80) 1s 68.4
* The worst case value of F () 1s 85.6%

 The best case value of £(80) 1s 45.7%



Exercise 5.1

97

Data sets \ print life. The “time” to failure 1s Pages.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What is the most likely value of £(10,000)?

c) With 95% confidence, what is the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.



Exercise 5.2 08

Data sets \ probe reliability. The “time” to failure is Hits.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What is the most likely value of F(200)?

c) With 95% confidence, what is the worst-case value of £(200)?

d) Save the analysis script, close and save the data table.



Exercise 5.3 99

Data sets \ field reliability. The time to failure 1s Days in field.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What is the most likely value of F(365)?

c) With 95% confidence, what is the worst-case value of F(365)?

d) Save the analysis script, close and save the data table.
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6 Categorical MSA Without Standards 101

[t 1s preferable to base nominal MSA on a set of items whose
true status is known (standards)

« With standards, we can determine the probabilities of passing
bad items and failing good ones

e (Creating standards can be difficult and time consuming

» Lacking standards, “% agreement within and between
appraisers’ can serve as a proxy for “% agreement with
standard”



Example 1

*'msa pass-fail no stds

Motes C:ADocuments and Se

Data sets \ pass-fail no stds

Session

Part

Insp A

Insp B

Insp C

/
/- 50 parts

[
oo

—

1 1 1P P P
2 2 1P P P
3 3 1P P P  Appraisers A, B, C
4 1 2|P P P
: - 2P B P « 3 inspections per part per
B 3 2P P P p perpartp
7 1 3[F E - appraiser
8 2 3|F - - : : :
g 3 3lF . . * Part 1s actually nominal, since
10 1 4/F - - part numbers are only
:; § : E E E identifiers without a numerical
* Columns (5/0) : : .
4 Session 13 1 5IF . - relationship. Change by:
ik Part 14 2 5|F - a : :
ik Insp A 15 3 5[ . . » Right click on dnext to
ik Insp B 16 1 6P P P Part and Select Nominal, or
ik Insp C 17 2 6|P P F
18 3 B|F b P * Right click on field name
;g ; ; i i I': “Part” > Column Info >
21 3 7lp e o Data Type = Character
22 1 B|P P F
73 7 alp P F * Please be aware that JMP
24 3 B|P P F is occasionally inconsistent
3: ; : E :; |E \. in its terminology
~Rows 27 3 gF F F .
All rows 150 1 nlp =] =]




Agreement within & between appraisers

| Session

Part

WO | (00|00 |00 |~ |~~~ |@™(@D|h|th|h |& | A|AW(W|[W|K K |K|—=|=|=

[im]

—_
=

—
=

-
=

—
—

—
-

—
-

—
kJ

L T e i o T W o T TP O o O o o T o W e e O W e T W T o W P o T T A o R S T A O o R % T

=i
]

MMM o| D0 o Do mm|mn D0 oDD o oDmolmogpn|mmmmmnmmmn 0| 0|0 0|0|0

MMM o| D0 o Do mm|mn D0 oDD o oDmolmogpn|mmmmmnmmmn 0| 0|0 0|0|0

M|DMIO| D0 oDomn Mmoo ooDmopmTmogn|mmmmmnmmm 0| 0|0 0|0|0

—_
[

* 100% agreement

36 opportunities for pairwise agreement
* 16 pairwise agreements
* Agreement = 16/36 = 0.444

36 opportunities for pairwise agreement
8 pairwise disagreements
* Agreement = 28/36 = 0.778



Analyzing a categorical MSA without standards

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns Cast Selected mns into Koles Action

dSession [vﬁespmnse [ QK J
[ Cancel J
| Standard || options Remove
Fecal
Help
| Freq |
L8y |

Enter Haters as separate columns




Agreement report 105

Gauge Attribute Chart

100

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

% Agreement

123 45|67 8&|9 1011121314 15/16|17|18|19 2012122 23 24| 25|/26|27| 28|29 30/31|32/33 34|35/ 36(37|38(39 40/41 4243 4445/ 46(47|48 |49 50
Part

* Plot of the agreement percentages for
the items in the study

* It is helpful to rescale the vertical axis

* See next slide



Agreement report (cont'd)

106

Gauge Attribute Chart

% Agrearnent

llllll

LR LI L B = R = e B |
Lo B 5 B e R 5 R e B ¥ |
[

= =
LN

1 2345 6|7 8|9 /(10/11|12(13/14/ 15161718 19 20|21 22 23|24 25 26|27 28 29/ 30/31|32(33 34|35/ 36/ 37|35/39/ 40|41 42 43|44, 4546|4748 49 50
Part

* The horizontal dotted line marks the “"agreement grand mean”

* In this example, the agreement grand mean is a little over 90 (read off graph)

* Nowhere in the report is this number printed — bad JMP!

* If the agreement grand mean is too low, follow-up should focus on the items with
the lowest % agreement

* There are no recognized standards for the agreement grand mean. A lower bound
of 95% is fairly common. 99% is often used in applications involving safety.



Agreement report (cont'd)

107

96
94-
92- Ry

* These are the agreement percentages
for each appraiser

904
8587
66
84
627

% Agreement

a0 Insp A Insp B /ﬂwsp C

Rater

/

/ * The appraiser with the lowest
percentage represents the greatest
opportunity for improvement

* Sometimes the smallest % agreement
among the appraisers is used as the
metric

—Agreement between & with/h raters
Agreement Report

* Percentage of items for which
agreement was 100%

05% 95%

Rater % Agreementé ower Cl Upper Cl

Insp A 0914286 895082 93.0248

Insp B 919048 900502 934388

Insp C 89.8085) &7.6057 91.6588

Number MNumber

Inspected Matched t Lower ClI
a0 29 0 G64.758

- This should not be used as a metric



Notes 108

Save the script, close and save the data table.

Agreement Comparisons:
Each rater compared to all others, using Kappa statistics

K = 0.9 - Good measurement system
K < 0.7 - Bad measurement system
0.7 < K < 0.9 » Marginal measurement system

Agreement across Categories:

Agreement in classification corrected for the amount of agreement which would be
expected by chance. Kappa assesses the agreement between a fixed number of raters
when classifying items.

When K= 1, perfect agreement exists.

When K = 0, agreement is the same as would be expected by chance.

When K< 0, agreement is weaker than expected by chance; this rarely occurs and
usually means that the appraisers have different definitions of the assigned
categories.



Example 2

Data sets \ application rating no stds

~ application rating no stds -
Notes C:\Documents and Se —_|Application | Session| Appraiser | Rating / \v
1 1] 1]Simpson 5 [ 15 employment applications
2 1 1| Montgomery 2 |
3 1 1|Holmes 5] . u
4 1 1|Duncan 4 * 5 appraisers |
] 1 1|Hayes 9 B
B 2 1| Simpson 2 . 2 . t. 1 t. B
7 2 1 [Montgomnery 7 Imspections per application B
8 2 1|Holmes 2 1
9 2 1|Duncan 1 pet appraisct B
10 2 1 |Hayes 2 ] ] . . u
11 3 1| Simpson 4 * Five point scale, higher 1s B
- Columns (4/0) 12 % 1| Montgomery 3 b etter u
i Application 13 i 1| Holmes 3 B
A Session 14 % 1| Duncan 3 B
ih. Appraiser 15 3 11Haves i—— ¢ Change Rating to nominal =
ik Rating <€ 16 4 1|Simpson 1 B
17 4 1 |Montgomery 1 .
18 4 1| Holmes i  For categorical MSA, we B
o e ;-\ must unstack this data tabl%
21 5 1| Simpson 3 N\
22 0 1 |Montgomery 3
23 5 1| Holmes 3
24 5 1| Duncan 2z
25 5 1|Hayes 3
R 26 B 1|Simpson 4
> ROWS
T 150 27 b 1| Montgomery 4




Unstacking a data table

lables — Split

. Split - JWMP

Select Columns

~ Arpplication
Aseszion
ppraiser
AR ting

Femaining columns
OkKeep Al

OCrop Al
[ ]select

[ Keep dialog open

' E’Tﬂ Unstacks multiple rows for each "Split Column' into multiple columns as
identified by a "Split By' column.

Split By 4

|:| . ]

[Split Columﬂs
Suciiasrl) |

[ Grgup(] Application
Session

optional

Qutput table name:

Aiction

k.

Cancel

Femove

. Fecal

| Help




Example 2 in required format

» Untitled 12 $~_ F
» Source = | Application | Session | Duncan | Hayes |Holmes | Montgomery | Simpson
1 1 1 4 5 4] 5 5
2 2 1 1 2 2 2 2
3 3 1 3 3 3 3 4
4 4 1 1 1 1 1 1
5 5 1 2 3 3 3 3
B B 1 4 4 4 4 4
[ 7 1 4 5 5 5 5
8 8 1 3 3 3 3 3
9 g 1 1 2 2 2 2
10 10 1 ) 5 4 4 4
' 11 11 1 1 2 1 1 1
;.T::Eﬁm] 12 12 | 2 3 3 3 3
4 Session 13 13 1 4] 5 4] 5 5
& Duncan 14 14 1 2 2 2 2 2
& Hayes 15 15 1 4 4 4 4 4
il. Montgomery 17 2 2 1 2 2 2 2
il. Simpson 18 d 2 3 3 4 4 4
19 4 2 1 1 1 1 1
20 5 2 2 3 8| 5 3
21 B 2 4 4 4 5 5
22 7 2 4 5 4] 5 5
23 8 2 3 4 3 3 3
24 g 2 1 2 2 2 2
25 10 2 3 5 4 4 4
| 26 1 2 1 2 1 1 1
+ Rows 27 12 2 2 3 3 5! 3
All rows 30 28 13 2 <] 5 <] 5 5




Example 2 (cont'd)

112

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns

il Application
dSession

k. Duncan
thHayes
thHolmes

il Montgormery
ik Simpson

Chart Type
Attribute

Cast Selected ns into Roles

Action

[?Respﬂns%DU”Ca” | QK |
Havyes
KHMS
= Femove
[ Standard | niiona Recal
[}{,Gmupiﬂg ik Application Help

[ Freq |
L sy |

Enter Raters as separate columns

Reminder of how
data needs to be

formatted




Example 2 (cont'd)

113

Gauge Attribute Chart

100 .
05 f\
90 [
85 [
80 [
75 [ ]

! |1 )
._":l ---------- I----J| -------- _.'-“-."._ ----------- | H
| i 1 |
1 i L1 |

65 ] |
554 4\ |
50
45
40
35

%6 Agreement

112345 0|78 9(1011/12(153 14|15

Application

a0
85

50 M

75 _
70 o«
65

60

55

50-

45
40

%6 Agreement

Duncan
Haye
Haolmes

Rater

—Agreement between & within raters

Moantgormery

Sirmpson

* The agreement grand mean is about 71
— way too low

* Follow-up: focus on application 1, 3 and

10

* Greatest opportunity for improvement:
further training of Duncan and Hayes

Agreement Report

95% 95%

Rater % Agreement Lower Cl Upper Cli

[ Duncan 49.8039] 27.2673  72.4205

Hayes 69.0196 ) 43.9053 86.3784

Holmes 79.2157 53.9935 92.5247

Montgomery 77.2549 51.9716 91.4246

Simpson 74.9020 49.5997 90.0500
Number Number 95% 95%
Inspected Matched W Lower Cl Upper Cl
15 4 26. 10.897 51.950



Notes 114

Save the analysis script to the data table, close and save the data table as:

application rating no stds unstacked



Exercise 0.1 115

Data sets \ print samples 1 no stds. In this study 3 appraisers inspected 18 print
samples 3 times each.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

c) Which sample(s) would be most useful in follow-up?

d) Of the 3 appraisers, which has the highest % agreement? What 1s the highest %
agreement?

e) Save the script, close and save the data table as print samples 1 no stds unstacked.



Exercise 6.2 116

Data sets \ print samples 2 no stds. This is the follow-up study after the appraisers
received additional training.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

c) Of the 3 appraisers, which has the lowest % agreement? What is the lowest %
agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.



7 Comparing Populations — Continuous Y 17

* Example of comparing populations

* Analysis of variance (ANOVA) for comparing
populations

* Interpreting P-values

* Degrees of freedom for signal and noise

s ANOVA in JMP



Notes 118

Y variables are characteristics of parts, products or transactions that determine
customer satisfaction, or lack thereof. They provide the data from which project
metrics can be computed.

Comparison of statistical populations 1s equivalent to Y = f(X) analysis where the X
variable is categorical. The distinct values of the X variable define the populations or
sub-populations to be compared.

JMP uses the term continuous for quantitative variables. Except in the DOE section,
JMP uses the term nominal for categorical variables.



Example of comparing populations 119

Data sets \ Anova 2 groups

Group

Data

Avg.

SD

A

2.8

2.6

2.9

2.7

2.75

0.129

3.1

2.9

3.3

2.8

3.2

| DWW | DT> > >

3.0

3.05

0.187

* We have two groups of data
* Could be a before/after comparison

* Could be a stratification analysis

* The sample means for the two groups are different

* Is this enough to conclude that the population means are different?



Example (cont'd)

3.4 4

3.2 - LY

3.1 ] / \ ] \\

3.0 - * J \ / ®
Data N 4
2.9 - o o v

]
!
28 1 @ ’ . ®

2.7 - A ! @

2.6 - ®

.25 [ [ [ [ [ [ [ [ 1

Group
* Plotting the data is helpful, but it doesn’t give a definitive answer

» How far apart do the sample means have to be before we can say
the population means are different?

« How do we take into account the scatter around the means?



ANOVA for comparing populations (1 of 6)

Group

o O O MW mm = I = I

LSSV?2 student files \ ANOVA two groups

Data

28
26
29
2.7
3.1
29
3.3
28
3.2
3.0

Difference

-0.13
-0.33
-0.03
-0.23
017
-0.03
0.37
-0.13
027
0.07

Group

-0.18
-0.18
-0.18
-0.18
0.12
0.12
0.12
0.12
0.12

| 012 |

Error

0.05
-0.15
0.15
-0.05
0.05
-0.15
0.25
-0.25
0.15

| -0.05 |




ANOVA (1 of 6, cont'd) 122

This worksheet shows all the calculations used to determine, based on the data,
whether or not the population means are different.

The first step is to calculate the Difference column by subtracting the grand mean
from the Data column. The Difference is then decomposed into Group (the “signal”)
plus Error (the “noise™).

The Group column captures the portion of total variation caused by the difference
between the sample means.

The Error column captures the rest of the variation, variously called the residual,
unexplained, or noise variation.



ANOVA (2 of 6) 123

LSSV?2 student files \ ANOVA two groups

A B C O E F 5 H J K L [\
Grand
Group Data mean Difference Group Error
A 2.8 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 2T 293 -0.23 -0.18 -0.05
B 3.1 — | 2.93 = 017 = 012 | + | 005
B 29 293 -0.03 0.12 -0.15
B 3.3 293 0.37 0.12 0.25
B 2.8 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 + 8




ANOVA (2 of 6, cont'd) 124

The Data column consists of 10 mathematically independent quantities. We describe
this by saying it has 10 degrees of freedom (DF).

The Grand mean column consists of 10 values, but they are all identical. This column
has 1 DF.

The Difference column contains 10 values, but they are mathematically constrained
to sum to 0. This column contains only 9 independent quantities, so it has 9 DF.

The Group column inherits the zero-sum constraint from the Difference column (it
must sum to zero), and 1t consists of only 2 distinct values. This column contains only
one independent quantity, so it has 1 DF.

The Error column has 8 DF, because DFs have to add up.

The DFs for Group and Error play a role in determining whether or not the
population means are different.



ANOVA (3 of 6) 125

LSSV?2 student files \ ANOVA two groups

A B C D E F G H | J K L I
Grand
Group Data mean Difference Group Error
A 2.8 293 013 -0.18 0.05
A 2.6 293 -0.33 -0.18 015
A 2.9 293 -0.03 -0.18 0.15
A 2.7 293 -0.23 -0.18 -0.05
B 3.1 — | 293 = 0.17 = | 012 | + | 005
B 2.9 293 -0.03 0.12 015
B 3.3 293 0.37 0.12 0.25
B 2.8 293 013 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 + a8
Sum of squares (S5) 8629 - 8585 = 0.441 = 0216 + 0225
Mean square (MS)| (SS/DF) 0.048 0.216 0.028



ANOVA (3 of 6, COnt’d) 126

The sum of squares (SS) is a measure of the magnitude of each column. It is the sum
of the squares of the values in a column.

The sums of squares for the Difference, Group, and Error columns are usually much
smaller than those of the Data and Grand mean columns.

The mean square (MS) 1s the statistically normalized measure (averaged, in a sense)
of the magnitude of each column. It is the SS for a column divided by the DF for that
column.

The mean squares for the Data and Grand mean columns play no role in determining
whether or not the population means are different, so the MS 1s usually calculated
only for the Difference, Group, and Error columns.



ANOVA (4 of 6) 127
LSSV?2 student files \ ANOVA two groups
A B C O E | F 5 H I J L [\
Grand
Group Data mean Difference Group Error
A 2.8 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 21 293 -0.23 -0.18 -0.05
B 3.1 — | 293 = 017 = 0.12 0.05
B 29 293 -0.03 0.12 -0.15
B 3.3 293 0.37 0.12 0.25
B 2.8 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 — 1 = 9 = 1 a8
Sum of squares (55) 8629 - B85BL = 0.441 = 0216 0.225
Mean square (MS)| (S5/7DF) 0.049 0.216 0.028
Fratiol (Group MSJ Error MS) 7.680




ANOVA (4 of 6, cont'd) 128

The Group MS measures the magnitude of the variation caused by the difference
between the sample means.

The Error MS measures the magnitude of the variation caused by everything except
the difference between the sample means.

The F ratio 1s the Group MS divided by Error MS. 1t 1s a signal-to-noise ratio.

The larger the F ratio, the stronger the evidence of a difference between the
population means.



ANOVA (5 of 6) 129
A B O E F H J L [\
Grand
Group Data mean Difference Group Error
A 2.8 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 2T 293 -0.23 -0.18 -0.05
B 3.1 — | 2.93 017 0.12 0.05
B 29 293 -0.03 0.12 -0.15
B 3.3 293 0.37 0.12 0.25
B 2.8 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 9 1 a
Sum of squares (55) 8629 —  BHES 0.441 0.216 0.225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028
F ratio| (Group MS/Error MS) 7680
F value| (Probability of an F ratio this large by chance alone) 0.0242




ANOVA (5 of 6, COnt’d) 130

The P-value 1s a probability calculation based on the F ratio, the DF for the Group
column, and the DF for the Error column.



Interpreting P-values

131

P-value

1.00

0.15

0.05

0.01

0.0001

Evidence that populations are different

Confidence level

or variables are correlated (CL)
None None
Some 85% < CL < 95%
Strong 95% < CL < 99%
Very strong CL > 99%




P-values (cont'd) 132

As shown above, the P-value has fixed reference values for interpretation.

The P value is inversely related to the F ratio:

> The smaller the P-value, the stronger the evidence of a difference
between the population means.

If there are 3 or more groups, the interpretation is:

> The smaller the P-value, the stronger the evidence of one or more
differences among the population means.



ANOVA (6 of 6) 133

A B C O E| F G H J K L vl
Grand
Group Data mean Difference Group Error
A 2.8 2.93 -0.13 -0.18 0.05
A 26 2.93 -0.33 -0.18 -0.15
A 29 2.93 -0.03 -0.18 0.15
A 27 2.93 -0.23 -0.18 -0.05
B 3.1 — | 2.93 = 017 = 012 | + | 005
B 29 2.93 -0.03 0.12 -0.15
B 3.3 293 0.37 0.12 0.25
B 2.8 2.93 -0.13 0.12 -0.25
B 3.2 2.93 0.27 0.12 0.15
B 3.0 2.93 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 + 8
Sum of squares (55) 8629 - B8bHBL = 0.441 = 0216 = 0225
Mean square (MS)| (S5S5/DF) 0.049 0.216 0.028
Fratio| (Group MS/Error MS) 7680
P value| (Probability of an F ratio this large by chance alone) 0.0242
Root mean square (RMS)| (Square roof of MS) 0.221 0.168



ANOVA (6 of 6, COnt’d) 134

The Root Mean Square (RMS) for a column 1s the square root of the MS for that
column.

The RMS for the Difference column (0.221) 1s equal to the usual standard deviation
of the data (STDEV function in Excel).

The RMS for the Error column (0.168) 1s the standard deviation of the noise
variation (error, residual, unexplained, etc.).

JMP uses the term Root Mean Square Error (RMSE) for the RMS of the Error
column.”

“Given that Statistics is a body of knowledge dedicated to quantifying and reducing
variation, the variation in statistical terminology is appalling.



Degrees of freedom for comparing populations 135

/ N = total sample size \

G = number of groups being compared

G-1
Q-G

* The Error DF 1s more important than the Group DF

DF for the group column

DF for the error column /

e It determines the accuracy of the predicted values
 Larger 1s better, 10 1s OK, bare minimum 1s 5

 When DF 1s mentioned without a qualifier, it always means Error DF



Exercise 7.1

136

LSSV?2 student files \ ANOVA three groups. Enter the appropriate numbers and

formulas into the white cells to produce an ANOVA for the data shown here.

w20 =] on M L RS =

P | = |=% |=k |=k |= |= |=% |=% |=x |=k
O D 00 (=] |gn M = W (R = S

A B C D E F G H I J K L
Grand
Group Data mean Variance Group Error

A 2.7
A 2.7
A 2.8
A 29
B 3.1

B 3.2 — = — +
B 3.3
B 3.3
C 26
C 2.7
C 2.7
C 2.8

Degrees of freedom (DF) - = = +

Sum of squares (55) - = = +

Mean square (MS) (S5 /DF)
F ratio (Group MS / Error MS)
F value (Probability of getting an F ratio this large by chance alone)

Root mean square (RMS)

(Square root of MS)

M

M



ANOVA in JMP 137

File - New — Data Table — Enter (or copy-paste) data as shown

F¥] Untitled 6 - JMP

File Edit Tables Rows Cels DOE Analyze Graph Tools View Window Help

HeEd LA a8 | b epiefBe R EE O EER

| = Untitled & P < =) -
(=l Group Data

1 A 27
2 A 27

(=l Columns (2/0) 3 |A 25
4 A 2.9

ik Group

4l Data °|B 31 .
6 B 3.2 From Exercise 7.1
7B 3.3
3 B 3.3
9 C 2.6

o 10C 27

gllrn;sd “§ 11 C 27

glecle

Excluded 0 12]¢ 28

Hidden 0

Labelled 0 -




ANOVA in JMP (contd)

Analyze — Fit Y by X — Set up as shown — OK

¥y FitY by X - Contextual - JMP Bic=—=

Distribution of ¥ for each X. Modeling types determine analysis.
- 5Select Columns - Cast 5elected Columns into Roles - Action
E" V, Response| | 4 Data [ ok |
dozta optional Concel |
Oneway % Factor "fm“?
‘ - QDOonal |
Block || optional Remave
Bivariate | Oneway Weight | optional numeric Recall
= m ;- Freq | optional numeric hileln
Logistic |Contingency By || optional
r h |
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Oneway Analysis of Data By Group

3.4

3.3+ C—
3.27 N
3.-1 _ "I.._..-' . i

o 3 \ Flying saucers'!

m s,

(i - - \ .
2.9 ; | _—— Upper cockpit
2879 1 Pl Upper body
2.6~ <= Lower body
25 , , - Lower cockpit

' A B C
Group

Saucers can fly horizontally

Population means are different ,
(ot 059 i) past each other with no contact
0 5 .
between their bodies
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Oneway Analysis of Data By Group

3.4
kD “Fly by" interval
37~ < j L for comparing
11- population means
@ 37
m
sl =N |
2-5‘-.-.-_':_""" ' —S=_ /X 95% confidence
274 e o interval for a single
5 G- = \/ population mean
2.5 Py I - I -
Group

Approx. formula for “fly by" interval:  Sample mean + 42 (RMSE / VN )

Approx. formula for 95% confidence interval:  Sample mean + 2(RMSE/\/E)

N = sample size for each group
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Oneway Anova
Summary of Fit a Standard deviation of ’rhe\
Rsquare 0.895833 variation about the fitted
AdjRsguare 0.872685 line (error, residual, etc.)

RootMean Square Errar [EI.D!EI1EE? RMSE - Smaller is better
Mean of Response 2.9 \* Has units of the Y var'iable/

Cbservations (or sum Wats) 12
Analysis of Variance
sum of
Source DF Squares Mean Square F Ratio Prob=>F
2 054500000 0322500 387000 (<0007
Error 9 0.07500000 0.008333
. Total 11 0.72000000 E"g@
Regression) » Indicates whether any of

the model ferms in the
regression are signhificant
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Oneway Anova
Summary of Fit
Rsguare 0895833
AdjRsquare (0.872685 —>{ Adjusted R?]
RootMean Sguare Error 0.091287
Mean of Hesponse 2.9
Cbservations (or sum Wats) 12
Analysis of Variance
sSum of
Source DF Sgquares Mean Square F|Ratio Prob>F
Group 2 0.64500000 0322500 337000 =0001*
Error 9 0.07500000 0.008333
. Total 11 072000000

2

a Proportion of the total variation in' Y that s )
caused by (“explained by") variation in X

- Larger is better

N Unitless .




How adjusted R? is calculated

143

Distributions
Data

Mean

2.9

Std Dev (0.2558409]

Summary Statistics

I

|

| |
2526272829 3 31323334

12

> STDEV |

!

|

Total variation
in the data

-

Proportion of Y variation NOT causedby X = (

Proportion of Y variation CAUSED by X =1 -

-

RMSE
STDEV

:

|

RMSE
STDEV

jz

|

= 0.872685 = Adjusted R’

0.091287

0.2558409

|
.

2
j = 0.127315

/
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Data sets \ number and size of defects. Max size 1s the area in square centimeters of
the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the
P value and interpret the result. (Ignore the ¢ Test section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

c) Give the value and the units of the RMSE i1n this example.

d) The RMSE is meaningful only if each group has roughly the same amount of
variation. Is this true in this case?

¢) Save your analysis script to the data table, close and save the data table.
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Data sets \ quotation process. Supplier business units (BUs) receive requests for
quote (RFQs) from customers. Account managers develop and submit the quotes.

TAT 1s the turnaround around time in days. The shorter the TAT, the happier the
customer.

a) Is the modeling type for BU correct? If not, change it to what it should be.
b) Test for differences among the BUs. Give the P value and interpret the result.
¢) Use the “flying saucers” to determine which BUs represent best practice.

d) What follow-up action should be taken?

¢) Save your analysis script to the data table, close and save the data table.
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Data sets \ alignment process. If the modeling type for Aligner is incorrect, change it
to what 1t should be.

a) Test for differences among the three aligners with respect to R dev. Give the P-
value and interpret the results.

b) Use the “flying saucers” to determine which aligner represents best practice.
(Smaller R dev is better.)

c) What follow-up action should be taken?

d) Save your analysis script to the data table, close and save the data table.
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Data sets \ casting dimensions. We want to reduce variation in the length of
cylindrical metal castings. The specification for Length 1s 600 = 1.5. The wax
patterns for these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Length. Give
the P-value and interpret the result.

b) Use the “flying saucers” to determine which machine represents best practice? (It
is helpful to draw a reference line at the nominal value. Right click on one of the
numbers on the vertical axis, select Axis Settings, use the Reference Lines tool. )

c) What follow-up action should be taken?

d) Save your analysis script to the data table, but don’t close the data table.
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We also want to reduce variation in the diameter of the castings. The specification for
Diam 1s 50 £ 0.75.

d) Test for differences between the molding machines with respect to Diam. Give
the P-value and interpret the result.

¢) Use the “flying saucers” to determine which machine represents best practice.
(Draw a reference line at the nominal value.)

f) What follow-up action should be taken?

g) For each of the variables Length and Diam, a certain proportion of the total
variation 1s caused by the difference between the machines. For which variable is
this proportion highest?

h) Save your analysis script to the data table, close and save the data table.
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Raw data | One part or transaction per row

Tabulated | Multiple parts or transactions
data | per row




Raw data example

Data sets \ quotation process
We want to compare the account managers in terms of % late
Analyze — Fit Y by X — set up as shown — OK

| guotation process [ < - Finance
Motes Chillsers\Russell Bo|| - Cuote Num | AcctMar BU Initial RFGQ | Month RFQ Cycles | review TAT | TAT==3 PO
1 6250012 19 6 06/02/2003 2003.06 1 Yes 2 Pass Yes
2 7250023 \¥, Fit ¥ by X - Contextual - JMP " (o] o e S
3 7250022 —
4 52950039 Distribution of ¥ for each X. Modeling types determine analysis.
5 5250040/ |- Select Columns Cast Selected Colurmns into Roles Action
6 7250011 | = |dcuote Num |¥, Response| | Ul TAT==3 | oK |
[ 7250025 IA::::tMgr aptiona
s = | Cancel |

] Ainitial RFQ
> Columns (10/0) Nominall Atonth | X Factor ||thAcctigr | Remove |
4 Quote Num 250033 LRFQ Cycles optiona

' ' Recall
‘I.Au:u:trﬂgr = Toe0024 ;_llr_:?nce review | Recall |
h BU 13 3250035 ' | Help |

4 Initial RFQ W TAT==3
4 Wonth 14 5250045 hreo | Black | optiona
15 32500049
ik RFQ Cycles || p———
‘Finance reviaw 16 2250010 I:[Iﬂtingenc'?' E| hed S L ST

[

A TAT 17 s250011 (||l = a0 | Freq ||optional numeric
h TAT=<=3 18 8250012 !

By optiona
ik PO 19 3250024 Bivariate | Oneway :|

20| 5250046 ik —
21 7250026 (= _f M-

22 8250013 Logistic |Contingency
23 3250037 4l [ -~




“Mosaic plot” for pass/fail data

1.00

0.75

0.50

TAT <=3

< Mosaic Plot
I u w L=a) —

— Lo o0

0.25

Fail

I Pass |

AcctMgr

Horizon’ral
[Tests ] dimension is
proportional
N DF -LogLike RSquare (U) to sample
837 21 32411285 0.0687 [P-Value] size
Test ChiSquare Prob>ChiSq K/
Likelihood Ratio 64.823 <.0001*
Pearson 62.018 <.0007*

* Very strong evidence of differences among account managers

* Who represents best practice?



“Control chart” for pass/fail data

152

 Red triangle (Contingency Analysis) — Analysis of Means for Proportions

Analysis of Means for Proportions

Upper

TAT==3- Fropartion Fail

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

.

I
B

!

1

-0.1

* “Flying saucers” are not available for pass/fail data

12 3|4

5'6'7'8'9"10"11"12"12"14 " 15" 16"17 " 18" 10" 20 " 21" 22

AcctMar

Detection

/ Limit
Vertical

uDL : o
dimension is
inversely
proportional
to sample
size

\A Lower

Detection
Limit

Avg=025

LDL

* Points outside the shaded region are significantly different from points inside

* AcctMgr 4 represents best practice (lowest failure rate)

* Find out what AcctMgr 4 1s doing, make 1t the standard

 Save your analysis script to the data table, but don’t close the data table
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a) Analyze TAT<=3 as a function of BU. Give the P-value and interpret the result. Is
there best practice? If so, where i1s it?

b) Analyze PO as a function of BU. Give the P-value and interpret the result. Is there
best practice? If so, where is it?

c) Right click on the PO header 1n the data table. Select Column Properties — Value
Ordering — Reverse — OK. This reverses the Yes and No positions on the PO
axis. Most people focus on the PO hit rate rather than the miss rate.

d) Analyze PO hit rate as a function of TAT<=3 . Give the P-value and interpret the
result.

¢) Save your scripts, close and save the data table.
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Data sets \ ATE data. If necessary, change the modeling types for part number (P/N)
and Tester.

a) Test for a difference between the part numbers (P/N) with respect to Result. Give
the P-value and interpret the results.

b) Test for differences among the testers with respect to Result. Give the P-value and
interpret the results. If significant differences exist, describe them. If possible,
suggest causes of the differences.

c) Test for differences among the P/N-Tester groupings with respect to Result. Give
the P-value and interpret the results. If significant differences exist, describe them.
If possible, suggest causes of the differences.

d) Save your scripts, close and save the data table.



Tabulated pass/fail data 155

Pass/fail data often comes in tabulated form

Each row may represent a

Production lot
Work order
Time period
Machine

Work center
Part number . ..

N N N X X

This format is perfect for plotting % defective

However, 1t 1s the wrong format for comparing
populations in JMP



Data sets \ out-of-box failures E

E:r;,l out-of-box failures - IMP
. o .
PIOTTlnq /o fa|| File Edit Tables Rows Cols DOE  Analyze Graph Teools View Window Help

- | cut-of-box fail.. [ { hd
1. Create a new column called B Source - Proces  Month @ Total | Fail M

. 1A 01/2003 3920 100 278
0 .
% Fail 2| A 02/2003 2667 70 2.62
3A 03/2003 2511 61 2.43
2. Define it by the formula 4 A 04/2003 2556 9 3.09
5 A 05/2003 1730 49 2.83
6| A 06/2003 2196 71 3.23
Fail - Columns (5/1) 7| A 07/2003 2190 68 3.11
¢« 100 & Process B A 08/2003 2342 56 239
T | 4 Month 0 A 002003 3261 08 3.01
ota
dl Total 10 | A 10/2003 2071 07  3.26
 Fai 11 B 11/2003 2803 45 161
3 To edit decimal ol Richt P I Fail b o 12 B 12/2003 4644 76 1.64
. 10 edit decimal places: R1g 13 B 01/2004 4547 75 165
click column — Column 14 |B 02/2004 4160 58 1.20
Info — Format to Fixed 158 03/2004 3353 28 0.8
. 16 |B 04,2004 2283 17 0.74
Decimal and Dec =2 17 |B 05/2004 2230 26 117
18 |B 06/2004 2799 27 0.96
4. Use Graph - Legacy - 19 (B 07 /2004 1800 36 2.00
20 | B 08/2004 2983 20 0.07
Overlay Plot to create the s
, 21 C 00,2004 4111 40 097
plot on the next slide ’;‘”l m:’; Ej 22 ¢ 10/2004 3372 30 0.89
elecie :
Evcluded 3 23| C 11,2004 4096 48 117
Hidden 0 24 | C 12/2004 5245 36 0.69
Lakelled 0
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Plotting % fail (cont'd)

Out-of-box failure rate by month

- - — B

.-

— 008k
—rO0ZiE |
—vOO0ark 1
—roociol
—vO0Z/G0
—roocren
— o020
—FO0Za0
—rO0Zrs0
—rO0creo
—FO0ZED
—rO0Zr20
—vO0arLo
—E00ZiE |
—EoodikL
— oot
—E00Ere0
—EOngren
—Eongrio
—E00grao
—E002rs0
—E00ZiF0

—E00Zren
—E00Zr2o

—E00Z 10

4.0

3.5

3.0

PaIlEd %

1.0

0.5

conérg

=

=

Month



Reformatting for comparing populations

1. Create a new

column called Pass
defined by the
formula

Total - Fail

2. Go to Tables —>
Stack

3. Use Fail and Pass
as the Stack
Columns

4. See next slide

F¥l out-of-box failures - JMP

Eile Edit Tables Rows Cols DOE Analyze Graph Teools Yiew Window Help
» | out-of-box fail.. D] 4 = -
b Source - Process | Month = Total Fail %o Fail Pass
1A 01/2003 3920 109 278 3811
2 A 02/2003 2667 70 262 2597
3 A 03/2002 2511 61 243 2450
4 A 04/2002 2556 79 209 2477
5 A 05/2002 1730 49 283 1681
6 A 06/2002 2196 71 223 2135
| Colurmns [6/1) 7 A 07/2003 2190 65 211 2122
i Process 8 A 08/2002 2342 56 239 2286
4 Month 0 A 00/2003 3261 08 301 3163
4l Total ;
e 10 A 10/2003 2971 07 326 2874
d s Fail & 11 B 11/2003 2802 45 161 2758
AT 12 B 12/2003 4644 76 164 4568
13 B 01/2004 4547 75 165 4472
14 B 02/2004 4160 5§ 139 4102
15 B 03/2004 2303 20 0.85 3364
16 B 04/2004 2283 17 074 2266
17 B 05/2004 2230 26 117 2204
18 B 06/2004 2799 27 096 2772
19 B 07/2004 1800 36 200 1764
> Rows 20 |B 08/2004 2083 20 097 2054
’;‘;'léf:”;z : 21 |C 09/2004 4111 40 097 4071
Excluded . 22 ¢ 10/2004 3372 30 0.89 3342
Hidden 0 23 C 11/2004 4096 48 117 4048
Labelled 0 24 | C 12/2004 5245 36 0.69 5200



Reformatting (cont'd)

rl__:,,l out-of-box failures stacked - JMP
6. Change the name of File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
the Data column to = | out-of-box fa... || < P e | ot | rat | roca | £
n - rsCess o dl esu e
Fr eq and the Label b Souree 1A 0172003 | 2020 Pass 3311
column to Result 2| A 01/2003 \ 2920 Fail 109
3 /A 02,2003 Pass 2597
4 A 02,2003 Fail 70
7. There are now two 5| A 03/2003 Pass 2450
£ h h 6| A 03,2003 Fail 61
rows tor each month. | Columns (6/0) 7 A 04,2003 Pass 2477
The Total and % Fuail ;E;z;fﬁﬂ 8 |A 04/2003 Fail 79
columns are no longer 4 Total J|A 0572003 Pass | 1681
S 10| A 05,2003 Fail 49
relevant, and may be ik Result 11 A 06/2003 Pass 2125
deleted. 4l Freq 12 A 06,2003 Fail 71
13| A 07,2003 Pass 2122
14 | A 07,2003 Fail 68
8. Save the new data table 134 08/2003 Pass 2280
. 16 | A 08,2003 Fail 56
as out-of-box failures 17 | A 09,2003 Pass 1163
stacked 18 A 09,2003 Fail 08
19 | A 10,2003 Pass 2874
20 | A 10,2003 Fail 97
21 | B 11,2002 Pass 2758
22 |B 11,2002 Fail 45
;:;| f‘:’;"; = 23 B 12,2003 Pass 4568
celocted ] 24 | B 12,2003 Fail 76
Excluded 0 25 |B 01,2004 Pass 4472
Hiiien a 26 | B 01,2004 Fail 75




Analyzing the data

Analyze — Fit Y by X — set up as shown — OK

~5Select Columns

> lProcess
Alonth
hResult

Contingency

‘L2

Bivariate

Cneway

5 L

Logistic

'Wir
Contingency

v |

th

~Cast Selected Columns into Roles

|"|“, Response

y

Distribution of ¥ for each X. Modeling types determine analysis.

ik Result)

optional
e —
| % Factor (s Process) Remove
optional —
Help
| Block || optional
|l Weight | | optional numeric




Data analysis (cont'd) ﬂ

Mosaic Plot

1.00 Tl .
* Very strong evidence that processes
0.751 A, B, and C do not all have the same
= failure rate
o 0.504 Passed
(il
0.25- * The mosaic plot does not help us
determine where the differences are
0.00- . = c =
Process

_ Click on the red triangle at the top of
Contingency Table

Resul the analysis window
Court |Failed |Fassed
Row %
A ThE8 25586 26244 .
- 288 9712  Select Analysis of Means for
o B 418 21224 31642 .
g 132 9868 Proportions
oC 154, 16670 16824
092 49908
1330 723480 74810 .
* See next slide
Tests
N DF -LogLike RSquare (U)
74810 2 14117363 0.0211

Test ChiSquare Prob=ChiSg
LikelihoodRatio  282.347  (=.00019)
Fearson 291.850 = 00U T*



Data analysis (cont'd) 162

Analysis of Means for Proportions

0.020+

L]
]
Lak}
= 0.0257
L
 —
=
E 0.020 _ \ LUDL
= Avg=001778
(1
L 0.0157 l LDL
@
T 0.010-

a | |

A B C

Frocess

a=0.05

» This plot shows that Processes B and C are significant improvements over Process A
* It does not tell us whether or not C is a significant improvement over B
» Save your script, but don’t close the data table.

* You may prefer to display the Result as Proportion Passed: Click on Red Triangle by
Analysis of Means for Proportions and select Switch Response Level for Proportion



Exercise 8.3 163

a) Exclude the rows for process A.

b) Test for a difference between C and B. Give the P-value and interpret the result.

c) Close and save the data table. (No need to save the script again.)



Exercise 8.4 164

Data sets \ molding process - stratification.

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables — Summary — use PN as the Group variable — use Machine as
the Subgroup variable — OK.

- |10/0 PN NRows N({01) N{02) N{03) N{09) N{10) N{11) N{13) N({14) N(15)
1 GV00o9s 43 0 0 0 0 0 0 0 11 32
2 GV0101 31 0 0 0 30 0 0 0 1
3 GV0119 42 3 0 39 0 0 0 0 0
4 | GV0129 89 0 0 0 0 0 0 88 1
5 GV0132 64 0 b4 0 0 0 0 0 0
b GY0251 37 0 0 0 0 17 20 0 0
7 GY0298 31 0 0 0 24 7 0 0 0 0
& GY0306 53 0 0 0 0 27 26 0 0
9 GY0325 36 1 0 0 0 34 0 0

10 | KU0041 84 83 1 0 0 0 0 0

c) Note that each part number runs on only one or two of the machines. A
comparison of part numbers could be biased by differences among the machines,
and a comparison of machines could be biased by differences among the part
numbers. Because of this, we should use the concatenated variable PN-Machine
as the X variable in the analysis.



Exercise 8.4 (cont'd) 165

d) Reformat the data for comparing populations (follow steps 1 through 7 in the
worked example).

e) Test for significant differences among the PN-Machine groupings with respect to
fraction defective. Give the P-value and interpret the results.

f) Which three PN-Machine groupings would be the best focus for an improvement
project? (Hint: highest fractions defective.)

g) Save your script, save the data table as molding process - stacked, then close it.
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Appendix: Reformatting Data for Pareto Analysis 167

« Data on defect types or failure reasons often is available
only in tabulated form

e Each row may represent a production lot, work order, time
period, machine work center, part number, . . . , or some
combination thereof

 Common problem with tabulated data: wrong format for
Pareto analysis



Big example: molding process - Pareto

[Each row = Date, Machine, P/N, . .. } [Total parts run = Good + Bad }
A (8- D E F G H I J
Primary Regrind Parts Total
1 Date Machine P/N Primary material lot# Concentrate Concenlot# type palletized defective
2 | 03-Apr-06 9 LSGV0101 CHEIL VE-1877S DrkGry 121642  NA NA 25 120 7
3 | 03-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA MNA, NA 300 17
4 | 03-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA MNA, 8 372 18
5 | 04-Apr-06 2 LSGV0093 CHEIL VE-1877S DrkGry 121642  NA NA 25 288 6
6 | 04-Apr-06 9 LSGV0101 CHEIL VE-1877S DrkGry 121642  NA NA 25 600 2
7 | 04-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200  NA MNA, MNA 690 33
& | 04-Apr-06 13 LSGY0307 CHEIL HF1690H LtGry 133232 NA MNA& MNA 160 8
9 | 04-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA NA 8 624 0
10 | 05-Apr-06 2 LSGV0102 CHEIL VE-18775 DrkGry 121642  NA MNA, 25 120 15
11 | 05-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA MNA& MNA 650 21
12 | 05-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 101200 NA NA NA 300 18
13 | 05-Apr-06 13 LSGY0307 CHEIL VE-1877S LIGry 133232 NA MNA, MNA 160 0
14 | 05-Apr-06 14 LSGY0308 CHEIL HF1690H LtGry 133232 NA MNA& MNA 240 25
15 | 05-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA NA 8 336 17
16 | 06-Apr-06 2 LSGV0102 CHEIL VE-18775S DrkGry 121642  NA MNA, 25 780 0
17 | 06-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA MNA& A 600 7
18 | 06-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 101200 NA NA NA 500 49
19 | 06-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122030  NA MNA, 8 108 34
20 | 06-Apr-06 15 LSGV0099 CHEIL HF1690H DrkGry 122930  NA MNA 8 276 95
21 | 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642  NA NA 25 300 0
22 | 07-Apr-06 2 LSGV0102 CHEIL VE-18775S DrkGry 121642  NA MNA 25 1020 5
23 | 07-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA MNA A 360 6
24 | 07-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 387487 NA NA NA 200 16
25 | 07-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 387487 NA MNA, MNA 700 7
26 | 07-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122930 NA MNA 8 72 0
27 | 07-Apr-06 14 LSGV0131 CHEIL HF1690H DrkGry 122930  NA NA 8 120 17
28 | 07-Apr-06 15 LSGV0099 CHEIL HF1690H DrkGry 122930  NA MNA, 8 180 0



Big example (cont'd) 169

[ Total defective x Cost per pc. }

)

K L M N O P Q R 3 T u v W i Y Z AN
Cost per Total |Start- Weld Flow Short Burn Gas Color/ Broken
1 pc. cost up Sink Flash line mark shot Warp marks Silver marks carbon Oil part Scratches Bubbles
2 289 32025 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0
3 3508 38643 4 0 0 0 0 4 0 0 0 0 0 0 0 0 9
4 $11.10 $199.76 0 0 0 0 0 6 0 0 12 0 0 0 0 0 0
5 3269 ¥16.12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 32.89 $5.79 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
7 $5.08 $167.77 0 4 0 0 0 2 0 0 0 0 0 0 0 2 0
8 $3.55 32844 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 $11.10 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3413 $62.00 6 6 0 0 0 3 0 0 0 0 0 0 0 0 0
11 $5.08 $£106.76 0 17 0 0 0 3 0 0 0 0 0 0 0 0 1
12 $496  $89.28 8 0 0 0 0 0 0 0 0 0 0 0 0 1 9
13 $3.55 $0.00 0
BN $c.07 $334 3¢ Counts for each type of defect 0
15 $11.10 $188.66 U U U U U TZ U U 5 U U U U 0 0
16 $4.13 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 $5.08  $35.59 0 2 0 0 0 4 0 0 0 0 0 0 0 1 0
18 $496 $243.04 3 15 0 0 0 0 0 0 0 0 0 0 0 4 27
19 $1033 $351.07 8 0 0 0 0 14 0 0 12 0 0 0 0 0 0
20 $14.19 $1,347.62 56 30 0 0 0 0 0 0 9 0 0 0 0 0 0
21 $4.13 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 $4.13 $20.67 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 $5.08  $3050 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2
24 496  §7936 0 14 0 0 0 0 0 0 0 0 0 0 0 1 1
25 $496  $3472 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
26 $10.33 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 $1515 $257.56 8 0 0 0 0 0 0 0 1 0 0 8 0 0 0
28 $14.19 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Notes 170

One of the things we would want from a data set like this 1s a Pareto breakdown of
defect types by frequency of occurrence. For this, we need to calculate the total
number of defective parts for each defect type. With the format shown above, we
cannot do this by means of a pivot table. As an alternative, we could calculate the
totals for the columns representing the defect types. However, compared to a pivot
table, this method 1s extremely tedious for doing anything else, such as comparing
Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this is a Pareto breakdown of defect
types by total cost. It 1s not impossible to do this with the format shown above, but,
once again, it would be extremely tedious compared to a pivot table.



Small example

Open molding process - small (in IMP)

w- {10 Cols =
+ 30 Raws— | 10tal defective | Cost per pc. | Total cost | Start-up | Short shot | Silver |Bubbles
1 7 3 21 3 0 4 0
2 17 5 85 4 4 0 g
3 18 11 198 0 6 12 0

. . T v 410 Caols -

This 1s what we have ~ 1210 Costperpc.| Defect Freq |Total cost
1 3 | Start-up 3 9
gl 3 | Short shot 0 0
3 3 | Silver 4 12
4 3 Bubbles 0 0
. 5 5 | Start-up 4 20
This 1s what we need — - r—— . N
i 9 | Sikver 0 0
8 9 Bubbles g 43
g 11 | Start-up 0 0
10 11 | Short shot 5 b6
11 11| Sibver 12 132
— How do we get there? L 11 {Bubbles 0 :




Stacking a data table

Tables — Stack — Select the defect columns as the Stack Columns

Stack wvalues from several columns into several rows In one

column.

Select Columns Action
ATotal defective ESta-:k Columns | | Start-up Ok
A Cost per pc. Short shot
ATotal cost | Remove Silver Cancel
AStart-up Bubbles
AShort shot andional

. : Recall
ASilver
ABuhbles Qutput table name: Help
[] Multiple series stack New Column Names
Stack By Row Stacked Data Column| Data
[] Eliminate missing rows Source Label Column| Label

|| Drop non-stacked columns T
Suppress formula evaluation

[] Keep dialog open

172



Editing the columns

':Qﬁaaﬁ-
| Total defective | Cost per pc. | Total cost

1210

Labe

Data

i 21

Start-up

i 21

Short shot

i 21

Sikver

i 21

Bubbles

17 85

Start-up

17 85

Short shot

h|Ch | Ch | 0D ) QD | 0D | LD

17 85

Sikver

=~ ® || & Wk | —

17] : 85
g 18| 1] 198
10 18 11 198

Bubbles
Start-up
Short shot

11 18 " 198

Sikver

—

12 18 1" 198

Bubbles

oK mo o o A LA O B D W

Total defective and Total cost are
now incorrect row by row

0 39 N N b W N

. Right-click on Data
. Select Column Info

. Rename as Freq — OK

. Right-click on Total cost

stacked.xls

. Rename Label as Defect type
. Delete Total defective

. Save as molding data small

. Select Formula — Cost per pc.*Freq

A ?"'5 “| Costper | Total | Defect

~120 | PC. cost type Freg
1 3 4 | Start-up 3
2 3 0| Short shot I
3 3 12 | Sikver 4
4 3 0 | Bubbles 0
5 9 20 | Start-up 4
B 3] 20 |Short shot A
[ 2 0| Sikver 0
8 5] 45 Bubbles 2
9 11 0| Start-up I
10 11 66 | Short shot i
11 11 132 | Sikver 12
12 11 0 |Bubhles I




Pareto plot by frequency 17:

Analyze — Quality and Process — Pareto Plot — set up as shown — OK

-
[ Pareto Plot - JMP = | B ||
The Pareto Chart of Cause, optionally grouped by X li... Untitled 4 - Pareto Plot of Defect type - JMP L:' M
-5elect Columns - Cast Selected Columns into Roles 4 = Pareto Plot
— = | Fareto
I_L'Jr:glumns | 1|'r' Cause ‘ Defect t'_p"pE FrEq: FrEq
ost per pc. _ —
dllTotal cost |K, Grouping || cptional 4 Plots
WhDefect type 20
] | Weight optional numeric

"] Threshold of Combined Causes > Freg 1 freg
("] Per Unit Analysis
(requires sample size)

15

:

optional

Freg

10

Silver Shortshot  Bubbles Start-up
Defect type

2 O




Pareto plot by total cost

[ Pareto Plot - JMP EMW

The Pareto Chart of Cause, optionally grouped by X [i... Untitled 4 - Pareto Plot of Defect type 2 - JMP
-5elect Columns - Cast Selected Columns into Role — —
- 4 = |Pareto
™4 Columns —
ost per pc.
|}=L Emuping| optional < Plots
WhaDefect type 200
dFreq TP Weight {| Total cost
|| Threshald of Combined Causes | Freq | optional numeric
"] Per Unit Analysis | By | optional 150
(requires sample size)
=
3 100
U
50
0
In Thls case The two pIO‘I's Silver Short shot  Bubbles Start-up

Defect type

are very similar

S O




Cost Pareto without calculating the total cost column

,,
(i~ Pareto Plot - JIMP o | O )

The Pareto Chart of Cause, optionally grouped by X [, Untitled 4 - Pareto Plot of Defect type 3 - JMP E
-5Select Columns - Cast Selected Columns into Roles .
14 Columns ik Defect type A = Pareto Plot
@ P Weight: Cost per pc.

dlCost per pc
AlTotal cost \ |K_ Grouping|| cotional Freq: Freq
4 Plots

WhDefect type

dlFreq \ \[&Weight Cost per pc. 200
|| Thresheold of Combined Cause? |2 Freq Freg

|:| Per Unit Analysis T
| By optional . —

(requires sample size)

o

£ 100

50

Silver Short shot  Bubbles Start-up
Defect type

28 O




Exercise: Appendix 177

Data sets \ molding process - Pareto.

Use the method described 1n this section to reformat the file for Pareto analysis. Save

the reformatted file as molding process - stacked. Create Pareto plots of defect types
by frequency of occurrence and total cost.
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Regression



1 Introduction to Regression 179

Regression analysis is used to create an empirical model of the
relationship between process inputs (x’s) and outputs (y’s).

» It is the method for analyzing designed experiments.

» It can also be used with historical data to help identify some
factors for an experiment, or to develop an empirical model
with that data.

Topics:

* Terminology
* Purposes of regression analysis
* Data collection for use in regression analysis

 The line of best fit

e Simple Regression



Terminology 180

* The term correlation 1s often used any time we speak of relating one variable
to another

o Correlation is a measure of the relationship

o An input/output relationship between the two variables is not required
(for example, two variables measured at the same point in a process)

o As aresult, unrelated things can be “correlated.” Remember,
correlation does not prove causation.

* Regression analysis yields a model equation of the input-output relationship,
Y =/ (X), which can be useful in prediction

o In the dataset, a series of inputs and their resulting output measures
are aligned

o Regression is used to investigate and model the relationship



Purposes of regression analysis 181

The result of regression analysis is an empirical
model, created from the data/observations, that can
be used to:

* Understand and describe the relationship between Y
and X’s

* PredictY from X’s
* Determine best setting for X’s (optimization)

* Reduce variation in Y by controlling X’s



Data collection for use in regression analysis 182

Regression analysis is only as good as the data used.

Three basic sources of data are:
- Historical data (data that exists in routine collection systems)

- An observational study (data collected from uncontrolled processes for a
specific purpose)

« A designed experiment (data from structured and controlled tests)

Regression analysis is a very big statistical topic and is commonly the
analysis type for data from all three sources listed above.

Designs of experiments (DOLEs) is the best strategy for many problems we
are trying to solve as it 1s constructed to eliminate many of the problems that
exist with the first two sources. However, historical and observational data
1s often easier to get and can still give powerful insights, although care must
be taken with the analysis and conclusions drawn.



Considerations when using historical data 183

Historical data is often plentiful and easily accessible.

- It may be useful in identifying some variables that are critical to our process

However, there are several potential issues in using it:

- Some relevant data 1s not available, such as values of critical x’s that are not
recorded as part of the on-going process

- Reliability of the data is often questionable, including data being missing or
lost

- The nature of the data 1s not helpful in solving the problem, as in situations
when an x variable 1s controlled, so its impact cannot be seen in the
regression analysis

«  Often, data 1s used in ways that were not intended, such as using available
data as a surrogate for what was really needed

Caution: We will not be able to cover the many aspects of creating and
validating regression models from historical data in this course. If you
choose to do this, proceed with caution! Better yet, get additional help.



Considerations when using an observational study 184

In an observational study, we would observe the process,
with as little interaction or disturbance as possible, in order
to obtain the data.

With adequate planning, an observational study can yield accurate,
complete, reliable data

These studies can lead to ideas on what might be impacting the
process

However, these studies often provide limited information about
specific relationships of interest, such as the impact of a variable that
1s tightly controlled in normal operation



“Simple” regression

185

Simple linear regression refers to the case when there is only

one regressor (variable) x used.

In simple regression, the model equation is for a best-fit line

The form of the model equation created is:
Y = by + byxq + error

where by is the intercept and b is the slope of the line.

This may remind you of your early algebra days, when you learned
the equation for a line between two points:

Y=mx+b>b

Because there is variation (and more than two points to create the
line), there will be scatter around the best-fit line determined by
regression analysis.



Simple regression (cont'd)

Intercept Slope
\ \

Y =0.8387 +0.4891 X + “Error”
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The line of best fit 187

The best-fitting line 1s the one that minimizes
the sum of the squared “errors”

50
45
40
35

30
25

20

15
10

0 20 40 60 &0 100



The line of best fit (cont'd) 188

e “KErrors” are the vertical distances between each Y data
value and the fitted line

 The line of best fit is the one that minimizes the sum of the
squared errors

 This 1s the simplest example of least-squares model fitting

 The fitted line 1s often referred to as the predicted Y value



Finding the line of best fit 189

LSSV?2 student files \ ANOVA linear fit
Worksheet \ Prediction & error 1

A E |C/ D E F G H | J KL b N O P
1
o X data Y data Prediction Error Y =(27.9033(+|0.0000|X
3 8 6.16 27.90 -21.74
4 22 9.868 27.90 -18.02
3 39 14 35 27.90 -13.55
B 40 24 06 27.90 -3.684
7 af 3034 - 2790 * 244
§ 73 3217 27.90 427
: 78 4218 27.90 14 28
10 a7 4323 27.90 15.33
11 98 48.76 27.90 20 .86
12 Sum of squares (S53) 89013 = 70074 + 18939
13 Degrees of freedom (DF) 9 = 1 + 8
14 = Root mean square error (RMSE) 15.39
15
16 AverageY 2790

17 SIDEVofY 1539



Finding the line of best fit (cont'd) 190

In this worksheet we ignore the X variable completely, and use the average
value of Y as the prediction. This 1s just the calculation of the mean and
standard deviation of the Y variable. (The values in cells 114 and E17 are the

same.)
>0

45
40
35

30 .

25 &
20

15 .
10 .

5
0 20 40 &0 80 100

The sum of the squared errors (cell I12) can be dramatically reduced by using
the X variable to “explain” more of the variation in the Y variable.



Finding the line of best fit (cont'd) 191

Worksheet \ Prediction & error 2

A E C D E F G H J KLl M N O P
1
5 X data Y data Prediction Error Y =|0.8387|+|0.4891 (X
3 8 6.16 475 1.41
4 22 9.88 11.60 172
5 35 14 35 17.96 -3.61
G 40 24 06 20.40 3.66
7 af 3034 — 2672 * 1.62
§ 73 3217 36.54 4 37
g 78 4218 38.99 3.19
10 ar 4323 4339 016
11 98 4876 A 77 -0.01
12 sum of squares (S5) 89013 = 88360 + 63.3
13 Degrees of freedom (DF) 9 = 2 + 7
14 = Root mean square error (RMSE) 3.007
15
1? S%gi@;i ?;gg /[ Propor‘rli'on of .’ro’ral Y”var'ia‘riqn gaused ]
g Adiusted R square  0.962 by ("explained by") X variation

19



Degrees of freedom for regression 192

~

4 N = total sample size

G = number of parameters in the equation
= DF for the prediction column
N-G = DF for th lumn
Q or the error co Y

e The Error DF 1s more important than the Prediction DF

e It determines the accuracy of the predicted values

 When DF 1s mentioned without a qualifier, it usually means Error DF



Steps in Simple Regression 193

1. Run Analyze > Fit Model in JMP to investigate the
relationship between y and x

2. Check the p-value for the fit to determine whether the
regression 1s significant. If not, then no need to go further.

3. If the regression 1s significant, determine the strength of the
relationship, using the Adjusted R?

4. Check model adequacy by reviewing the residuals plots
> Residual Normal Quantile Plot
> Residual by Predicted Plot
> Studentized Residuals (in run order)

We’ll go through these steps and additional analysis details,
for simple regression in the following example.



Simple Regression in JMP

Open: Data sets \ simple regression - generic

Hidden
Labelled

O O O O W

(R R
File Edit Tables PRows Ceols DOE  Analyze Graph Tools Yiew Window Help
(=l simple regression - generic 7 E =)

[l X Y
1 g 6.16
2 22 9.88
3 35 14.35
4 40 24.06
5 57 30.24
3} 73 3217

All rows ! 18 4218
Selected 8 &7 43.23
Excluded 9 08 48.76

evaluations done




Simple Regression in JMP (cont'd)

Analyze — Fit Model — Set up as shown — Run

4= Model Specification

-Pick Role Vanables

- Select Columns
> 2 Columns

‘Jx
ay

Y Ay )

optional

Crweow L SRS e

Personality: |5tandard Least Squares

T |

Emphasis: | Minimal Report

l{i_‘ll eight || ootional numeric

Hel

Freq optional numeric

By optional

Recall

Remove

Ile

T |

L Run D

| Keep dialog open

- ConstNct Model Effects -
Add _-‘*Q/

Cross

Mest

Macros *

Degree 2
Attributes [
Transform =/
] Mo Intercept




Analysis details 196

ResponseY

Regression Plot

50 . ﬁf he Root Mean Square Erroﬁ

ji . * (RMSE) is the standard

15 deviation of Y caused by factors

L 30 o " other than X

25 .

50 * It can be thought of as the

15 ; standard deviation about the

12 o fitted line (or model)

= & F & &8 = * Also known as the “error” or
X “residual” standard deviation

Summary of Fit Qmaller 1S better /
RSquare 0.966581
RSquare Adj 0.961807 /
Root Mean Square Error 3.006984 K
Mean of Response 27.90333 /, P-value indicates \
Chbservations (or Sum Wats) 0

whether the regression

Analysis of Variance ...
Y is significant

Sum of
Source DF Squares Mean Square  F Ratio e This low p—Value shows
Model 1 1830.6557 183066 202.4624 cle e
Error 7 63.7927 9.04 \ that 1t 1s significant /
C. Total g 1893.0404



Analysis details (cont'd) 197

Summary of Fit R2
RSquare [ 0.966581 | “Coefficient of
RSquare Adj 0.961807 Determination™
Root Mean Square Error 3.006084

Mean of Response 27.90333

Cbservations (or Sum Wats) g

Analysis of Variance

Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1830.6557 183066 2024624
Error 7 63.2037 504 Prob=F
C. Total g 180930404 <.0001"

h 4

/° Proportion of the variation in Y that\
1s “explained by” variation in X.

e Varies from 0 to 1.

 Larger is better

& Unitless /




Analysis details (cont'd)

198

Regression Plot

50
45
40
35
30
25 .
20
15 .
10 .
5| ®

o o |
=

40

Summary of Fit

G0
g0
100

ESquare 0.0966581
RSguare Ad| 0.961207
Root Mean Square Error 3006084
Mean of Response 27.90333
Observations (or Sum Wagts) g

Analysis of Variance

Sum of
Source DF Squares
Model 1 1830.6557
Error 7 63.2037
C. Total g 18930404

Mean Square  F Ratio
183066 202.4624

804 Prob=F

Adjusted R? also gives us
the proportion of Y variation
explained by the model (a
line in simple regression)

Varies from 0 to 1
Larger 1s better

Always use the Adjusted R?
value, not R?

Adjusted R? takes the
number of model terms into
account and penalizes for
including insignificant terms

In this example, the simple
regression model explains
much of the variation in Y.




How R? and R%4; are calculated 199

Distributions
Y

Summary Statistics

MMean
Std Dev
M

Binirum B.16
M axinum 48,76
MMedian 3034

> 10 15 20 25 30 35 40 45 50

/ R2 =1 SSError \

SSTotal

Standard Deviation (STDEV)
of the data set

2

RZ  —1_— SSError/(n _ P) —1— RMSE
AdJ SStotal/ (M — 1) STDEV

p = number of terms in the model (including the intercept)

n = sample size (number of measurements in the data set)

SStotar 18 the sum of squares of the data (measurements in the data set)

SSError 18 the sum of squares of the Errors or residuals

\ We saw the sum of squares calculations earlier, in the ANOVA /




Why use Adjusted R?? 200

There is a potential problem with R*:

R? always increases when terms are added to a model, even when the
terms are not significant

This is particularly a problem in multiple regression, as it can lead
to “overfitting,” giving false confidence in using the model, especially
for prediction.

Adjusted R? corrects for this by considering the number of terms in the
model

Adjusted R? can actually decrease if non-significant terms are added to
a model

Adjusted R? is the recommended statistic for determining the
proportion of variation in Y explained by the model




P-values for the ANOVA and individual model parameters 201

Red triangle next to Response Y — Regression Reports — Parameter Estimates

* Inregression of Y on a single X,

Analysis of Variance the Analysis of Variance P-value
Sum of 1s the same as the P-value for
Source DF  Squares MeanSquare F Ratio the slope of the line.
Model 1 1830.6557 1830.66
Error 7 62.2037 0,04 Prob > F lT,he P—}alue fOll; the ,3(110136 Oftfhe
 Total 8 180320494 1ne 1n 1.cates the evidence of a
correlation between Y and X.
Parameter Estimates * Significance of individual
Term Estimate 5td Error t Ratio Prob>|t| moc.lel ter;nshare lcllej[ermmed by
Intercept  0.8386661 2.150023 0.3  0.7081 testing whether their regression
¥ 0.4891205 0.024375 14.73 coefficient 1s equal to 0, using
| | | | the t statistic. Hypotheses are:
HO: bi =0
Hl: bl == 0

 This is a test of the contribution
of the model term, given the
other terms in the model.



P-values for individual model parameters 202
Parameter Estimates
Term Estimate 5td Error t Ratio Prob:|t
Estimates and P-values for Intercept 0.8386661) 2.150023  0.20
the slope and intercept X 0.4891205) 0.034375 14.23

Model: Y = 0.84 + 0.50X + error

* In this example, the P-value for the slope of the line indicates very strong

evidence of a correlation between Y and X.

* The P-value for the Intercept indicates that it 1s not significant.

> Best practice is to leave the Intercept in the model, whether or not the P-

value indicates that it is significant

o Regression equations are developed, and are only valid, over the region of the

regressor variables (x’s) contained in the data set

o Forcing the model to pass through (0, 0) by removing the intercept, can create

problems in the region being modeled



Using Adjusted R? and p-values 203

Both the Adjusted R’ and the p-values must be considered,
in order to understand what has been learned in the analysis.

When the resulting model has:

High Adjusted R? and significant model term p-values, this is ideal.
Factors driving the response have been 1dentified and the variation is largely
explained. A decent model has been created.

Low Adjusted R? and significant model term p-values, more work must be
done. Some significant factors influencing the response have been identified,
but the low Adjusted R? indicates that other important factors exist. These need
to be found, for the model to be useful.

High R? and insignificant model terms, this is usually due to the data
violating the assumptions of the regression analysis. There 1s more information
on this scenario in upcoming slides.

Low Adjusted R? and insignificant model terms, no relationship between X
and Y variables have been found. Usually this means that new ideas about
which factors influence Y must be developed, although it can occasionally be
due to missing higher order terms.
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2 Checking Model Adequacy 205

In least squares fit regression (continuous Y), the analysis
methods used to calculate regressor coefficients and their
p-values, depend on certain assumptions being met.

Assumptions:

* Errors (residuals) are normally and independently
distributed with mean zero and constant variance (%)

» Observations are adequately described by the model

Whether performing regression from “file cabinet” data or
analyzing the results of a designed experiment,
these assumptions must be validated.



Checking Model Adequacy (cont'd) 206

To validate that these assumptions have been met,
the residuals are examined:

1. Normal Probability Plot of Residuals
e Validate that the residuals are normally distributed
* In JMP, this is the Residual Normal Quantile Plot

2. Residuals vs. Predicted (or Fitted) Values
* Validate constant variance and mean 0
* In JMP, this is the Residual by Predicted Plot

3. Residuals vs. Run Order

« Verify independence of errors
* There should be no patterns over the timeframe of the data
« In JMP, the best graph to use is Studentized Residuals

« The JMP data table must be in run order for Studentized Residuals to
graph the residuals in run order




Residuals Review 207

[ Predicted Y = b, + le}

A
Residual (+) :
Predicted value [ |

Predicted value he-------=comomocoomiii .




Notes 208

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor variables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value 1s the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual 1s the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contain information about the magnitude and direction of variability in the

data relative to the fitted model.

e An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

« A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.



Residual Analysis 209

Residual Normal Quantile Plot
4
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Mormal Quantile

In viewing the Residual Normal Quantile Plot for the simple regression-generic,
we can see whether the residuals are normally distributed.



Notes 210

If residuals are normally distributed, the plot will be approximately a straight line.
Emphasis should be on the central values of the plot, rather than the ends

It 1s common for plots to bend upward at the high end and downward at the low
end.

Small sample sizes, such as from experiments, often appear more non-normal

Use the “Fat Pencil” Rule: If a “fat pencil” placed over the central points would
cover them on the plot, then the residuals are approximately normal (good
enough). Hyperbolic bands displayed in JMP plots give these bounds.

A curve throughout the plot is a strong indication of non-normality. In this case, a
transformation would be needed.

The plot above shows an error (residuals) distribution that 1s approximately
normal, so it 1s not concerning.



Residual Analysis (cont'd) 211

Residual by Predicted Plot

Y Residual
n fe D P o £ = P L s
s
»

0 10 20 30 40 50
¥ Predicted

In viewing the Residual by Predicted Plot for the simple regression-generic,
we can see whether the residuals have constant variance and mean 0.



Notes 212

Here the residuals are plotted against the predicted values. This 1s a good all-around
diagnostic plot.

“Healthy” residuals look like random scatter around (. There should be no
obvious patterns. The amount of “scatter” or variance (how high and low the plot
goes) should be consistent across the graph. This verifies the assumption of constant
variance. If the variance 1s increasing or decreasing across the graph, a transformation
1s needed.



Residual Analysis (cont'd)

Studentized Residuals

5 4
0
A
é - » w
ﬁ D - - - . .
.E ; . .
2
2 -4
0 2 4 o & 10
Row Mumber

Externally studentized residuals with 95% simultanecus limits (Bonferroni) in red, individual limits in
green.

In viewing the Studentized Residuals for the simple regression-generic,
the best form for checking residuals by run order,
we can see whether there are any patterns over the timeframe of the data.

Note that the data table must be in run order for this plot.



Notes 214

Again, on this graph, healthy residuals look like a random scatter around O.

Runs (points in a row) of positive-negative-positive-negative residuals indicate
correlation between runs. This implies that the assumption of independence has
been violated. In designed experiments, randomization protects against this!
Do it every time!

This plot can also show a change in variance over the time span of the
experiment. This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc. This type of problem would show as
an increase or decrease in spread or “scatter” of the residuals across the graph.
Increasing or decreasing variance indicates the need for a transformation.



3 Using the Model: RMSE and Prediction Profiler 215

In this section, we’ll see how we can:

« Use the Root Mean Square Error (RMSE) in predicting our
future process variation,

« Use JMP’s Prediction Profiler to help us optimize our
process, and

- Estimate our future % defective, using the t distribution
calculator.



Using the Model (cont'd) 216

When Y is correlated with a controllable X variable,

55
50 ]
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35
30 .
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0

0 10 20 30 40 50 &0 70 &0 90 100110
X

how can we use the regression to improve the Y capability?



Using the Root Mean Square Error (RMSE) 217

LSL Target > USL

0 10 20 30 40 50 B0 70
Y

Suppose we are not happy with our current process capability
Mean = 27.9, Stddev=154

Defective in the data: 33.3%
Predicted from distribution curve: 35.8%



RMSE (cont'd)

218

If we control X at 80, the mean will change from 27.9 to 40

Current
mean

70

USL

B0-

50

40—

30

Target

LSL

20-

10 o

160



RMSE (COnt’d) 219

LSL Target USL

\ Mean = 40.0
Stddev=154
Defective in the data: 22.2%
Distribution curve: 15.9%

P N

0 10 20 30 40 50 B0 70 &0
Y

* Moving mean Y to the center of the spec range does reduce 7% defective

* Is the mean the only thing that changes when we control X at 80?



RMSE (cont'd) 220

By definition, RMSE is the standard deviation of Y
that would result from eliminating the variation in X

55
50 .
45
L c = RMSE
35 2.84
30 .
25 .
20
15 .
10 .

.
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0 10 20 30 40 50 o0 70 20 90 100110
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RMSE (cont'd)

221

When we control X at 80, we don't just move the mean from 27.9 to 40

— we also reduce the standard deviation from 15.4 to0 2.84 |

60—
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10

USL

N
—

Target
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160
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4. Introduction to the Prediction Profiler 223

JMP’s Prediction Profiler helps us use our regression model to
make predictions and optimize our process.

Prediction Profiler Follow these steps to access the
prediction profiler:

* Analyze > Fit Model > Y =Y,
Model Effects = X > Run > Red

Triangle > Factor Profiling >
Profiler

20
41
N -
&
100



Introduction to the Prediction Profiler (cont'd) |z

JMP’s Prediction Profiler helps us use our regression model to
make predictions and optimize our process.

Prediction Profiler

[ Mean of Y
Confidence
Interval :
o o — o o i
™l =5 i) o3 E
X

 Calculates predicted mean Y as a function of X

 Calculates confidence intervals for predicted means



Simple example of prediction of Mean Y 225

Continuing with the simple regression-generic data:
» Suppose we are interested in the predicted mean Y for X = 60

 Click on the 55.333, change it to 60

Prediction Profiler

20
40
(10 [ EETEEREEEERRRE: PEERRISS
80
100

* Predicted mean Y (based on the data) 1s 30.19

« With 95% confidence, the population mean lies between 27.79 and 32.59



Simple example of optimization

* Suppose we want to find the X value that predicts a mean Y value of 25

« Red triangle next to Prediction Profiler — Optimization and Desirability —

Desirability Functions
.+ Double click in here (don't touch

Prediction Profiler " Theline plot)
30 * Modify the Response Goal dialog
o ne 30 as shown below
e 30 .
> |2 .:_l.-_'_'l 75 .Cth OK
B
12 E% Response G-DEI/ Ié
1 [7A
b 0.75 | Match Target ~ |
©0.555193 05
at 0.25 . Y Values Desirability
0 i High: 30 0.0183
NS 888 dsS§ Middle: 25 1
X Desirability Lowe: 20 00183
Importance: 1
OK || Cancel || Help




Optimization (cont'd)

227

Red triangle
next to
Prediction Profiler

"

Optimization and Desirability

"

Maximize Desirability

Prediction Profiler
50

Desirability
—_
LN

L Desirability

 Predicted mean Y of 25 1s achieved when X =49.4

« With 95% confidence, this population mean lies between 22.6 and 27.4



Confidence Intervals and Prediction Intervals 228

« The 95% Confidence Interval on the Mean Response gives the
range which will contain the “true” mean, u, 95% of the time

For a sample, the confidence interval is calculated:

S _
Y —to25n-1 \/_ﬁ SUs<Y+tosn-1

For a regression, calculation of the confidence interval 1s
similarly structured, but considerably more complicated,
involving matrix math.

« A 95% Prediction Interval gives the range which will contain
future individual response observations 95% of the time.

The prediction interval 1s wider than the confidence interval,
because it 1s to contain individual measurements, not averages.

Calculation of this interval is complicated, involving matrix
math.



Exercise 4.1 229

a) Continuing with simple regression-generic, find the X value that predicts a mean Y
value of 35. Give the confidence limits for the predicted mean.

b) The overall standard deviation of Y is 15.39. The RMSE from the regression is
2.84. Which of these would be the standard deviation of Y if we controlled X to a
constant value?

c) Save your script, close and save the data table.



Exercise 4.2 230

Data sets \ production vs capacity.

(a) Fit a regression for Production gty as a function of Capacity utilized (%6) (using Fit
Model, of course). Is there a correlation? Give the appropriate P-value and strength
of evidence.

(b) For this exercise, we will not review the residuals plots. Use your model to find the
capacity utilization level that predicts a mean daily production quantity of 3500.
Give the confidence limits.

(¢) The overall standard deviation of Production gty 1s 733.5 (not shown in Fit Model
output—calculated in Distribution Platform). The RMSE from the analysis in (a) 1s
409.732. Which of these would be the standard deviation if capacity utilization was
held constant?

(d) Save your scripts, close and save the data table.



Estimating Improved % Defective 231

Once we determine the level at which we want to control

our X, we can use the root mean square error (RMSE) and
other regression results to estimate the % defective in the

improved process.

Remember that by definition, the RMSE 1s the standard
deviation of the improved process, with x’s held at desired
levels.

The ¢ distribution calculator helps us calculate the future
% defective.



LSSV2 student files \ t distribution calculator

A

10
N
12
13
14
15

B

C

1. Enter the quantities n the YELLOW cells.

2. The other vales are calculated for vou.

LSL 20

USL 60

Mean 40

Standard deviation| 3.006984
Degrees of ﬁ'E:E:dGﬂ; 7

7

D E F G H
LSL UUSL Total
Population %o out of spec 0.015 0.015 0.029
Population PPM out of spec 1451 1451 290.2

/

PPM defective = 290

These calculations can 1:;—;%115;'1&1’& to round-off error. Don’t round off the mean

and standard defhation when vou enter them mto the calculator.

/

Error DF from the
Analysis of Variance

Analysis of Variance

Sum of
Source DF Squares
Med 1 1830.6557
Error [ 63.2937
C. Total g 1593.0404

Mean S5quare
183066 202.4624

F Ratio

a4 Prob=F




Exercise 4.3 233

Data sets \ production vs capacityjmp.
In this process data, on 75% of the days production quantity fell below 3000.

Based on the best fit distribution, the Lognormal, the expected % of days that
production quantity will fall below 3000 is 71.8%.

a) We found earlier that capacity utilization 52.1% gives a mean daily production
quantity of 3500. The RMSE was 409.7, the error degrees of freedom was 34.
Assuming 52.1% capacity utilization, use the ¢ distribution calculator to find the

predicted % of days on which production quantity will be less than 3000.

b) Save your scripts, close and save the data table.



Exercise 4.4 234

Open Data sets \ outgassing process. Current (the Y variable) is the current required
to heat a filament to a target temperature. Resist (the X variable) is the electrical
resistance of the filament. Machine 1s the processing unit. This example shows how to

reduce % defective by separate optimization of each machine.
a) For this process, the % of Current data values that fall outside the interval (1.9,

2.1) is 8.87%.

b) Fit a regression for Current as a function of Resist, using Machine as the By
variable. For each machine, give the RMSE, the error degrees of freedom, and

the resistance that predicts a mean current of 2.
Machine RMSE DF Resistance | % Outside
A

B
C

c) Assuming we use the indicated resistance values, use the ¢ distribution calculator
to find for each machine the % of Current values predicted to fall outside the

interval (1.9, 2.1).

d) Save your scripts, close and save the data table.



9 Multiple Regression 235

Multiple regression model

« Examples

Fitting regression models

e Interactive effects

Predicted values and uncertainty

* Modeling and optimization



Multiple regression model 236

[ Y=b,+bX;, +b,X,+...+b X, + “error”]

Y X Xyy ooy Xie b, b, b,, ..., b, “Error”
Dependent Independent Intercept Regression Residuals
variable variables coefficients
Mean =0
Response | Explanatory variables | Parameter Parameters Standard deviation = ¢
variable (RMSE)
Output Inputs Distribution = Assumed to
be Normal
Predictors
Regressors
Factors (in DOE)




Model and error components, one X

237

130

120

110

100

g0

=il

il

&l

a0

[Y = b, +b,X

<€

Aen X 1s

fixed, predicted
c of Y = RMSE

Predicted mean Y (X = 146)

100

|
110

|
120

X

130

|
140

|
150

|
160

|
170



Model and error components, two Xs 238

[{ Y = b, +b,X; +b,X, + “error” J

When X, and
X, are fixed,

857 | predicted o of
80 Y = RMSE Ay S 7L
75 7 < _. = Predlcted meanY(X =150, X,=1.2)
?0”/ IS
Y o 7 i l




Multiple regression examples 239
Y X, X, X; X, X;
L¥fe of RPM Tool type Material Feed rate
cutting tool
Displace- :
MPG Horsepower Weight
ment
Salary Education Experience | Performance | Seniority Gender
Vending Amount of Distance
machine product from truck to
service time stocked machine

Fill in examples of interest to you



Regression model equations 240

Y X, X, X, X, X;
MPG Displ(aIc):;ment Horsg%ower V&E%ivg)ht
MPG = b,+ b,D + b,H + b,W + error
Y X4 X, X, X Xs
S tl:eo:;;h Tem;z%ature Dwe(:g )time T D T2 D?2

Bond = b, + b,T + b,D + b,TD + b,T* + b.D* + error

T

Response surface model (RSM) with two continuous Xs.

TD is the interaction term for T and D, T2 and D? show curvature.




Linearizing nonlinear models 241

Nonlinear model Equivalent linear model

Y =b, (X1 )b1 (X, )b2 log(Y) = log(b, )+ b, log(X, )+ b, log(X,)

Y =b, (b1 y(l (b2 )X2 log(Y) = log(b, )+ log(b, )X, +log(b, )X,

* In many cases, log(Y) transformations can successfully
linearize nonlinear regression models

* This greatly extends the application of standard multiple
regression models



Fitting regression models m

Eﬂ Teenage growth - IMP |
File Edit Tables Rows Cols DOE  Analyze Graph Tools View Window -'
Data sets \ teenage growth - Teenage growth 1] < v
b+ Source - MName Age Gender Height Weight
1| ALICE 13 F 61 107
2 | AMY 15 F B4 112
3 BARBARA 13 F B0 112
4 | CAROL 14 F 63 B4
5 ELIZABETH 14 F 62 01
Y Xl X2 = Columns (5/0) 6 | JACLYN 12 F 66 145
il Name 7 | JANE 12 F 55 74
Height | Age | Gender A Age 8 | JuDY 14 F 61 8l
:gehdhir 9 | KATIE 12 F 59 95
0 =13 10 | LESLIE 14 F 65 142
Weight [ Age | Gender A Weight e =t o
12 | LINDA 17 F 62 116
13 | LOUISE 12 F 61 123
14  MARION 16 F 60 115
15 MARTHA 16 F 65 112
16 MARY 15 F 62 02
17 | PATTY 14 F 62 85
18 SUSAN 12 F 56 67
- Rows 19 ALFRED 14 M 64 0g
Al rows 40 20 CHRIS 14 M 64 0g
Selected 0 21 | CLAY 15 M 66 105
Excluded J 22 | DANNY 15 M 66 106
['a'g:ﬁgd g 23 | DAVID 13 M 59 79
24  EDWARD 14 M 68 112




Fitting models (cont'd)

Say we want to
model Height as
a function of
Age and Gender

Analyze

J
Fit Model

=

-8 Fit Mcdel - JMP

EHE—

4 = Model Specification

Select Columns

* |5 Columns

ik Mame

A Age

ik Gender
A Height
A Weight

Pick Role Vanables

ConxXyruct Model Effects

r

Cross

Mest

Macros «

Degree 2
Attributes [+
Transform |=
"] No Intercept

Perscnality: |5tandard Least Squares  ~

Emphasis: |Minima| Report -

Recall

Help

Remove

dialog open




How to change options (for Fit Model ) during analysis 244

4 = Response Height

ﬁ.d Regression Plot
= Line of Fit for Gender{F]
70 . = Line of Fit for Gender[M]

 Alt-click on Response

Height red triangle (This 65
technique works for may 5 .
I
JMP platforms)
55
 Set up as shown on next -
Sllde — — — H,-:.lge — — — —
> Residual by Predicted Plot
* Summary of Fit
4 Analysis of Variance
Sum of
Source DF Squares Mean S5quare  F Ratio
Model 2 317.25956 158,620 15,2592
Error 37 384.64044 10.296 Prob= F
C. Total 39 701.90000 <,0001*
4 Parameter Estimates
Term Estimate 5td Error t Ratio Prob:=|t|
Intercept 39.416521 4.945343 797 <.0001"
Age 1.6466542 0.352418 467 <.0001"

Gender[F] -1.214868 0.516246 -2.35 0.0240°



Default options for Fit Model (cont'd)

245

B,

Regression Reports

Summary of Fit

Analysis of Variance
Parameter Estimates

Effect Tests

Effect Details

[ ] Lack of Fit

[ ] Show &ll Confidence Intervals

[ ] AICc

Estimates
|| Show Prediction Expression

[ | Sorted Estimates
[ | Expanded Estimates

[ | Indicator Parameterization Estimates

|| Sequential Tests
[ ] Custom Test

|| Multiple Comparisons

|| Inverse Predicticn
| ] Parameter Power
[ | Correlation of Estimates

Effect Screening

| | Scaled Estimates
[ ] Mormal Plot

|| Bayes Plot
| ] Pareto Plot

Factor Profiling

Profiler
[ | Cube Plots

Row Diagnostics

Plot Regression

Plot Actual by Predicted

|| Plot Effect Leverage

Plot Residual by Predicted

[ | Plot Residual by Row

Plot Studentized Residuals

Plot Residual by Normal CQuantiles

[ ] Press
[ ] Durbin Watson Test

| ] Box Cox ¥ Transformation |

[ ] Surface Profiler

In the last column on the
right (not shown), select

Effect Summary.




Handling categorical X variables in the model

246

"Indicator” or "dummy”
variables are used to
represent categorical

variables in regression.

Indicator variable
representing the

effect of Gender
in the equation

4 = Response Height
4 Regression Plot

70
65
=
En
T 60
55
50
— ™ | =T Lim LWL oo o0
— — — — — — — —

Age

> Residual by Predicted Plot
* Summary of Fit
4 Analysis of Variance

Intercept 39.416521 4.945343 1.97

Aar 1.6466542 0352418 4.67
Gender[F]) -1.214868 0.516246 -2.35 0.0240°

—— Line of Fit for Gender[F]
—— Line of Fit for Gender[M)]

Sum of
Source DF Squares Mean S5quare  F Ratio
Model 2 317.25056 158.630 15.2592
Errcr 37 384.p4044 10.396 Prob> F
C. Total 39 701.90000
4 Parameter Estimates
Term Estimate 5td Error t Ratio Prob:=|t|



Numeric coding for two-level categorical X 247

In JMP, two-level categorical factors are coded +1 and -1

/-

+1 1f Gender 1s F
1 1f Gender 1s M

\

Gender[F] ==

Height = b,+ b,Age + b,Gender[F]

0o+ b, + b,Age if Genderis F

b,—b, + b,Age if Genderis M

This results in one equation for Females and one equation for Males,
with equal slopes (b,) and different intercepts (b, + b, and b,— b,).

An additional indicator variable 1s added for each additional level of a
categorical variable.



Constructing the model equation 248

< Regression Plot

70

50

— r £ = Ty
— — — — —

> Residual by Predicted Plot
* Summary of Fit
A Analysis of Variance

5 of
Source DF
Model 2 7.25956
Error 37 /3E84.64044

C. Total 29/ 701.90000
< Parameter Egtimates

—— Line of Fit for Gender[F]
—— Line of Fit for Gender[M]

Height =
3821+1.65 Age 1f Gender=F
40.63+1.65 Age 1f Gender=M

Height =39.42 +1.65 Age —1.21 Gender|F]

uares Mean 5quare F Ratio

158.630 15,2392
10.29 Prob > F

Term Estimate ptd Error tRatio Prob:|t|

Intercept| 39.416521 |4.945343
Age 1.6466542 10.352418
Gender[F\_ -1.214868 J0.516246

1.97
4.67
-2.35  0.0240°

If you want to verify the equation:
VW Response Y— Estimates
— Show Prediction Expression




The need for interaction effects

4 Regression Plot

- Line of Fit for Gender[F]
70 . - Line of Fit for Gender[M]

50

— ~ N < )
— — — — —

16
17
18

Age

> Residual by Predicted Plot
> Summary of Fit
4 Analysis of Variance

Sum of

Source DF Squares Mean Square F Ratio

Model 2 317.25956 158.630 15.2592

Error 37 384.64044 10.396 Prob> F

C. Total 39 701.90000 <.0001
4 Parameter Estimates

Term Estimate StdError tRatio Prob>|t|

Intercept 39.416521 4.945343 7.97 <.0001

Age 1.6466542 0.352418 4.67 <.0001

Gender[F] -1.214868 0.516246 -2.35 0.0240°

* With this model, the growth curves
are parallel

* This is an assumption of the model,
not a result of the analysis (no

interaction terms were included in
Fit Model)

* How do we fest for parallel curves?




Interaction effects (cont'd) 250

Height = b, +b,Age+b,Gender|F]

+b,Age*Gender|F]

This product term allows different slopes for M and F



Adding an interaction effect 251

A =/ Model Specification

Select Columns Pick Pole Wariables Personality: |Standard Least Squares v

hiame A Height Emphasis: |Minimal Report v

AHeight | ‘
Weidht Help Ay
ﬂWEight il —
Freq Recal | [[Keep dislog open
—Bv ‘ Femove

1. Highlight
Construct Model Effects

| Add | Aue

_ |Gender
Cross | Age*Gender

[ Mest

3. Interactive effect
added to model

[ Macros *

Degree 2

Attributes |+
Transform (=
[ Mo Intercept



Non-parallel growth curves

252

4 Regression Plot

70

— ™ N
— — —

—— Line of Fit for Gender[F]
—— Line of Fit for Gender[M]

The result is one model equation
for Females and one for Males,
with different slopes and intercepts

_ 46.62 + 104 Age 1f Gender=F
Height = .
3230 + 224 Age 1if Gender=M

P
P

Height = 39.46+1.64 Age—1.23Gender|F]—0.60Gender[F]* (Age—13.98)

» Analysis of Variance
4 Parameter Estimates

Term Estimate
Intercept

Age 1.6360307
Gender[F]

-1.227546

Gender[F]*(Age-13.975\_-0.60080¢/ 0.343014

244 0.0196°
175 0.0883

To verify the equation:

Std Error io Prob>|t] vRequnse Y
820 — Estimates
4,77 — Show Prediction Expression




Testing the interaction effect 253

4 = Response Height
> Actual by Predicted Plot
> Regression Plot

The p-value for Gender*Age

AlEffect Summary .. .

[ indicates some evidence that
et Ervyo i R N growth curves for girls and
Age 4.518 | A 0.00003 .

Gender r7osmm| | | | | | | | |oosse boys have different slopes
Age*Gender 1.054 I P i 0 1 i i | 0.08832

Remove Add Edit [ ]| FDR

> Residual by Predicted Plot
[» Studentized Residuals

> Summary of Fit * From now on we will use Effect

Summary to find P-values. It gives
the same information and allows

> Analysis of Variance
<4 Parameter Estimates

Term Estimate S5tdError tRatio Prob:|t| model modification.
Intercept 39.457057 4.512681 8.20

Gender[F] -1.227546 0502444  -2.44  (0.07196°

Age 1.6360307 0.343014 A.77

(Age-13.975)"Gender[F] -0.6008% 0.343014 -1.75| 0.0883

Summary of Fit without Interaction Summary of Fit with Interaction

RSquare 0.452001 7 AEuEEd R wEnt v RSquare 0.495046

RSquare Adj 0.42238 RSquare Adj 0.452967

v
Root Mean Square Error 3.224234 FLIEIE wR G Root Mean Square Error 3.137706




Residuals Review 254

[ Predicted Y = b, + le}

A-
Residual (+) :
Predicted value [ |

Predicted value he-------=comomocoomiii .
. Residual (-)
A




Notes 255

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor variables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value 1s the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual 1s the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contain information about the magnitude and direction of variability in the

data relative to the fitted model.

e An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

« A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.



Residuals Review: Same thing for any number of X's 256

[[ Predicted Y = b, + b, X, + b, X, ]

Predicted value




Same thing (cont'd)

257

40
30
20

—
L N |

Residuals
S

Plot of residuals by predicted for any number of Xs

|
70

Lower left-hand
quadrant of the
(X4, X,) plane

| | | |
80 90 100 110

Predicted Y values uUpper right-hand

quadrant of the
(X4, X,) plane



Checking model adequacy 258

Residual Normal Quantile Plot

; .
. i
=
B T
E !
i 0 '..uu"’" -
L =
o ot
L . s®
-5
L
™
-10
™ O G L e S = = on w
- - = o T e T S e T e T e T = o o
= = = =

Mormal Quantile

We can see points on the hyperbolic bands here, but there 1s not an obvious
curve through the data. Given the small sample size, this 1s not too concerning.



Checking model adequacy (cont'd) 259

Residual by Predicted Plot

~ 5 H
iy
'g - - L
g o IR B S SR S —
r : "' . .
g _5 . @
T &
L ]
-10
50 25 a0 B3 70

Height Predicted

In this plot, we can see that the variance in the residuals is decreasing as
height increases. This indicates the need for a transformation. We will see how
to do this a little later in the course.



Checking model adequacy (cont'd) 260

Studentized Residual
o W P o=t O =t DD W P

[ ]
[ ]
[ ]

»
[ ]

[ |

.
L ]
»

[ ]

D 5 10 15 20 25 30 35 40
Row Number

There are no obvious patterns in residuals in run order, and they scatter about zero.
There 1s no concern here.

(Points outside the red limits are considered outliers, and should be investigated.
Points outside the green limits but inside the red limits are possibly outliers, but
with less certainty.)



Variance Inflation Factor (VIF) 261

When historical or observational data is used to generate a regression
model, an additional test is needed.:

« The variance inflation factor (VIF) must be checked

« The VIF indicates whether the regressors (1.e. Xs or predictors) are
correlated with each other

>
>
>

VIF = 1: regressor 1s independent of all other regressors
1 > VIF = 5: regressor is moderately correlated to other regressors

VIF > 5: regressor is highly correlated with other regressors

« VIFs 1n the final model need to be less than 5

©)

When X variables are correlated (high VIFs), the analysis makes statistical
determinations based on the noise between the correlated variables. This
will often result in high R? values but insignificant p values.

VIFs are often lowered when insignificant terms are removed from the
model, and terms should be removed one at a time. The first term removed
should be the one with the highest p value unless theory implies removing a
different one.

High VIFs are not an issue in designed experiments, as the designs prevent
high correlation between terms/regressors



VIFs (Cont’d) 262

Parameter Estimates

Term Estimate 5td Error t Ratio Prob>|t| VIF
Intercept 39.457057 4.812681 8.20 <0007 :
Gender[F] -1.227546  0.502444 244 0.019* 1.0154192
Age 1.6300307 0.343014 477 <.0001" 1.0135259

(Age-13.975)"Gender[F] -0.6008% 0.243014 -1.75 0.0883 1.0004648

The variance inflation factors for all terms in the model are below 5.
There 1s no concerning level of correlation between model terms.

To display the VIFs, right click in the Parameter Estimates section, click
Columns, then VIF.



Predicted values and associated uncertainty 263

Prediction Profiler

07

’[

i LI I'I-_I EIE__
= [09.6029, G-

[

I 62.635] ]
297
207 I I I I I I I I I I
S =
14 F
Age Gender
Predicted avg. height in the population of 14 year old girls 61.12

[59.60, 62.64]

95% confidence interval for avg. height of 14 year old girls 6112 + 1.52




Notes 264

The model without interaction gave 61.25 &+ 1.55 (slightly larger margin of error).



Steps in Multiple Regression (backward elimination method)

265

1.

Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

Check model adequacy by reviewing the residuals plots:
»  Residual Normal Quantile Plot
> Residual by Predicted Plot

>  Studentized Residuals (in run order)
Transform the data and resolve other 1ssues, 1f needed.
Verify all VIFs < 5. Address the 1ssue if any are over 3.

Remove 1nsignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if a
higher order term of that variable remains in the model).

Use Adjusted R? to determine the amount of variation in Y that
1s explained by the model.



Notes 266

Y our instructor will go through Exercise 5.4 as an example.



Exercise 5.1 267

a) In the table below, record the Adjusted R? and RMSE from the analysis of Height in
this section. Also, record the P-values from Effects Tests. Run the same analysis for
Weight and record the corresponding results.

P-values
Response Adj. R? RMSE Age Gender | Age*Gender
Height
Weight

b) Which variable (Height or Weight) has the greater proportion of variation explained
by Age and Gender?

b) Explain why it wouldn’t make sense to compare the two models in terms of RMSE.



Exercise 5.1 (cont'd) 268

d) Both Age and Gender were statistically significant for predicting Height. Is this true
for Weight?

e) For Height we found evidence that the growth curves for girls and boys have
different slopes. Is this true for Weight as well? Give the P-value that is relevant to
this question and explain what it means.

f) Give the predicted average Weight in the population of 15-year-old boys. Give a
95% confidence interval for this average.

g) Save your scripts, close and save the data table.



Exercise 5.2 269

Prediction Profiler

Data sets \ lead time 2. 225
20

a) Fit a model for Lead time including the terms S
Process Step, Operator, and their interactive § 10704 125

7.3

effect. Be sure you have the correct modeling
type for Operator. (If you got the upper right
profiler, the modeling type for Operator 1s not
correct. The lower right profiler is correct.)

b) Note anything concerning in the residuals plots.

Prediction Profiler
225

c) Remove terms under Effect Summary with P- . 20
values exceeding 0.15 (Remove button). Which S neraos i
terms are left? Any issues with VIFs? § zareo 1?3
75 ’E; E: T T
d) Based on the profiler, which factor has the larger effect on el 1
lead time (steeper slope)? Does this correlate with the P- step Operator

values? Please explain.

¢) Save your script, close and save the data table.



Exercise 5.3 270

Data sets \ number and size of defects.jmp.

a) Fit a model for Max size including the terms Welder, # Defects, their interactive
effect, and the quadratic effect for # Defects (cross it with itself). This 1s the
Response Surface Model (RSM) for one categorical factor and one continuous
factor.

b) Do you see anything concerning in the residuals plots?

c) Using the Effect Summary, remove terms with P-values exceeding 0.15 (use the

Remove button). Which terms are left in the model? Do all remaining terms have
VIFs <57

d) Based on the profiler, which factor has the larger effect on Max size? Does this
correlate with the P-values? Please explain.

e) Save your script, close and save the data table.
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In this example you will analyze data from an optimization experiment concerning the
removal of excess metal from castings by belt grinding.

The belt supplier had been recommending that belts be discarded when they are “50%
used up.” This rule was based on tests conducted by the supplier to define the usage
point at which the total of labor and belt costs will be minimized. One of the grinders
thought the supplier’s rule caused grinders to discard belts too soon. Aside from being
suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s
tests did not take into account the time lost to belt changes.

This grinder developed a new standard under which belts would be discarded only
after they were “75% used up.” He wanted to do a comparative study to show that his
method was cheaper overall. After he explains the study with his fellow grinders, 3
additional factors are added to the experiment.

Each casting in the experiment was weighed before and after the grinding operation. A
technician kept track of how many belts were used and how long it took the grinder to
complete each casting. From this information the total cost per unit of metal removed
was calculated for each casting.

Data sets \ belt grinding.
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* Y variable: cost per unit of metal removed
« X variables: » Contact wheel land-groove ratio (LGR): Low or High

> Contact wheel material (MATL): Steel or Rubber

> Belt usage limit (USAGE): "50%" or “75%"

> Belt grit size (GRIT): 30 or 50

* Run the Fit Model script provided in the left panel, by clicking on the green
triangle. This 1s the response surface model for 4 categorical X variables.

 Check the residuals plots. Any problems?

 Using the Effect Summary, remove insignificant terms not needed to maintain model
hierarchy, starting with the group of terms with P > 0.20, then one at a time. Which

terms are left in the model?

 Use the Prediction Profiler to find the minimum cost factor settings.

* What do you expect the mean and standard deviation of Cost to be after

implementing the optimal factor settings?

* Save your script, close and save the data table.
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In this example you will analyze data from an optimization experiment concerning the
bond strength of potato chip bags.

Chips ‘R’ Us was receiving customer complaints about stale chips, especially from
customers on airplanes. They traced the problem to the bag sealing process. The
current process involved a temperature of 150°C, a pressure of 100 psi and a dwell
time of 1.1 secs. The current average bond strength was about 85 psi.

Process Engineer Chip Kettle ran an experiment to increase the bond strength.
Production Manager Justin Thyme reminded Chip that he would very much like to
avoid an increase in the dwell time.

Justin 1s able to free up a bag sealer for only so much time each shift. Chip realizes he
will need two shifts to complete the experiment. He decides to include Shift as an
additional variable in the analysis just in case there 1s an operator and/or equipment
effect.

Data sets \ heat sealing 1.
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* Y variable: bond strength

X variables and feasible ranges: > Temperature (TEMP): 120 to 180
» Pressure (PRESS): 50 to 150
» Dwell time (DWELL): 0.2 to 2.0
» Shift: 1 or 2

* Run the Fit Model script provided in the left panel. This is the response surface
model (RSM) for 3 continuous X’s. Is anything concerning in the residuals plots?

* Remove from the model insignificant terms that are not needed to maintain model
hierarchy (P > 0.15), using the Effect Summary. Which terms are left?

 Use the Prediction Profiler to maximize the average bond strength. If your solution
requires a long dwell time, manually move things around in the profiler to find
another solution with a short dwell time.

* What do you expect the mean and standard deviation of bond to be after
implementing the optimal factor settings?

« Save your script, close and save the data table.
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Data sets \ outgassing process. Current (the Y variable) 1s the electrical current
required to heat a filament to a specified temperature. Resist (one of the X variables)
1s the electrical resistance of the filament. Machine (the other X variable) identifies

which of three processing units was used. We want to develop a model for Current as
a function of Resist and Machine.

a) Fit a response surface model for Current. (The terms will be Resist, Machine, the
interaction term Resist*Machine, and the quadratic term Resist*Resist. To get the
quadratic term, highlight Resist both under Select Columns and under Construct

Model Effects, then click Cross.)

b) Do you see anything concerning in the residuals plots?

c) Remove any terms under Effect Summary with P value exceeding 0.15. (Use the
Remove button.) Record the RMSE.

d) Use the Prediction Profiler to find the predicted average Current for each
machine if we always use filaments with resistance 52.
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¢) The target value for Current 1s 2. For each machine, we want to find the
resistance for which the average current 1s 2. On the Prediction Profiler red
triangle, select Desirability Functions. It should look like this:

Prediction Profiler
2.15

f) Double click in the upper right hand 27

o 2.05
: B ooy 2.00
panel of the .proﬁler. (Try to avoid ~ Suoe 155
the plotted line.) You should get the o
dialog shown below. 1
b 0.75
FE%- Response Goal ‘ pa— ﬁﬂ' ED.EEEEE?} 05
8 0.25
Maximize v| Q
Current Values Desirability = :ﬂ JOSAn i""'\j A A :E 2 E "
High: | 2-15| | 0.9819 | Machine Resist Desirability
Middle: | 1.9875 | | 0.5 | . .
1 Low: | 1825 | 0066| || ¥ Response Goal o
Importance: @|
[ - H Eaneel H Help | 'J Current Values Desirability
- High: | 2,05 | | 0.0183 |
difv the dial h h Middle: | 2|| 1|
g) Modify the dialog as shown to the = | | oo |
right, then select OK. Proceed to the Importance:
next slide. [ ok ][ Cancel |[ Help | |
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h) On the Prediction Profiler red
triangle, select Reset Factor Grid.
We want to lock the factor setting

for Machine, so check the Lock

Factor Setting box as shown‘hﬂ:\

1) The vertical line for Machine should
now be solid instead of dotted. This
will hold the machine setting in
place during Maximize Desirability,
which allows you to optimize Resist
separately for each machine. On
the Prediction Profiler red triangle,
select Maximize Desirability.
Proceed to the next slide.

=¥ Factor Settings .

Factor Machine FResist

Current Value: 52
Minimum Setting: 4941
Maximum Setting: 35.37

Mumber of Plotted Points: 41
N
.; Lock Factor Setting: []

OK

Cancel

Prediction Profiler

2.15

2.10
1.990461 2.05
2.00
1.95
1.90
1.85

.
0.73
0.864515 05
0.25

Desirability

L= o (v o oW

O’\DL—NMEW
= W oo g

Machine Resist Desirability
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j) The optimal resistance value for Prediction Profiler

. . . 213
Machine A 1s 51.5. Drag the solid | 210
vertical line across to B, then click £ 107 20

.. . 7. S 201029 1
Maximize Desirability to find the LT

optimal resistance value for :
Machine B. Do the same for
Machine C.

0.75
0.3
0.25
o

Desirability

Machine Resist Desirability

k) What will the average current be if
we always use the optimal resistance
values for each machine?

1)  What will the standard deviation of current be if we always use the optimal
resistance values?

m) Save your scripts, close and save the data table.
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In this section, we will cover the most common model adequacy
1Ssues:

« Qutliers
 Pattern in run order plot of residuals
«  Multicollinearity (VIFs over 5)

- Unequal variance and non-normal residuals



Issue: Outliers
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Outliers can easily be seen on the Residual by Predicted and
Studentized Residuals (residuals by run order) plots

4 Residual by Predicted Plot

10
L

_ 8
E
o b
& 4
T 2 .
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0 e

-2 | . te o ° s W

10 20 20 40 =0 B0 70 a0

Yield Predicted

Remember, healthy residuals look like random scatter about zero.

Here, 1t looks like there might be a suspicious data point.
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* Investigate the data point.

o If it turns out to be just a data entry error, we simply enter the correct
value, then all 1s well. Most of the time it’s not that simple.

 [f you have an outlier of unknown origin:
o Run the analysis with and without the questionable data point.

o If you’re lucky, the results will be pretty much the same both ways,
hence no worries. Leave the data point 1n.

 If excluding the outlier does make a significant difference in the
results, then you have a hard decision to make.

o The official rule 1s: leave the data point in unless you can i1dentify
the cause. The i1dea is to throw it out only 1f you can demonstrate
that 1t does not come from the population you want to study. This 1s
the “pure” approach.

o This should be tempered with the following practical consideration:
you don’t want your results to be unduly influenced by one extreme
outlier, even if you can’t explain it.



Issue: Pattern in run order of residuals

4
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Remember, healthy residuals look like random scatter about zero.

There are no patterns of concern here.
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« Runs (points 1n a row) of positive-negative-positive-negative
residuals indicate correlation between runs in an experiment.

o This implies that the assumption of independence has been violated.

o Randomization of an experiment protects against this! Do it every
time!

» This plot can show changes 1n variance over the time span of the
experiment or data collection.

o This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc.

o This type of problem would show as an increase or decrease in spread
or “scatter” of the residuals across the graph.

o If there 1s x data available to support 1t, one remedy is to add a factor
(time since tool change, number of hours of operator work, etc.)

o Increasing or decreasing variance can also indicate the need for a
transformation.



Issue: Multicollinearity (VIFs > 5)
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Parameter Estimates

Term Estimate 5td Error t Ratio Prob:>|t| VIF
Intercept 4868125 0.157383 3089 <.0007° :
LGR[Low] 0.616875 0.157585 3.91 0.003% 1
Material[Rubber] 1145625 0.157385 7.27 DO07* 1
Usage[507%] 1.054375 0.157585 6.60 <.00C 1
Grit[30] -0.048125 0157585 -0.31 0.7670 1
LGR[Low]*Grit[30] -0.316875 0.157585 -2.01 0.0732 1
Usage[50%:]*Grit[30] 0.395625 0.157385 2.51 0.0333 1
Parameter Estimates

Term Estimate S5td Error t Ratio Prob:|t| VIF
Intercept 14044844 0.291958 4811 <0007 :
Process Step[Assembly] 4.8792135 0.298820  16.33 1.0478749
Operator1] 0.6713483 0.296556 2.26  0.034%" 1.0478749

Remember, VIF < 5 is not concerning.

One aspect of factorial design
experiments (often called
DOEs) 1s that they are
orthogonal designs. This results
in the model terms being
completely uncorrelated.

Regressors that are completely

uncorrelated with others have
VIF = 1.

High correlation is only a
potential 1ssue when using
historical or observational data
n regression analysis.
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Several strategies can be tried for resolving multicollinearity, but they may
not be satisfactory, especially if the model will be used for prediction.

« Collect additional data in a way that breaks up the multicollinearity.

o Historical data may contain only certain combinations of x-variables,
for example, only low levels of x;when x, is at a low level and only
high levels of x; when x, 1s at a high level

o Note: it may not be feasible or possible to collect this additional data.

o In some cases, the factors (x’s) are inherently correlated, for example as
may be the case with household income and house size.

«  Respecifying the model, can help.

o If x; and x, are nearly linearly dependent, use one term, x = x; + x5,
which preserves the information content of the original variables

o Try removing the term with the highest p-value, and look at that model.
Then, replace i1t and remove the term with the highest VIF. See which
gives the better model.

- Use ridge or principal-component regression (way beyond the scope of
this course)
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Residual by Predicted Plot

4 S
3 .
2
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Remember, the variation 1n the residuals should be fairly constant across
the Residual by Predicted Plot. There is no issue here.
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4 Residual by Predicted Plot
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In this plot, we can see an 1issue.

o proportional to mean Y — “sideways V”



Basic model assumption: constant variance 288

2

oy 1s constant (does not depend on the X’s)




Most common violation of the basic assumption 289

o is proportional to mean Y




Issue: Unequal variance and non-normal residuals (cont'd)
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Residual by Predicted Plot
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Often, when there 1s
an 1ssue with
constant variance,
there 1s also the
1ssue of non-normal
residuals.

This can be seen in
these two plots

Fortunately, they
usually both resolve
with the same
treatment—a
transformation.
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The standard assumption in all comparison and correlation analyses involving a
quantitative Y variable is that the noise (unexplained/error/residual) variation follows a
Normal distribution with mean 0 and a standard deviation that does not depend on the
X variables.

This simple model has served us well. However, when Normality or constant G 1s
grossly violated, something must be done. The most common remedy i1s to use log(Y)
or sqrt(Y) as the dependent variable instead of Y. This 1s a transformation. This “trick
of the trade” 1s simple and, 1n most cases, effective.



Transforming the Y variable

Data sets \ actual vs estimated

* ¥ Fit Model

We want to see ¥ “ Model Specification

how accurately Select Columns Fick Rale Variables Personality. Standard Least Squares v
we can estimate th Task Emphasis:  Minimal Report v
he ti it tak .Fesource oo
the time 1t takes ihFinish Date
to do certain :Es;mmla"zed Hrs Weight || opfional numeric :HE":'
ctual Hrs
tasks Freqg onfional numeric E
By onfional @

Construct Model Effe
Analyze 2cd q Estimated Hrs)

\L Cross
Fit Model P

Macros w

Degree 2
Attributes =
Transfarm =
[ ] Mo Intercept
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Response Actual Hrs

Regression Plot

Residual by Predicted Plot

80

100

90 —
80
70
60 -
50
40
30
20
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Actual Hrs

0 I I
o O O
— (q\]

60

N B
o o

o

Actual Hrs
Residual

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Parameter Estimates

Term Estimate

.8352064
.6321871

Intercept
Estimated Hrs

0.307347
0.296176
16.95281
12.23828

64

Std Error
3.03596
0.120529

t Ratio
28
5.25

| | | |
10 20 30

Actual Hrs

60

Y=0.835+0.632X

>[t]
0.7842
<.0001 *

Variation
Increases
as average

Actual Hrs
Increases




Transforming Y (cont'd)

Gy proportional to mean Y <:ll> O og(y) CONStant

" ¥ Fit Model

¥ " Model Specification

Select Columns Pick Fole Warniables = litw
— s w— ersnna.ltg.f Standard Least Squares w 'v RGSpOl’lSG Actual Hrs
E ¥ e < Emphasis:  Minimal Report v .
> Model Dialog

thResource  opfional
hFinish Date
AEstimated Hrs

AActal Hrs

Waight || cpfional numeric

Freq opfional numeric

_Hep | |
Recal ~ e+ Click on Actual Hrs
Remove |

By oofional

-+ Click on Transform

Construct Model Effects .
red triangle

add Estimated Hrs

Cross

e Select Log

Mest

Macros

* Run the model

Degree 2

Attributes =
Transform =

[ ] Mo Intercept




Effects of log transformation
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Response Log(Actual Hrs)
Regression Plot
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]
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o o o o
— ™

Summary of Fit

0.233276
0.22091

RSquare

RSquare Adj
Root Mean Square Error 1.217933
Mean of Response 1.576584
Observations (or Sum Wagts) 64

Parameter Estimates
Estimate Std Error

0.8982207 | 0.218111
0.0376085 ) 0.008659

Term
Intercept
Estimated Hrs

t Ratio Prob>|t|

4.12
4.34

Log(Y)=0.898+0.038X

0.0001 *
<.0001 *

Residual by Predicted Plot

Log(Actual
Hrs) Residual

Ll IIIIIII
3 456781(

Actual Hrs

Ll Ll Ll 1 rri I
20 304050 70100

Nonlinear model for Y

Y = exp(0.898+0.038X) = (e ) = 2.45(1.04)"




Note on JMP notation, and impacts of the Log transformation 296

JMPs notation regarding Logs requires some clarification:

Although JMP expresses the logarithm as “Log”, it 1s actually base e, or the
natural log, which is usually written as Ln. It is not a base 10 logarithm.

However, the plots that use a log transformed X-axis display use base 10 log
for the X-axis. This does not change the interpretation of the chart.

The impact of transformation on R? and p-values:

In the previous example, a transformation was required because the
residuals variance wasn’t constant over the range of the predicted values.

After the transformation, the R? value went down. This can lead to a belief
that the non-transformed model was “better”’. However,

Residuals showing this condition (heteroscedasticity) can cause p-values
and R? to be over or under stated.

When this condition occurs, the problem must be corrected. The resulting
model, even if R? is lower or p-values are higher, is the more “real” model.



Steps in Multiple Regression (backward elimination method)
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1.

Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

Check model adequacy by reviewing the residuals plots:
»  Residual Normal Quantile Plot
> Residual by Predicted Plot

>  Studentized Residuals (in run order)
Transform the data and resolve other 1ssues, 1f needed.
Verify all VIFs < 5. Address the 1ssue if any are over 3.

Remove 1nsignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if a
higher order term of that variable remains in the model).

Use Adjusted R? to determine the amount of variation in Y that
1s explained by the model.



Exercise 0.1 208

Data sets \ number and size of defects.jmp Residual by Predicted Plot

a) Fit a model for Max size including the terms =
Welder, # Defects, their interactive effect, and

10

the quadratic effect for # Defects (response -*-' : s

surface model for one continuous factor and B oot SRR A
one categorical factor). You should see a 5 R . e,
distinct sideways V. Do you see issues in any ol : r ' np
other residuals plots? Max size Predicted

Residual by Predicted Plot

b) Select Model Dialog on the Response red L5
triangle menu, apply a Log transformation to e

0.5

Max size, re-run the model. The sideways V 'r IFRRRAE SES S -~ .-
isn’t completely gone, but close enough. Did 5 0 el f
other residuals plots improve? g 10

-15

207 — T T T T

. ) N : 07 10
c) Use Effect Summary to remove terms with P > /‘ Max size Predicted

0.15.

Remember to change the x-
axis on the plot, as well.
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d) Which terms are left in the

model?
Regression Plot
=
e) Now we have a log-linear simple = d ., *
. . v
regression. s 1 =T e e
E . l_.l.-.,"""l" o .
= o et : :
f \ : * :' . - )
When you use a Log or square 2 , -
root transformation on VY, it is 1 .
helpful to use same scale for T L L T L L
the Y axes of the plots R
L / z Defects

f) Save your script, close and save the data table.
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An aerospace manufacturer uses integral castings as structural components of jet
engines. Integral castings give design engineers more flexibility and simplify the
assembly process. Defect-free castings are known to have long cycle fatigue life, but
defects often arise in the casting process and must be weld repaired. The engine
manufacturer’s metallurgical team has proposed a finishing process of the following
type to ensure adequate cycle fatigue life of weld-repaired castings:

Heat Treat |——>| Polish |——| Peen

The team wants to optimize the first two steps in this process to achieve maximum
cycle fatigue life. Also, though other applications of similar processes have included
peening, they would like to see if it can be omitted to reduce processing time and cost.

Due to project time constraints and limited availability of test fixtures, the team can
perform at most 12 cycle fatigue tests for their experiment.
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Y variable: Cycles (to failure)

« X variables: ) Heat treat: Anneal or Solution/age
> Polish: Chemical or Mechanical
> Peen: Yes or No

* Data sets \ weldment fatigue.jmp.
* Run the Model script provided in the left panel, run the model.

 Notice the extreme sideways V on the Residual by Predicted Plot. Are there issues in
any of the other residuals plots? If yes, what are they?

e Rerun the model using a Log transformation on Cycles. Did residuals plots improve?

* Remove insignificant terms from the model (P > 0.15) that are not needed to
maintain model heirarchy.

 Use the Prediction Profiler to maximize the cycle fatigue life.
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A Black Belt wants to minimize the leak rate 1n plastic containers ultrasonically
welded together. The X variables and ranges are:

» Force: 70 to 150
» Energy: 2775 to 325
» Amplitude: 70 to 90

* Data sets \ ultrasonic welding 1.jmp.
* Run the Model script provided in the left panel.

e What problems do you see in the residuals plots?
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Rerun the model using the Log transformation on /eak rate. (Be sure to change the
x-scale to Log on the Residual by Predicted Plot.)

Rerun the model using the Sqrt transformation on leak rate. (Be sure to change the
x-scale to Sqrt on the Residual by Predicted Plot.)

Which set of residuals plots looks better? Use whichever transformation looks like
it worked better, going forward.

Remove insignificant term(s) from the model (P > 0.15), while maintaining model
hierarchy.

Use the Prediction Profiler to minimize the leak rate.
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7 Simple Regression with Pass/Fail Y 305

When the response variable, Y, is binary (pass/fail, yes/no,
success/failure, etc.), the regression model used for a
continuous Y-variable cannot be used.

* A logistic response function must be used

e The resulting analysis yields an equation that allows us to calculate
event probability:

Pepent = f(x1;x2; - --»xn)

« This equation 1s used to answer questions such as:
o What 1s the probability of being in spec (at various levels of x)?
o What 1s the probability of getting the contract?
o What 1s the probability of a defect?



Probability Function for Pass/Fail Y 306

This probability function, the logistic response function, has a
much different behavior than a linear regression function:

Linear Regression Event Probability
100 1.0
80 1 0.8
I
60 | 0.6
> S
40 | 0.4/
o
20 0.2
0 0.0
0 2 4 6 8 10 0 2 4 6 8 10
X X
* The y values of a linear regression e The logistic response function is
can have any values an S-shaped function that can only

have values between 0 and 1

To be useful 1 prediction, the logistic response function must be
transformed 1nto an unbounded linear function



Transforming the logistic response function (cont'd) 307

The logit transformation 1s used to linearize the model:

P
logit(Poyont) = ln( cvent ) = by + byx1+ ... +b,x,
1-— Pevent
Pevent — eb0+b1x1+ ...+bnxn
1_Pevent

1
P, =

vent — 1 _I_ e—(b0+b1x1+ ...+bnxn)

This 1s the form of the final equation in the regression analysis

The maximum likelihood method is used to estimate the parameters in this
probability equation . . . JMP does this work for us

We can use this equation (model) to predict the probability of an event for
various levels of X4, X5,...,Xp



Using JMP for Simple Regression with Pass/Fail Y 308

We will see how to use JMP do the regression analysis when we
have:

a) Raw data — each row represents one part or transaction

b) Tabulated data — each row represents multiple parts or
transactions



Raw data

il s

4~ Model Specification

Select Columns

Data sets \ target practice

J
Fit Model
J

Set up as shown

Pick Role Variables

w- 20 Caols>
_Eﬁmx“n_ Target speed | Result
1 200 |Hit
2 205 | Hit
3 210 [Hit
4 215 [Hit
5 220 | Hit
B 225 [Miss
[ 230 [Hit
= 235 [Hit
9 240 [Miss
10 245 | Hit
11 250 [Hit
12 255 [Hit
13 280 | Hit
14 265 [Miss
15 270 | Miss
16 275 [Hit
17 280 [Miss
18 285 |Miss
19 280 [Miss
20 285 [Miss
21 300 | Hit
22 305 [Miss
43 310 |Miss
24 315 [Miss
25 320 [Miss

= 3 Columns = ,m Personality: [Nﬂminal Logistic - ]
AT arget speed Jm_d)
iaResult [ = ] [ = ]
= |5'9f=':'-'1::' e [H] ["] Keep dialog open
[ Freq. | [ontional numeric

By | optional

i

Construct Model Effe

Add Target speed )

Cross

Mest

Macros =

Degree
Attributes (=)
Transform [=!

[C] Mo Intercept

|‘?Eﬂ O




Analysis output
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Logistic Plot
1.00

0.75

2 030
E . .
Probability
of a hit
0.25
0.00
= = = = = = = =
o = x| = D o = =
— il ™l il il ™ L] L]
Target speed
Parameter Estimates
Term Estimate 5td Error ChiSquare Prob>ChiSq
Intercept 12.5297022 4.7931154 6.83 00039
Target speed -0.0476836 0.0151939 6.87 D.0038"
For log edds of Hit/Miss
Effect Likelihood Ratio Tests
L-R
Source MNparm DF ChiSquare Prob>ChiSq

Target speed 1 1 11.19309322 0.0008"

Miss

Hit

340

e P-value for correlation
(this 1s the one that
matters)

* Very strong evidence of
a negative correlation
between the speed of the
target and the
probability of hitting it



The prediction profiler 311

* Red Triangle — Profiler — Prediction Profiler
red triangle — Optimization and Desirability —

Desirability Functions

I \° Double-click in the blank area, enter 1 for Hit
and 0 for Miss — OK — OK — next slide

1 |
: I

Prediction Profiler

hiss D467

Result

Hit P.533

= 0.75
%05 05 Prediction Profiler
a 0.25 !
0
e a s T I R I = | 1 e
R R R R R o o = %
260 A
Target é
speed Desirability Hit  [.533 H
1
= 0.75
=
©0.532%45 05
o
a 0.25
0

0.25
0.5
0.75

Desirability




Prediction profiler (cont'd) 312

Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability

Prediction Profiler * The target speed of 200 produces

the maximum hit probability of
0.952

Result
E

* The corresponding miss probability
is 0.048

1

0.75

095225 05
0.25

* The target speed of 320 produces
the minimum hit probability of
0.061

Desirability

200 * The corresponding miss probability
speed Desirability iS 0.939



Exercise 7.1 313

Open Data sets \ quotation process.jmp.

a) Fit PO by TAT. Which P-value 1n the output is the most reliable?

b) Does the PO hit rate increase or decrease as the TAT increases?

¢) Find the PO hit rates for 3 day and 15 day turnarounds.

d) Save your script, close and save the data table.



Tabulated data

Data sets \ cracking vs dwell time

5l cracking vs dwell time - JMP

File Edit Tables BRows Cols DOE Analyze Graph Tools View Window Help

-

| cracking vs dwe... [* 4

b Source - Mins at temp Cracked MNot cracked

1 2 0 100
w | Columns (3/0) 7 4 1 g4q
4l Mins at temp 3 5 7 08
4l Cracked

4 g 3 a7
4l Mot cracked

5 10 7 93

= B 12 g g1

« | Rows

Fi 14 12 58
All rows 2
Selected 0 z 16 13 87
Excluded 0 9 18 15 83
Hidden 0

1) Tables — Stack
2) Use Cracked and Not cracked as the stack columns
3) Change Label to Result, change Data to Freq — OK

4) Save as cracking vs dwell time stacked



Stacked format

FE:;[ cracking vs dwell time - stacked - JMP
File Edit Tables PRows Cols DOE Analyze Graph Tools View Window
v |cracking vs dw... [ 4 b
b Source - Mins at temp Result Freq
1 2 Cracked 0
2 2 Mot cracked 100
3 4 Cracked 1
4 4 Mot cracked ag
= Columns (2/0) ) b Cracked 2
A Mins at temp & b | Mot cracked 08
il Result F) 8 Cracked 3
4l Freq 8 & Mot cracked 97
o 10 Cracked 7
10 10 Mot cracked a3
11 12 Cracked g
12 12 Mot cracked o1
13 14 Cracked 12
| Rows 14 14 Mot cracked 88
All rows 18 15 16 Cracked 13
Selected 0 16 16 Mot cracked g7
Excluded 0 17 18 Cracked 15
[!E:ﬁgd g 18 18 Not cracked 85

Analyze

J
Fit Model

"

See next slide

"

Set up as shown



Fit Model

= Fit Model - JMP L= | E

4 = Model Specification

Select Columns Pick Role Vanables Personality: |I"'J::rrr1inal T

* |3 Columns E

A Mins at temp oo tional

: EEEUH: Target Level: | Cracked - |
= Weight | optional numeric I |
- Help Ru
In this data set, instead _ Freq ((Fres D ——— |
of a row for each —_ _ . recall § 7] Keep dial\g open
, By | optional F-l—
observation, the results ~EIOVE
are tabulated—there 1s Construct Model Effects
a count of outcomes add  ((Minsattemp
for each level of the X
] Cross
variable.
Mest
Using the Freq values Macros +
tells JIMP how many || Degree |2
times to count each Attributes =
TOW. Transform [+

] Mo Intercept



Analysis output 317

Effect Likelihood Ratio Tests

L-R
Source Nparm DF ChiSquare Prob:ChiSg
Mins at temp 1 1 41.5372498 <.0001*

Very strong evidence of positive
correlation between dwell time

Prediction Profiler and probability of cracking
FNot cracked D.951 Dwell time | Probability
= : (mins) of cracking
5 0.020
10 0.049
= = 2 2 = 15 0.114
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8 Multiple Regression with Pass/Fail Y

* Project to reduce clogged nozzles
in print heads

e Comparison of four types of
adhesive and two print head
designs

 Each lot = 60 print cartridges

* “Pass” = no customer detectable
print defects

 Data sets \ clogging pass-fail

* Run the Model script. If necessary,
bring the Model Specification to
the front.

319
» - _ﬁ_{lil Cols=
o ~ | Lot | Adhesive | Printhead |Fesult| Freq
1 1124 D2 Fail 2
2 1124 D2 Fass 23
3 2| Ad D Fail 1
4 2| Ad D1 Fass 24
5 3|AZ D2 Fail 13
& 3|AZ D2 Fass 47
[ 4 Al D2 Fail 11
g 41A1 D2 Fass 44
g 5| A3 D2 Fail 4
10 | AL Dz Pass wlal
11 G| Ad D1 Fail 5
12 G| Ad D1 Fass 25
13 7 AT D2 Fail =
14 7 AT D2 Fass 52
15 0| A D Fail 3
16 B |AZ D1 Fass 57
17 9|A3 D2 Fail 1
18 9|A3 D2 Fass 24
19 10| A2 D2 Fail 13
20 10| A2 D2 Fass 47
iy 11| A2 D1 Fail 1
22 11 | A D Fass o4
23 12| AT D1 Fail 1
24 12| AT D1 Fass 24
25 13 | A3 D1 Fail [




Example (cont'd)

-

=8 Fit Model - IMP

Lo | E S

A = Model Specification
Select Columns

* 5 Columns

J Lot

i Adhesive
ik Print head
ik Result

4 Freqg

Pick Role Varnables

Target Level:

| Help |

Construct Model Effects Switch the
[ Ad/ Adhesive Target
c '\K | ifj”;t h.EafP o Level from
o esive*Print hea .
Fail to

[ Mest

Pass, then
[ Macros - ] un the
Degree 2 mo del
Attributes [

Transform =
| Mo Intercept




Example (cont'd)

321

Effect Summary
Source LogWorth
Adhesive*Print head 3.721
Print head 2.254 ‘
Adhesive 0.410

Effect Likelihood Ratio Tests

L-R
Source MNparm DF ChiSquare
Adhesive 3 3 3.01536048
Print head 1 1 7.68536058
Adhesive*Print head 3 3 19.7623242

Prediction Profiler

B kit |
E:'E|5.5.II9?5-
g 93
T 9 = = o
Adhesive Print head

b2

Prob>Chi5q
0.3803

PValue
0.00019
0.00557 ~
0.38826 ~

* The Adhesive factor was
insignificant, but we left it in
the model to preserve model
hierarchy (Adhesive™*Print head

1s significant)

* On the Prediction Profiler red
triangle select Optimization and
Desirability — Desirability
Functions

e See next slide



Example (cont'd) 522

Prediction Profiler

""r__"'"—'n;.';'.;-—"' """"" | 0
Ejass 0,975 i
* Double-click 1n
the blank area

1 : :
= 075 * Enter 1 for Pass
05 05— [ e and 0 for Fail —>
o 0.25 OK — OK

0 |

= % T 2 o B e "5 2 L7
= o =

Lo ! (=

Adhesive Print head Desirability



Example (cont'd) 323

* Prediction Profiler red triangle — Optimization and Desirability — Maximize
Desirability

 The failure rate predicted from the optimization was 0.025 or 2.5% (current
state failure rate was 20% or more)

 Best combination was D1 with Al

Prediction Profiler

Hass 0,975

Result

0.75
0.975 05
0.25

bility

25Ira

D

— | Ll — ™l — L LM LM —
< <L <L = ] ] o B = T
== = -

Lam | L

Adhesive Print head Desirability



Exercise 8.1 324

A Black Belt wants to minimize the occurrence of bubbles and ripples in the urethane
coating on truck nameplates. The X variables and ranges are:

» Badge temp: 20 to 40
» Mixing ratio:  92.6 to 94.6
» Curing temp: 30 to 55

* Data sets \ urethane coating pass-fail

e Run the Model script in the left panel. In the Model Specification, switch the Target
Level from Fail to Pass, then run the model.

* Remove insignificant terms from the Effect Summary (P> 0.15).
 Use the Prediction Profiler to find a factor combination that maximizes the yield.

 The current state yield was about 95%. What 1s the predicted yield for the improved
process?



Tab 3
Design of Experiments
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1 Designed Experiments vs “File Cabinet” Data #

All experiments are experiences, but not all experiences
are experiments. — R. A. Fisher

File cabinet data

DOE

Data sets

Data collection

Information provided

Interactive effects?

Time period covered

Larger, “messy”’

Routine operation

Correlations

Maybe

Longer

Smaller, “clean”

Controlled conditions

Cause and effect

Definitely

Shorter



Notes b2y

Ronald Fisher was an English geneticist and mathematician trying to increase crop
yields in the 1920s. There were limited numbers of plots available for field trials,
gradients in the soil, variable proximity to water sources, differing amounts of sunlight,
and long lead times. To solve these problems, Fisher developed a body of statistical
methods known as Design of Experiments (DOE).

During World War II, Fisher’s techniques were extended and applied to military
optimization problems. After the war, they were further extended and applied to
industrial problems like improving the quality and reliability of manufactured
products. For his lifelong contributions to science and statistics, Dr Ronald Fisher
eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between
observational studies (analysis of “file cabinet” data) and designed experiments. This
distinction 1s as important today in Six Sigma as it was a century ago in agriculture.
After all, both are concerning with increasing yields!



Case study: structural jet engine components

Typical
jet engine




= —%— * Back in the day: many small
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Case Study: Typical structural component of jet engine
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Case study (cont'd) 331

* Value stream: investment casting of nickel alloy structural
components

* Process boundaries: shell making through backend processing

* Experiencing “orange peel” surface condition violating
customer smoothness requirements

* 12% scrap rate (big parts — big $$)

* Y =/(X): analyze existing production data



Investment casting process

0 .0—©

Aluminum Die




A big signal

70—
60 —

50 —

Castings:
% with
“orange peel” 30

40—

20 —

10—

Furnace the shells were baked in



Notes £

The strongest correlation in the database involved one of the pre-heat furnaces used to
bake the ceramic shells before transfer to the casting furnace. Furnace 2 was new and
had come online just about the same time orange peel started occurring. Almost
everyone agreed the new furnace was the problem.

The casting area manager refused to take Furnace #2 off-line. He needed all six pre-
heats to keep the casting furnace running nonstop so he could meet his production
quotas.

Process Engineer Dave (shown above) was skeptical that Furnace 2 was causing the
problem. For one thing, the other pre-heats were also producing scrap castings. Also,
he had spent the better part of the past three months evaluating and qualifying the new
furnace.



Another big signal 335

60 —

Bake 40 —
time

(hrs) l | l

20—

Furnace the shells were baked in



Notes &

Dave pointed out that the shell bake times were much longer for Furnace 2 than for the
other furnaces. There was a minimum required bake time, but no upper limit. Dave’s
theory was that orange peel was caused by long bake times.

Why did shells stay longer in Furnace 2?

[t turned out there wasn’t room to put the new furnace next to the original five, so it
had to be located further away from the casting furnace. The fork-lift operators
wouldn’t drive over there unless they had no shells ready from the closer furnaces, so
shells tended to sit in Furnace 2 for a long time.



Autopsy

337

The file cabinet data suggested some plausible hypotheses

It could not establish the cause of the defect

The quantity of data was
not the problem

The data lacked the
structure required to
determine cause and
effect

<

=

Furnace #2

Others

Short
bake

Long
bake



Notes &

There was lots of data in the upper right-hand and lower left-hand cells in the table
above, but virtually nothing in the other two cells. Making sure that data tables like the
one above are completely filled out is one of the basic principles of experimental
design.

Subsequently, engineers ran enough parts in the upper left-hand corner of the table to
determine that long bakes were indeed causing the problem. An upper limit on the bake
time was developed and put in place. Shells that exceeded this limit were scrapped.
This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange
peel problem go away.



The Role of DOE in Process Improvement

339

Y = fX)

* DOE i1s an effective way to collect data for
identifying critical x’s, in a relatively short period
of time

analysis | . In a Lean Six Sigma project, data collection in the
Measure phase may have produced little or no
useful information.
* May have multiple potential improvement ideas on
Developing | the table
the future
state| © DOE is an effective way to evaluate these ideas

prior to defining the future state



Example

* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

e Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

* Engineers developed a list of factors
for a DOE




Example (cont'd)

341

Current state | Possible future
Factor Levels X variable | state solution
Slurry for shell Batch 1 vs Batch 2 v
Shell thickness 14 dips vs 18 dips v
Shell bake time 6 hrs vs 48 hrs v
Shell bake temp 1950° vs 2050° v
Alloy grade Low $ vs High$ 4
Alloy status New vs Revert v
Heat shield steel Mild vs SS v
2400 vs 3200 v

Cooling fan speed
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2 One Factor ata Time? 343

* In this approach, each factor 1s varied with all others held constant.
This way, it 1s felt, we can see the “pure effect” of each factor.

 This 1s one way to apply the scientific method, but it 1s not the only
way, and not the best way!

 For any proposed one at a time experiment, there 1s usually a
multifactor experiment providing:

v'More information
v'Better results

v'Same (or possibly smaller) total sample size

* One at a time trials are useful for determining feasible ranges for
factor 1n a DOE



Example: potato chip bags 344

* The current average bond strength of our potato chip bags is 86 psi

* Based on customer complaints, we need to increase the bond strength

* The most important control factors in the bag sealing operation are
temperature and dwell time (see below)

* Secondary objective: decrease the dwell time 1f possible

Factor Current level | Feasible range
Temperature 150° 120 to 180
Dwell time 1.0 secs 0.2t0 2.0




One-at-a-time experiment #1 345

Vary dwell time over its feasible range while holding temperature at 150

100 —

88 |
Bond 86
strength

60 —

0.2 1.0 1.4 2.0

Dwell time



Notes 346

Our process engineer Chip Kettle first studies the effect of dwell time while holding
temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to
2.0. Chip finds he can increase the bond strength by 2 psi by increasing the dwell time
to 1.4.

Our production manager Justin Thyme 1s not pleased with the prospect of a 40%
increase in dwell time.



One-at-a-time experiment #2 347

Vary temperature over its feasible range while holding dwell time at 1.0

100 —

Bond
strength 86

60 —

120 150 161 180

Temperature



Notes 348

Chip now studies the effect of temperature while holding dwell time constant. He seals
and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can
increase the bond strength by 2 psi by increasing the temperature to 161.

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will
increase the average bond strength by 4 psi (2 + 2). However, it 1s highly likely that
Justin will oppose the increase in dwell time, in which case the increase in average
bond strength will be only 2 psi.



The multi-factor approach

349

2.0 @ ® o

DWG” 1.0 Q- Q@ L
time

02 ¢ 9 ’

120 150 180

Temperature

v" 9 design points (e)

v' 2 bags sealed at
each point

v" Total sample size:
N =18



Contour plot of predicted average bond strength 350

Chip's prediction of
90 psi at 161" and 1.4
secs was way off

/

Bond strength
exceeding 90 psi
at 180" and 0.2

/ secs
02 ¢ ®

120 150 180

Temperature
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Why one-at-a-time doesn’t work

The 3D perspective

90 7

80 7

70

60 -

Bond

50 -

40 -

30 7

20

10

120

180

170

Temp



Notes €=

When we experiment with all factors, but one held constant, we optimize sequentially
over one-dimensional profiles. The sequence of solutions generated by this process is
highly dependent on the starting point. It has very little chance of finding a global
optimum, and often fails to move a significant distance from the starting point.



3 DOE Terminology

Experimental unit

The outcome of a single application of the
process being studied

]

<

Sample size Process

The total number of experimental units
(“number of runs”)

Response variable

A'Y variable measured or inspected on each
experimental unit




Notes *

The experimental unit 1s often a part, lot, batch or single transaction of some kind. It
may also be a test specimen or sample of material. It 1s important to 1dentify the
experimental unit—it provides the basis for counting sample size, and sample size 1s
critical in determining the statistical significance of the results.

The experimental unit 1s determined by the process on which we are experimenting,
not the measurement plan used to evaluate the results. For example, suppose we test
100 devices for product life. Suppose we measure a degradation parameter on each
device every 10 hours until the end of the test at 100 hours. The sample size for the
study is the number of units (100), not the number of measurements (1000).



Example 399

11 silicon wafers were subjected to vapor deposition at various temperatures,
pressures, and Argon flow rates

* The thickness of the resulting layer was measured at 8 locations on each wafer

* What 1s the sample size?

Temp Press @ Flow Thickness

180 0.3 30
180 0.3 30
180 0.3 30
160 0.4 10
160 0.4 50
160 0.2 50
160 0.2 10
200 0.4 10
200 0.2 10
200 0.2 50
200 0.4 50




Example (cont'd) 359

* The sample size 1s the number of experimental units, not the total number of
measurements taken

* The response variables of interest may be statistical summaries of multiple
measurements on each unit

Temp Press Flow Avg. Std. dev.

180 0.3 30
180 0.3 30
180 0.3 30
160 0.4 10
160 0.4 50
160 0.2 50
160 0.2 10
200 0.4 10
200 0.2 10
200 0.2 50
200 0.4 50




DOE terminology (cont'd)

Factor
An X variable controlled in an experiment,
varied on purpose to determine its effect
on the responses

Level
A particular value or setting of a factor to be
used in the experiment

Requirements
All levels of each factor must be logically
and physically compatible with all levels of
the other factors

s
|

| Temperature I

357



Notes Eo8

Variables used as factors in a designed experiment may or may not be controlled in the
routine process. What matters is that they can be controlled for the purpose of
experimentation.



DOE terminology (cont'd)

359

Examples of continuous factors

Time
Temperature
Pressure
Energy
Voltage
Resistance
Concentration

Flow

Volume
Weight
Length
Width
Density
Rate
RPM

Intensity . . .



Notes 48

A factor is continuous if it can be varied within some range on a scale of
measurement

* It is generally preferable to use 3 equally-spaced levels (low, medium, and high)
for continuous factors

* Even though only two or three levels of a continuous factor will be used in an
experiment, it is advantageous to identify it as continuous, rather than
categorical

* Even when some levels of a continuous factor would not be applied to the process
after the experiment, it is advantageous to still treat the factor as continuous in the
experimental design and analysis

— Example: After an experiment, we find that the optimal temperature
setting 1s 117.13°. We may choose to set the temperature to 115° or 120°.
We still treat temperature as a continuous factor in our experiment.

— Example: We know that if we determine that the optimal Introductory
Time Period for an offer 1s 3.37 months, it wouldn’t make sense to offer
that to our customers. We would offer them an Introductory Time Period
of 3 months. We still treat this factor as continuous in our experiment.



DOE terminology (cont'd)

361

Examples of categorical factors

Method
Tool set
Material
Supplier

Operator
Color

Size

Old or New

1,2 0r3

A,B,CorD

X, YorZ

Bob, Carol, Ted or Alice
Cyan, Magenta or Yellow

Small, Medium or Large



Notes 48

A factor is categorical 1f 1t 1s not possible to have it at all values on a measurement
scale

 Treating a factor as continuous implies that any value in the range can be used in
the process

« If the levels used in the experiment are the only possible values, even when the
categories are described by numbers, the factor should be treated as categorical

— Example: Pizza pan sizes of 107, 12, 14, 16” (10.26” doesn’t exist)

— Example: A control parameters for certain electron microscopes has to be a
power of 2.

— Some JMP DOE platforms now have the option of Discrete Numeric, in
addition to continuous and categorical, to better handle these cases



DOE terminology (cont'd)

363

Categorical factors

Continuous factors

Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 2 - 3 levels

Region in factor space

Response surface modeling

Interpolate between design
points



DOE terminology (cont'd)

364

Control factors

Noise factors

Can be controlled in the
routine process

\
Type of material

Temperature
Pressure
Method

Time

Cannot be controlled in
the routine process

\!

Ambient conditions
Raw materials
Operators
Suppliers
Batches
Setups
Shifts
Lots

Is it good practice to include noise factors in experiments?
Why or why not?



DOE terminology (cont'd)

365

Design point
A particular combination of levels
of the factors.

Design matrix
The set and sequence of design
points to be used in the experiment.

Full factorial
The set of all possible design points
for a given set of factors and levels.

Temp
120

20

\

180
180

v’ Full factorial
v" 4 design points

Press

50
150

50
150

syrun [ejuwWILIddX

v" No repeats (replication)

v’ Sample size = 4



DOE terminology (cont'd) 366

Replicate run Temp Press
An experimental unit created independently 120 50 fﬁ
of other units at the same design point 120 150 JE
Replicate 180 30 Jﬁ &
A set of replicate runs, one for each unit in 180 150 = 2.
a given set (usually a replicate of a full JFW 5
factorial) 120 30 Jﬁ )
o
120 150 [FE 2
False repeat A
* Repeated or multiple measurements on 180 50 Hf 5
one unit ’
80 150 fr=
* Units in the same batch, when Py H 5
C . ull 1actoria
optimizing a batch process for which v 4 design points

there is very little within-batch variation v' 1 replicate
v’ Sample size = 8



Exercise 3.1 367

A bank wants to increase the yield of its credit card offers. It plans to collect VOC data
by means of a DOE involving the factors in the table below. The bank plans to send out
1000 offers for each combination of the factor levels. Based on the data, they will
determine the combination with the greatest % yield.

(a) What is the Y variable?

(b) What 1s the experimental unit? (Consider how Y will be measured)

(¢) How many design points are in the full factorial?

(d) What 1s the sample size?

(e) For each factor, decide whether you would treat it as quantitative or categorical (give
your answers and reasons in the table below).



Exercise 3.1 (cont'd)

368

Factor

Levels

Continuous or categorical?

Introductory APR

0, 2.5 or 5%

Introductory time
period

3, 6 or 9 months

Gift

1Phone, 1Pad,
microwave or
espresso machine




4 The Full-Factorial Design 369

The full-factorial design contains all possible combinations of the
specified factor settings

Above is an image of a 23 full-factorial with center points (continuous factors)
e The full-factorial requires one run at each design point (8 for this 23)

e 35 center points are recommended in a 2% design

* Total runs required for this full-factorial are 11-13

A 2% full-factorial design can estimate main effects and interactions



Full-Factorial Design (cont'd) 370

oy

Above is an image of a 33 full-factorial

The full-factorial requires one run at each design point

“Center points” are part of the design points (the middle level of the factors)
Total runs required for this 3° full-factorial is 27

This type of design is useful when some factors are continuous, and some are
categorical (there could be 3-level categorical factors in the picture above)

A three-level full-factorial (3%) design can estimate main effects,
interactions and quadratic effects, but is an inefficient design.



Main Effect of a Factor in a Factorial Design

High (+) 4+ .
Factor B
Low(-) + ¢ ¢
Low High
(-) (+)
Factor A

Main Ef fect of A = Avg Response A (High) — Avg Response A (Low)

Main Ef fect A
2

Coefficient A= [ =



Example: Main Effect of a Factor 372

High (+) -+ > 2
Factor B
Low () T 40 60
Low High
(-) (+)
Factor A

Main Ef fect of B = Avg Response B (High) — Avg Response B (Low)

_ 50472  40+60 _ 122 100_11
2 2 2 2

What is the Main Effect of Factor A in this example?



Example: Coefficient of a Factor

High (+) -+ > 2
Factor B
Low () T 40 60
Low High
(-) (+)
Factor A

Main EffectB 11

5 > = 5.5

Coefficient B = p; =

What is the coefficient for Factor A in this example?



Example: Interaction Effect 374

. 50 72
ngh (+) 1 .B e - e °
BBl ﬂ Eﬂ—bﬂ i @ |
Factor B S
Low (-) + 40: :60
| |
Low High
(-) (+)
Factor A

A *B Interaction Effect = Avg Response A x B (High) — Avg Response A x B (Low)

72440 50+60 __ 112 110 _ 1
2 2 2 2

A-B Interaction Effect =



Example: Interaction Effect 375

To determine which values are for A*B High and Low,

it can be helpful to refer to the experimental design matrix.

Multiply the + and — 1n the A and B columns 1n the design matrix
to get the + and — for the A*B column.

Factors
Run | A B | A*B | Response
1 - - + 40
2 - + - 50
3 + - 60
4 + + /2




Example: Interaction Effect

High (+) -+ %, 52
Factor B
Low () T 40 50
Low High
(-) (+)
Factor A

What is the A-B Interaction Effect in this example?

Factors

Run

A B A*B |Response

HITWIN (=




Interaction Plots

Interaction Plots graphically show interaction

B+
704
60— B-
50
40 +

|
. +
Factor A

Interaction Plot for the first
example

No interaction—slopes of
lines are approximately equal

60+ o
50+ B -
40
20 B+
| |
| |
- +

Factor A

Interaction Plot for the data
on the previous slide

Interaction present—Iines
have different slopes

871



Creating a Full Factorial Design 378

DOE — Classical — Full Factorial Design

1. Define responses, factors, numerical ranges for continuous factors, and levels for
categorical factors.

~ | Full Factorial Design

4 Responses

Add Response «|| Remove | Mumber of Responses..,

Besponse Name Goal Lower Limit Upper Limit Importance
3 Yes Maximize | . | . | .
4 Factors
Continuous | |Categorical || Remove | Add N Factors 1
Name Role Nalyes
4l Intro APR Continucus 0 2.5 5
4l Time Pericd Continuous 3 ] g
il Gift Categoncal Mone |iF'h|::r'|E |iF'a|:| |E5r:re55n::
Specify Factors

Add a Continucus or Categoncal factor by clicking its butten. Double click
on a factor name or level to edit it.

Continue




Creating a full factorial (cont'd)

2. If desired, add extra center points*, request one
kk

or more replicates  and/or pre-sort the matrix.
For a 2*full-factorial, center runs are

recommended. When you are ready, click Make
Table.

Fx3xd Factorial
Output Options

Run Crder; B ”

Mumber of Runs: 36

Mumber of Center Points: 0 >

Replicates: 0

Make Table
e —————
Back

“Each center point = one additional row (run)

xx
Each "replicate” = one additional set of 36 rows

02| = | On | Wn | b= | P =2 1

[ Ve TN T PR T R R R R R R R R e e e e A A I e e
o O N T o T S =~ T N T S e S P i T S B B S S T N P S e i =

Pattern | Intro APR | Time Period

312
112
124
113
232
231
134
322
33z
214
331
121
223
314
323
321
123
324
132
211
222
311
213
333
111
221
212
224
313
334
233
114
133
234
122
131

5
0
0
0
2.5
2.5
0
5
5
2.5
5

=
[

ra

. . ra .
S O WS S W e L bW Wt S W Wb S own S wLh WL wn Wn

LU B SRR B ¥ R VN N ¥ WS R o L S S o s B ¥ B ¥ T K S R & N K B N o N o T e T s R S N o Y s R e L S ¥ e Y e TR ¥ ¥ o N WK N = (R K B ¥R}

Gift
iPhcne
iPhone
Espresso
iPad
iPhone
Mene
Espresso
iPhche
iPhcne
Espresso
Mene
Mone
iPad
Espresso
iPad
Meone
iPad
Espresso
iPhchne
Mone
iPhone
Mene
iPad
iPad
Mene
MNone
iPhchne
Espresso
iPad
Espresso
iPad
Espresso
iPad
Espresso
iPhchne

Mone

379

% Yes



Simulating response data (so we can see how analysis works) | 38

3. Create two new columns called
Sent and Returned.

4. Click on the Sent header —
double-click on the Sent header
Column Properties— select

Formula — enter the value 1000
in the little box - OK — OK

5. The Returned column 1s where we
would enter the number of offers
accepted. To simulate the data,
double-click on the header and
name the column — Column
Properties — Formula — Edit
Formula

6. Enter the commands shown on
the next slide, then click OK.

4

-

(=T R = RV R SN R R

[ T T L T o o T R R o T T o B B e R e e e T
= Y R S VTR R T R - R . R SR S YR R i T R R M S Uy S =

Pattern  Intro APR  Time Period

312
112
124
113
232
231
134
322
332
214
EEY
121
223
314
323
321
123
324
132
211
222
311
213
333
111
221

7212

224
313
334
233
114
133
234
122
131

5
0
0
0
25
2.5
0
5
5
23
5

=]
=

Mt red

e e el el R e Pl r
=R = R R R R Y R R RN R R T AR AR R R R R R~ R R RV R

[ B o T o B ¥ R WS R ¥ W B WK R o (R 5 R R W K U K ¥R R s & R K BN o I N o T o T s S R o & N R o S B o s TR R ¥ R U R K B s T ¥ S R ¥ R

Gift
iPhcne
iPhcne
Espressoc
iPad
iPhcne
Mone
Espresso
iPhcne
iPhcne
Espresso
Mone
Mone
iPad
Espressoc
iPad
Mone
iPad
Espressoc
iPhone
Mone
iPhcne
Mone
iPad
iPad
Mone
Mone
iPhone
Espresso
iPad
Espressoc
iPad
Espressoc
iPad
Espresso
iPhcne

Mone

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000



Simulating response data (cont'd)

w | 3x3xd Factorial Bl 4 -
FOI “lula: I__:Jesign 3u3xd Factorial | 5 Pattern Intro APR | Time Period Gift Sent |Returned
b Model 1312 5 3 iPhone 41 1000 41
Rand v Evaluate Design 2112 0 3 iPh 07 1000 -
an m b= DOE Dialog IFhone 2 /
0 3124 ] 6  Espresso 1.6 1000 16
J, 4(113 0 3 iPad 310 1000 10
5 232 25 9 iPhone 29 1000 29
Random Integer[nl] 6 231 25 0 Mone 44 1000 14
7134 0 O Espressc 1.1 1000 11
8322 5 6 iPhone 1.1 1000 11
o332 5 9 iPhone 17 1000 17
Random Iﬂtegel’[SO] 10214 25 3 Espressoc 32 1000 3z
11221 5 9 Mone 1.7 1000 17
OK — OK = |Columns (7/1) 12121 0 6 Mone 38 1000 28
0 :::':ttrt;rpf* 13|223 25 & iPad 5 1000 30
7, Deﬁne /0 YeS 4 Time Period % 14 (3214 5 3 Espresso 1.9 1000 19
. . Gife 3K 15 323 5 6 iPad 33 1000 13
Wlth the formula FES LT 16 321 5 6 Mone 45 1000 15
A Sent e 17 (123 0 6 iPad 44 1000 44
A Returned 4 18324 5 6 Espresso 42 1000 42
Returned «100 19132 0 9 |iPhone 44 1000 44
S 20 [ 211 25 3 None 35 1000 15
ent 21222 25 6 iPhone 25 1000 25
22 311 5 3 Mone 5 1000 50
23 (213 25 3 iPad 02 1000 3
24 323 5 9 iPad 1.6 1000 16
25 (111 0 2 None 17 1000 17
26 | 221 25 6 MNone 21 1000 21
8. Run the Model 27 (212 25 3 iPhone 25 1000 25
. . 28 | 224 2.5 6 Espressc 05 1000
SCI’lpt pr0V1ded 29313 5 3 iPad 06 1000
. 30334 5 O Espressc 46 1000 46
| Rows
1mn the 1Cft Panel- Al o i 31 (233 25 9 iPad 21 1000 21
< Selected 0 32114 ] 3 Espresso 05 1000 5
(Cth on the Excluded 0 23 (123 0 9 iPad 46 1000 46
. Hidden 0
34 734 25 9 E 5 1000 50
green triangle) e - Espresso
35 122 0 6 iDhone 1.6 1000 16
36 121 0 9 None 1 1000 10




Analyzing the simulated data

| 4 = Model Specification

Select Columns

* 7 Columns

ik Pattern

4 Intro APR

A Time Pericd

ik Gift

FloVes |
A Sent

4 Returned

Pick Role Varniables

Weight

Freq

By

¥ A 7= Yes

o —

Construct Model Effects

Add

Cross

Mest

Macros =

Degree 2

Attributes |
Transform [

[ ] Mo Intercept

Intro APR

Time Period

Gift

Intro APR*Time Penod
Intro APR*Gift

Time Pernod*Gift

Personality:

Erphasis:

Help

Recall

Remove

Standard Least Squares  ~

Minimal Report v

Fun

[ ] Keep dialog

m

When you click Run, JMP will use regression to create a “model” for the
process, that includes the terms under Construct Model Effects.



Getting to “yes”

383

* Point and click to find the combination with the highest % Yes

 Because it 1s simulated data:
o your profiler won’t look exactly like this one

o don’t be alarmed if your “best” combination doesn’t make sense

- | Prediction Profiler

5
0 3077778 2
ﬁ[z.nag?}. 3
406583] 2
1

0

O = © M % wd W oW WO M~ 0 O

Pad

1]
=
]
=

7 g e Mone
— - '\-I '\—'II'\—

Intro APR. Time Pericod Gift

iIPhone
Espresso
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5 Statistical Assumptions 385

Average Y as a function of X has no jumps or corners
(assumption of smoothness)

Continuous
Y

Continuous X



Notes 386

A hypothetical smooth response function.

We never know the true response function, but often we have information about its
general properties. For continuous X and Y, smoothness of the Y = f(X)
relationship 1s one such property. It means the function can be well approximated
over sufficiently short intervals by a polynomial, usually linear or quadratic. This
1s necessary in optimization experiments where we want to interpolate between the
experimental design points.

These experiments are designed for continuous Y response. If you have a pass-
fail response, see if you can turn it into a continuous response. Here are a few
1deas:

e If you measure something on a continuous scale, but only record whether 1t
passed or failed 1n your normal operation, record the actual measurement
during the experiment.

« If you typically use a go-no go gauge, actually measure the part during the
experiment.

 Record the size of defect instead of whether there 1s or 1s not a defect.
e Other ideas?



Non-smooth response function 387

Average Y as a function of X has jumps and/or corners

Quantitative
Y

Quantitative X



Notes 388

A hypothetical non-smooth response function.

A function with jumps or sharp corners will not be well approximated by low-order
polynomials in neighborhoods of the associated X values. This 1s a problem in
optimization experiments because we want to interpolate.

It may or may not be a problem in screening experiments, because there we are merely
trying to identify factors with large first-order effects. Accurate approximation
throughout the X range 1s not required, although we may not be able to see the impact
of the factor under certain circumstances. (You can see in the picture above that the
response, Y, 1s at nearly the same level across various X values.)

Jumps and sharp corners often occur outside the feasible operating range of the
process. In fact, such discontinuities often define the feasible operating range. A
smooth response function 1s usually a safe assumption as long as we are not operating
too close to a “cliftf.”



Occam’s razor

“One should not increase, beyond what is
necessary, the number of entities
required to explain something.”

—W/illiam of Occam, medieval philosopher

Exact “French curve” Linear plus noise




Notes 390

Occam’s razor represents a preference for simple explanations over complex
ones. This reflects a belief that simple hypotheses are more likely to be true
than complex ones. This belief 1s not always justified, but it 1s efficient in that 1t
leads to models with just enough complexity to explain a given set of
observations.

We can always find a sufficiently complex curve passing exactly through any
given set of data points. The predictive ability of this “over-fitting” method
is notoriously poor. The more successful “Occam” strategy is illustrated by
random variation superimposed on a simple linear model.



Standard assumptions on the response function 301

VY = (X, X, X;5,...) + error

v Can’t assume f(X) explains everything (hence the error term)

v Can’t assume f(X) 1s linear, but quadratic model 1s almost
always sufficient

- f(X) may include second order interactive effects
- f(X) may include quadratic effects

v Don’t need cubic or higher order models
Don’t need higher order interactive effects



Review: Least squares model fitting

392

For each of 18 potato chip bags, we have data on

T = bonding temperature
D = bonding time (duration)
Y = bond strength

The best fitting response surface model (RSM) 1s the one whose

parameters
by, by, b,, by, by, bs

minimize the sum of squared residuals:

Z[Y (b, + b,T+b,D+b,TD +b,T> + b.D* |’

1 8 bags



Least squares fit of Response Surface Model (RSM) 393

Avg. Y =87.2 +8.3(T)+7.7(D)-31.8(TD)-16.1(T*)- 13.2(D?)

A B C D E F G
1 TEMP DWELL BOND Prediction Noise
2 -1 -1 11.0 10.08 0.92
3 -1 -1 89 10.08 -1.18
4 -1 0 63.9 62.80 1.10
5 -1 0 60.4 62.80 -2.40
6 -1 1 93.2 89.07 413
7 -1 1 86.5 89.07 -2 57
8 0 -1 65.7 66.30 -0.60
9 0 -1 67.7 66.30 1.40
10 0 0 88.4 87.20 1.20 ZeaSt Squares
11 0 0 88.0 87.20 0.80 mOdeling..XIS
12 0 1 82.0 81.65 0.35
13 0 1 8.5 81.65 -3.15
14 1 -1 88.1 90.37 -2.27
15 1 -1 92 .1 90.37 1.73
16 1 0 72 79.45 -2.25
17 1 0 81.0 79.45 1.55
18 1 1 39.5 42.08 258 6 terms in model
19 1 1 45.9 42.08 3.82 /chuation shown above)
20 Sum of squares (5S)| 93676.58 = QS?QEM
21 | Degrees of freedom (DF) 18 = 6 + 12
22 RMSE | Square root of noise (SS/DF) 2.65 ¢ 265 — \/8418/12

[
(%)
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6 Statistical Models 395

Linear in the Xs

Average Bond = 67.2 + 8.3(TEMP) + 8.3(DWELL)

BOND &1

TEMP 170 180



Notes 396

Response surface: tilted plane.

Simple linear models like the one shown above are used 1n screening designs. In many
cases, simple linear models fit the data poorly, and do not give accurate predictions.
They should not be used for optimization experiments.

Simple linear model: Y =by+ byxy + byxy + -+ bpxp



Linear interaction model 397

Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMP x DWELL)

BOND




Notes 398

Response surface: saddle.

Linear interaction models like the one shown above usually fit the data much better
than simple linear models.

They include all main effects and all interaction effects.

They are good for optimization experiments where all factors are categorical, but they
should not be used for optimization experiments involving quantitative factors.

Linear interaction model:

Y = by + byx1 + byxy + -+ bixX; + byax1x5 + bygxyx3 + -+ + bijx;x;



Response surface model (RSM)

399

Avg. BOND = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMP x DWELL)
-15.5(TEMPx TEMP) - 12.9(DWELL x DWELL)

90 1
80 17 -
60 |
90 1
40 1

BOND

TEMP 170 450



Notes 400

Response surface: ridge.

The response surface model (RSM) shown above 1s the standard model for
optimization experiments.

It differs from the linear interaction model in that 1t includes quadratic (squared)
terms for all continuous factors, in addition to all main effects and interactions.
Quadratic terms are never used with categorical factors.

In experiments involving continuous factors, the RSM may fit the data much better
than the linear interaction model. In other words, the response surface model may
be a better model of the process.

Response Surface Model RSM):

Y = bO + b1x1 + bzXz + .-+ bixl' + b12x1X2 + b13X1X3 + -4+ bijxl'Xj
+by1X2 + byyxs + -+ + byjx?



RSM for a different data set (process) 401

Avg. TENSILE = 22.5 - 3.3(RATE) + 3.4(RPM) - 3.6(RATE xRPM)
- 4.8(RATE x RATE) - 5.6(RPM x RPM)

20 -

TENSILE

15




Notes 402

Response surface: hilltop.

Other response surface shapes include inverted saddles, inverted ridges, and bowls.

You can’t tell from the plot alone, but in this example the RSM model does not fit the
data very well.



RSM plus quadratic interactions

403

Avg. TENSILE = 22.4 - 8.5(RATE) + 8.6(RPM) - 3.2(RATE x RPM)
- 6.1(RATE?) - 4.8(RPM?) - 7.0(RATE2 x RPM)
+ 8.1(RATE x RPM?)

20 -

TENSILE

\\“\*‘\V
\‘\\&
Ny

y




Notes 404

The shows a more complicated quadratic model fit to the same data as on the previous
page. This model turns out to fit the data well.

Model terms like
RATE x RATE x RPM
RATE x RPM x RPM
RATE x RATE x RPM x RPM
are called quadratic interactions. Adding one or more quadratic interactions is a good

thing to try when an RSM model does not fit.

It 1s also possible to add other higher-level terms (cubic, three-way interactions), if the
sample size 1s large enough to support the extra terms . . .



Higher-order polynomial models? 405

3 order polynomial (cubic)

Y

4" order polynomial (quartic)
Avg. Y = by+b,X + b, X2+ b, X3+ b,X




Notes 406

Even though third- or higher-order models may fit the data better than quadratic
(second-order) models, they are rarely used in DOE. Why? They require much larger
samples sizes for any given set of factors.

It 1s much more common to use quadratic models in an iterative fashion. A quadratic
model may not fit the data well over a large initial factor space, but it almost always
tells us which subset of the 1nitial factor space i1s most likely to give the results we are
looking for. The next step is to run another quadratric experiment in the smaller
region. The smaller the factor space, the better the quadratic model will fit the data.

This concept 1s illustrated on the next page.



lterated quadratic experiments

407

First experiment, wide ranges — “big picture”

Y ° //
(response to be /

minimized) First quadratic
approximation

True
response
° function

—
—
B
— —
— — —

<—— Data points

| | |
Low X Medium X High X



lterated quadratic experiments (cont'd) 408

Second experiment, narrow ranges — accurate modeling

Second quadratic
approximation

Low X Medium X  High X



Review: Models for categorical factors

409

Two-level categorical factor

MATL = Steel or Rubber

Average COST =+

f

u, 1f MATL = Steel

', if MATL = Rubber




Equation form of model 410

Categorical factors are represented by indicator variables
(also known as dummy variables)

Average COST = b, + b MATL|[Steel]

f

1 1if MATL = Steel
—1 1f MATL = Rubber

\.

MATL[Steel] = <




Simple linear model with all factors categorical 411

+ b, LGR[Low]

+ b, MATL|[Steel]

+ b, USAGE[50%]

+ b, GRIT[30]

(oA

\_

* Base price + extra for power windows

+ extra for air conditioning
+ extra for cruise control
etc.

\
nalogy: blue book pricing of used cars\

J

AR NN EEEEEEEEsEEEmsEEsEEEEEsEEEEsEEEEEsEEEEEmEEE ............................................ .....................................................................................

.....................................................................

..................................................................

........................................................................................................................................
...........................................................:_............................................. ..................................................................................
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...........................................................................................

........................................................................................
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......................................................................
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.....................................................................................................................



Categorical interaction model

412

Avg. COST = b,

~

# Factors| 4 5 6
Full factorial (FF)| 16 32 64
Min. sample size| 11 16 22
0
L NofFF| 69 50 34 J

+ b, LGR[Low]

+ b, MATL|[Steel]
+ by USAGE[50%]
+ b, GRIT[30]

+ b, LGR[Low]

+ b, LGR[Low’

+ b, LGR[Low

x MATL[Steel]
x USAGE[50%]
x GRIT[30]

+ by MATL[Steel] x USAGE[50%]
+ by MATL[Steel] x GRIT[30]
+ b, USAGE[50%] x GRIT[30]



7 Design Principles 3

* Bold strategy

* “Control group”

* Replication

e Randomization

* “Blocking”



Bold strategy

414

Use the entire feasible operating range in a first experiment

Continuous
Y

Linear approximation

True response function

o <« (X, Y)data points

| |
Low Continuous X High



Not bold enough 415

* Low and high levels of X are too close together

* We mistakenly conclude that X has no effect on Y

Continuous
Y

Low High
Continuous X



“Control group’

416

For each factor, one of the
levels should match the
current process

* Ideally, this 1s the middle
level for continuous factors

» At least one run in the
experiment should match the
current process settings, for a
“sanity check”

* In these types of designs, we
don’t usually refer to this as
a “control group”

Temp Press Dwell Mat'l
120 02 .
0

120 150

150

150 20
;50/ 150 B
180 50 2.0 B
180 100, 02 C
180 150 [1.1] [A |




Notes £

The units involved in a DOE may turn out to be uniformly different from those in
current production — either better or worse. This can be due to the effects of noise
variables on production units, or to special circumstances surrounding the creation
and handling of experimental units.

For each factor, one of the DOE levels should match the current state value of that
factor. This allows valid comparisons between current state and experimental process
settings. This is especially important when non-routine measurements, tests or
inspections are applied to experimental units.



Replication

418

Use a replicate or a
replicate run to
quantify the error

in the experiment.

This improves estimates
of coefficients and
precision in determining

factor significance.

Temp Press
120 30
120 50
120 150
120 150
180 30
180 50
180 150
180 150

Experimental
units




Notes £

Replication forces redundancy into the experiment. This 1s necessary for two reasons:

* To quantify the magnitude of error in the experimental data — differences between
units at the same design point are, by definition, due to error (variation in the
process that 1s not accounted for in the factors).

* To reduce the influence of error on the experimental results by estimating “pure
error.” This increases the signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the
validity of the results. Is there anything about the run order shown above that makes
you nervous? Please explain.



Randomization

420

Use a random number
generator to determine
the sequence in which
experimental units are

created and tested

(JMP does this for you.)

Temp Press
120 130
180 50
180 30
120 150
180 30
120 150
180 150
120 50

Experimental
units




Randomization 421

Benefits

» Reduces the chance of biased results due to nuisance variables
(factors not included in the experiment that may be changing while
the experiment is being conducted)

‘Doesn’'t require control of nuisance variables, which may be
unknown or uncontrollable

‘Results are more convincing to skeptics

What happens if you don t randomize?

* Nuisance (noise) variables may be changing during your experiment

» This increases the chance of drawing the wrong conclusions from
your experiment (significant factors, best levels, etfc.)

* Randomization guards against this

Drawbacks

* Impractical when some of the factors are hard to change
‘We'll see what to do about this later



Blocking 422
Experimental
Temp Press units
Blocking allows you to 120 50 @ Block 1
account for some nuisance Operator| Bob
. / / 2 .
variables 20 20 @ y Sh'ﬂ '1\
achine
180 150 @ Material | Lot 6
* Nuisance variables or |
factors are used to divide 180 50
the experiment into =
homogeneous "blocks” 180 150 @ Block 2
- Effects of nuisance factors ’ Operator| Carol
are separated from effects 50 20 @ Shift | 2
of other factors, for more , Machine | B
accurate analysis of factor 20 30 @ Material | Lot 7
significance —~
120 150




Agricultural origin of “blocking” 423

» Want to increase crop yields
» Experimental units are plots of land 1n a field

« Compare varieties, fertilizers, etc.

* Need 50 plots (runs), not 25

e Have to use a second field

« Differences 1n the soil will
cause differences in yields

Block 1

— More plots

Block 2



Why use blocking? 424

Use blocking when experimental runs cannot be completed within a
timeframe (shift, time allotted on a machine, etc.) or some other
constraint (batch of material, space, etc.)

Blocking systematically eliminates the effect of known, controllable
nuisance (noise) factors

o Makes predictions more reliable
o Quantifies the effects of nuisance variables

Improves precision with which treatment means are compared,
without increasing sample size

o Makes identification of important (significant) factors more
reliable

Protects against variation due to known factors not included in the
experiment



8 The Custom Design Process 425

We saw the Full-Factorial Design earlier, and learned:

A 2¥ full-factorial design can estimate main effects and
interactions, but cannot estimate quadratic terms

« A three level full-factorial (3%) design can estimate main

effects, interactions and quadratic effects, but 1s an inefficient
design.

Let’s look at some other designs.



Response Surface Designs

Painre

The central composite design (CCD) is a 2 factorial
with added axial or star runs.

It is (was) the most used response surface design when all factors are continuous

Above are images of two and three factor CCDs

« The CCD requires two axial runs for each factor, plus the 2¥ design runs
* 3 — 5 center points are recommended

* Total runs required for the 3-factor CCD are 8 + 6 + center points = 17-19.

A Response Surface Design can estimate main effects, 2-factor interactions
and quadratic effects, with more efficiency than the 3* full-factorial.



Response Surface Designs (cont'd) a7

Box-Behnken designs (left) are spherical, and do not have any points on
the corners of the “cube” contained by the limits of the factors.

The face-centered cube (right) is a variation on the Central Composite
Design, with axial points on the centers of the faces of the cube (for k=3).

* 3 — 5 center points are recommended for each of these designs
* Total runs required for the 3-factor Box-Behnken design 1s 15-17.
* Total runs required for the face-centered cube 1s the same as the CCD (17-19).

As Response Surface Designs, these can estimate main effects, 2-factor
interactions and quadratic effects.



Custom Designs 428

JMP’s Custom Design platform uses modern computing power to employ a
coordinate-exchange algorithm for determining the best set of points to use in
a Response Surface Design, creating an “optimal design.”

Often, fewer runs are required than the classical designs just presented.

When you look at the points chosen for your experiment, you may notice:
* Center points--all continuous factors at the middle level of the range given
* Points at the corners of the “cube”--all factors at high or low levels

* Points 1n the centers of the “cube” edges (Box-Behnken) or faces (face-centered
cube)—some factors at the middle level, others at high or low levels

* You will not see axial runs extending beyond the “cube,” as in the original CCD

Because fewer runs are used in these designs,
there will be some correlations and aliasing between termes.

(See Design Evaluation > Color Map on Correlations)



Steps for Creating a Custom Design 429

1. Specify the Responses and general goals (maximize, minimize, or match target).

2. Specify the Factors.
* For continuous factors, specify the high and low levels.
» For categorical factors, specify each level to be included in the experiment.

3. Specify the statistical Model (usually RSM).

4. Specify the blocking factor, if blocking 1s needed. (Click RSM again)

e Enter the maximum number of runs that can be completed in one block (timeframe,
batch of material, etc.).

« JMP will evenly split required runs into blocks no larger than the number specified
5. Create the design matrix. (Make Design)
6. If desired, use Design Evaluation > Power Analysis to determine sample size.
7. Back up to make changes (Back), or create the data table (Make Table).
8. Save the table.

Later: Run the experiment in the order given. Enter results into table.



1. Specify the Responses and general goals

430

A = Custom Design

A Responses

DOE — Custom Design

Add Response || Remove

Mumber of Responses...

Response Name

(znal

Lower Linmt

Upper Limit

Importance

bond \ Match Target
print Maximize
\ J
4 Factors
Add Factor =|| Remove | Add M Factors 1
Name Role Changes Values

....................................................................................................................................................................................................................................................................................................................................................



431

2. Specify the Factors

A = Custom Design

< Responses

Add Response =|| Remove | Mumber of Responses...

Response Name Goal Lower Limit Upper Limit Importance
bond Match Target
print Maximize

4 Factors Do not use this op‘rion!!>

Add Factor »|Ng&emove | Add N Factors 1

Rocle

Mame
Erm e Continuous. ... Eas v o 150 )
Centinucus ¥ 150
Continuous 2
\_ Y,

Add a factoNgy clicking the Add Facter button. Double click on a
factor name or [2x& to edit it.

tontinue \




3. Specify the statistical Model (usually RSM) 432

4 Model
PMain Effects| |Interactions = R5M Cross || Powers « | |Remove Term
Mame Estimability

Intercept Mecessary
temp Mecessary
press Mecessary
dwell Mecessary
temp*temp Mecessary
temp*press Mecessary
press’press Mecessary
temp*dwell Mecessary
pressTdwell

dwell"dwell

Mecessary

> Alias Terms

4 Design Generation

[ | Group runs into random blocks of size: 2
Mumber of Center Points: 0
Mumber of Replicate Runs: 0

[ Response Surface Model ]
Mumber of Runs: :
. 10 Do not label your blocks until

: o
@ Default 16 after you have done this!
1 User Specified 16



4. Specify the blocking factor, if blocking is needed. 433

Once you specify the Model, the Default and Minimum Number of Runs
are displayed.

Use this information, or User Specified Number of Runs (another
sample size you’ve determined), to decide whether Blocking 1s needed.

It’s not a bad 1dea to split your experiment into blocks just in case, if it 1s
likely to take several hours or more to complete. For example, you may
have a block size equal to half of a shift, just in case there’s an
evacuation, or the machine goes down, or you get called away urgently,
and cannot complete the experiment all at one time.

If Blocking is needed:

1. Click User Specified Number of Runs, even 1f you want to use the
Default (this prevents JMP from increasing the sample size to a
multiple of the block size),

2. Go back up to Factors to enter a Blocking factor,
3. Specify Model (click RSM) again.



4. Specify the blocking factor, if blocking is needed. (cont'd) 434

* Select User Specified Number of Runs to prevent an increase due to

blocking
4 Design Generation
[ ] Group runs into random blocks of size: 2
Mumber of Center Points: 0
Mumber of Replicate Runs: 0
Number of Runs:
1 Minimum 10

\-_‘- Default 16
16

@ User Specified

Make Design

* Go back up to factor specification:
Add Factor > Blocking > Select the maximum runs possible per block

If your maximum is not listed,
select Other... to Specify Number of Runs per Block

\ E% Please Enter a Number X

Specify Number of Runs per Block 16|

[ ok |[ cancel




4. Specify the blocking factor, if blocking is needed. (cont'd) 435

« Name the Blocking factor, so you will recognize it in the Design Matrix and Table:

A Factors

Add Factor =|| Remove | Add M Factors 1

Name Role Changes Values
4l temp Continucus Easy 120 150
4l press Continucus Easy 50 1350
A dwell Confinuous ... S 2.2 2
| Shif Blocking.......... B, 1 2

* You do not need to be concerned about how many “levels” are shown under
“Values.” JMP will handle this when it creates the design.

« Re-specify the Model. (Click RSM again.) Click through JMP comments
about categorical and blocking factors in RSM models.



4. Specify the blocking factor, if blocking is needed. (cont'd) 436

DO NOT use this option for setting up a blocking factor!

4 Model
Main Effects| |Interactions - R5M Cross Powers + | |[Remove Term
MName Estimability
Intercept Mecessary
temp Mecessary
press Mecessary
dwell Mecessary
temp*temp Mecessary
temp*press Mecessary
press’press Mecessary
temp*dwell Mecessary

> Alias Terms

4 Design Generation NO!
—t—Srooprons imtorandonr otk of e P Don’t do lt'

JMP will generate uneven block sizes, if this option is used.



5. Create the Design Matrix.

4 Model
|Mair1 Effe::tsl |Ir1tera|::tiur15 ‘-'H R5M || Cross ||Puwer5 - | |Remﬂve Term
Mame Estimakility
Intercept Mecessary
temp Mecessary
press Mecessary
dwell Mecessary
Shift Mecessary
ternp™temp Mecessary
temp*press Mecessary
press”press MNecessary
temp*dwell Mecessary
press*dwell Mecessary
dwell*dwell Mecessary

I Alias Terms
4 Design Generation

Mumber of Center Points: 0

Number of Replicate Runs: 0

Mumber of Runs:

) Minimum 10
) Default 16
(@ User Specified 16

Make Design

—

Don’t worry about the order of the blocking
factor (Shift). This will be reordered when

you Make Table.

4 Design

Run temp press

1 150 100

2 120 50

3 180 150

4 180 50

5 180 50

6 120 50

7 180 150

8 150 100

! 150 100

10 1527 50

11 150 085

12 120 100

13 150 150

14 120 150

13 120 150

16 180 100

> Design Evaluation
Output Opticns
4 Data Table Options

[ | Save X Matrix

[ | Simulate Responses

[ | Include Run Order Column
Run Crder:

437

dwell Shift

2
0.2
0.2

2
0.2

2

2
0.2
1.1
1.1
1.1
1.1
1.1
0.2

2
1.1

Randomize within Blocks *~



6. If desired, use Power Analysis™ to determine sample size.

438

Design Evaluation > Power Analysis

< Design Evaluation

< Power Analysis

Significance Level [ 0.05

Anticipated RMSE

Anticipated
Term Coefficient

Intercept
temp

[Press

dwvell

Shift
temp™temp
temp®press
press*press
temp™dwell
press dwell
dwell*dwell

-

e || ok | o || b | b | b | o | b || b |

Power
0.402
0.706
0.706
0.705
0.885
0.262
0.623
0.262
0.623
0.623
0.263

* Details of this procedure are presented later, in the Determining Sample Size section.



/. Back up to make changes or create the data table. 439

» Click Back to back up
and adjust sample size.

« Adjust User Specified

Number of Runs Once the design is as needed:

» Click Make Design * Check Include Run Order Column
Qutput Options o click Make Table
A Data Table Options i

] Save X Matrix JMP creates an editable table.

[ ] Simulate Responses

[ ] Include Run QOrder Column
Run Crder: | pandomize within Blocks ~ Output Options

%ﬁh'e/ 4 Data Table Options
Back [ ] Save X Matrix
|| Simulate Responses

Include Run Order Column
Run Crder:

Randomize within Blocks ~

Make Table|<
Back




8. Save the table. 440

* You can reorder columns and adjust any odd factor levels by entering the
desired value

o Odd levels are an artifact of the procedure JMP uses to create custom designs

o Before creating the table, you can also back up to create another design, and
see 1f that takes care of it

o In this example, temp of 152.7 would be changed to 150, press of 98.5 would
be changed to 100

w | Custom Design Pld (= . .
E?EJEI_” CustDTDDE§i9nl » temp press dwell Shift bond print RunOrder  ° Run your CXpGI‘lIIlCIlt 1n
ritercn tima . . .
b Model " o e e ‘E the order specified and
B+ Evaluate Desi : . .
b DgEuSi:m:slgn 3 1s0| 150 111 3 enter data into this table.
4] 1200 100 111 4
5| 180 50 02 1 5 . .
;Ec:-lum;s[?;’[]]l 6 120 50 02 1 s <« If data is entered directly
temp 7 180 50 21 7 -
ggrﬂﬁ: e . Into the tablg: as the
4 e 9| we0] 00| a2 : experiment is performed,
A bond %k it’ 1 1
e o - it’s not a bad 1dea to print
4 Run Order 12 150 985 11 2 12 a copy of the table and
13| 120 150 22 13
1 o keep a hard copy also, as
= |Rows 15| 120 50 22 15 you go . . . just 1n case.
All rows 16 16 150 100 02 2 16
Selected 0
Excluded 0
Hidden 0
Lakelled 0




Exercises 441

Use the Custom Design process described on the previous slides to create Response
Surface designs for the exercises on the following pages. In addition to special
Instructions given in each case, follow these general instructions:

* Determine whether each factor 1s continuous or categorical
 Use the sample size given to determine 1f blocking 1s needed.

 For each exercise, have the instructor review your matrix when you are finished.

* Make and save each design table.



Exercise 8.1 442

Control factors Levels
Heat treat Anneal Solution/age
Polish Chemical Mechanical
Peen Yes No

Response variable: Cycles to failure

Blocking factor: none

Experimental unit: one small test piece

Sample size: 12 (constraint due to availability of test fixtures)



Exercise 8.2

443

Control factors Levels
Contact wheel land-groove ratio (LGR) Low High
Contact wheel material (Material) Steel Rubber
Belt usage limit (Usage) 50% 80%
Belt grit size (Grit) “30” “50”

Response variable: Cost

Experimental unit: one large casting

Sample size: Use the default sample size. Enter it here

Blocking: At most, 10 runs can be completed in a morning or an
afternoon. You want to split the runs evenly between two blocks.

Blocking factor: 7ime of day (morning vs. afternoon)




Exercise 8.3 444

Control factors Ranges
Force 70 to 150
Energy 2775 to 325
Amplitude 70 to 90

» Response variable: Leak rate

 Blocking constraint: Due to production needs, a maximum of
20 containers can be molded in each tool cavity

* Blocking factor: Cavity (parts are molded from 4 tool
cavities)

» Experimental unit: one welded plastic container

« Sample size for experiment: 68



9 Determining Sample Size for an Experiment 445

Sample size, N, is the total number of “runs” in the experiment.

How should sample size be determined?

o First, you must have at least one run for each model term.

More factors and more complex model = more terms and more runs

* Second, your purpose must be clear for a given experiment.

Process optimization with RSM require more runs for each factor than
experiments for screening for important factors

Less ambiguity in results = more runs

* Beyond that, there are several answers to the question of how to determine
sample size. Two are presented on the following slides.



How should sample size be determined? (cont'd) 448

1. The quickest answer that most statisticians experienced in
experimentation give, is that the sample size depends on your budget.
Run the best designed experiment you can, within your budgetary
constraints.

Think through your experimental strategy before running your first
experiment

Don’t use more than about 25% of your entire budget on your first
experiment

Compare potential designs with Design Diagnostics > Compare Designs
o  Fraction of Design Space Plot, when prediction using the model, is a goal
o  Color Map on Correlations, whenever less than a full-factorial is used



How should sample size be determined? (cont'd) 441

2. Use JMP’s Design Evaluation > Power Analysis to ensure that:

Main Effects (e.g. Temp, Dwell, X1) have a Power of 0.9 to 0.8
Interactions (e.g. Temp x Dwell, X1*X2) have a Power of about 0.8
Quadratic Terms (e.g. Temp x Temp, X1*X1) have a Power of about 0.5

Use the Power Analysis as it is when you open it, without changing Anticipated
RMSE or Coefficients (this allows good detection of effects with 3,, > RMSE)

Adjust Power by going Back and changing the User Specified Number of Runs

£ Design Evaluation

4 Power Analysis

Significance Level | (.05
Anticipated RMSE 1

Anticipated
Term Coefficient Power
Intercept 1| 0.615
X1 1| 0.962
X2 1| 0.962
X3 1| 0.962
X1*X1 1| 0.547
X17X2 1| 0.899
X2*K2 1| 0.547
X1*X3 1| 0.889
X2¥X3 1| 0.899
X3I*X3 1| 0.547



Example: Using Power Analysis to Determine Sample Size 448

Set up Responses, Factors and Model, then click Make Design

A = Custom Design
4 Factors

£ Define Factor Constraints

® MNone

() Specify Linear Constraints

) Use Disallowed Combinations Filter
() Use Disallowed Combinations Script

<4 Model
|Main EFFects| |Interacti-:ur15 T|| R5M || Cross ||P|:|wers - | |Rer‘n|:n.re Term
Mame Estimakility
Intercept Mecessary
temp Mecessary
press Mecessary
dwell Mecessary
temp™temp Mecessary
temp*press Mecessary
press*press Mecessary
temp®dwell Mecessary

[> Alias Terms

£ Design Generation

[ ] Group runs into random blocks of size: 2
Mumber of Center Points: a

Murnbrer of Replicate Runs: 0

Mumber of Runs:

) Minimum 10

(® Default 16

() User Specified 16

Make Design



Example: Using Power Analysis to Determine Sample Size (contd) | 449

Click on the triangle next to Design Evaluation, then on the triangle next to
Power Analysis to open the Power Analysis report:

4 Design Evaluation

Review the Power Analysis to P
determine lf all: Significance Level | 0.05
Anticipated RMSE 1
*  Main Effects (e.g. temp, dwell, X1) Anticipated
Term Coefficient Power
have a Power o1 0.9 to 0.8 \Intercept 1] (0.427)
. temp 1 0.75
* Interactions (e.g. temp*dwell, oress 11| o075
X1*X2) have a Power of about 0.8 el 1] 01
temp™temp 1| 10.278
*  Quadratic Terms (e.g. dwell*dwell, temp”press 1 e
press*press 2
X1 *Xl) have a Power of about 0.5 temp*dwell 1| | 0.657
press dwell 1) | 0.657
dwell*dwell 1 10.278
—

In this example, all Power values are too low. The sample size needs to be increased.



Example: Using Power Analysis to Determine Sample Size (contd) | 45

» Click Back.
» Select User Specified and increase the Number of Runs.
o Click Make DeSign 4 Design Generation

[ ] Group runs into random blocks of size: 2

Murnber of Center Points: 0
Mumber of Replicate Runs: 0
Mumber of Runs:

1 Minimurm 10

i) Default 16

® User Specified 2[1
Make Design

* Review the Power Analysis report again, to determine whether the power
levels meet the requirements.

o This may require several iterations
o If you overshoot, go back and reduce the number of runs



Example: Using Power Analysis to Determine Sample Size (contd) | 451

It took 25 runs for all model terms to exceed the desired power.

(Because every design is a little different, it’s possible that a design of 24 or 26
runs could (eventually) be generated that exceed the desired power levels.)

An experimenter may choose a slightly smaller sample size, as the desired
power levels are approximate (“about 0.8”) and are usually conservative.
4 Design Evaluation

4 Power Analysis

Significance Level | 0,05
Anticipated RMSE 1

Anticipated
Term Coefficient Power
Intercept 1| 0.615
temp 1 0.9e2
[press 1/ 0.962
dwell 1| 0.962
temp*temp 1 0.347
temp*press 1| 0.889
press*press 1 0547
temp*dwell 1/ 0.889
pressdwell 1/ 0.809
dwel[*dwell 1 034



Power Analysis with Categorical Factors at more than 2 Levels 3
When categorical factors are at more than two levels,
the Power Analysis report gets a little messy.
£ Design Evaluation
4 Power Analysis
Significance Level | 0.05
. Anticipated RMSE 1
. se the upper part of the Power Analysis, as Anticipated
Use the upper part of the P Analysis, pat
before, for all continuous factor: ;i;:ept Cocificen P
o main effects Intro APR 1] 0.882
. . —> Time Pericd 1 0877
O Interactions Gift 1 1 0573
. Gift 2 -1 0.631
o quadratic terms - 7 0575
Intro APR=Intro APR 1 0.297
Intro APR*Time Period 1 0.838
Time Pericd*Time Period 1 0.307
Intro APR*Gift 1 1| 0477
Intro APR*Gift 2 -1 0477
Intro APR*Gift 3 1 0477
Tirme Period*Gift 1 1 0476
Time Period*Gift 2 -1 0476
. . Time Pericd™Gift 3 1 0476
 Use th§ little table below for all categorical factor: e
o main effects Effect Power
—> (5ift 0.763

o 1interactions that include categorical factors —— iwosrrecit 0.2
Time Pericd*Gift 0,629



Exercise 9.1 453

We are planning an experiment to optimize a monofilament extrusion process with 4
continuous factors X1 to X4. The response variable is tensile strength.

* Optimization experiment = Response Surface Model needed
* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required 1n this experiment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels. ]



Exercise 9.2 454

We are planning an experiment to optimize an ultrasonic welding process with 3

continuous factors and a 4-level categorical factor. The response variable 1s
the weld depth.

* Optimization experiment = Response Surface Model needed

* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required in this experiment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels. ]



10 Screening Experiments 455

Optimization Screening

Smaller number of factors | Larger number of factors
Main and interactive effects | Main and interactive effects 1f
categorical factors at only 2-levels;
otherwise main effects only

Quantitative factors have 3 levels | All factors have 2 levels (usually)

Identify the best factor levels | Identify the “active™ factors




About screening experiments 456

* They are usually conducted early in the process of optimization
* They involve a relatively large number of factors

* Their objective is to identify a smaller set of influential factors for
further experimentation

* It 1s likely that many factors considered have little or no effect on the
response (sparsity-of-effects)

* They use the smallest feasible design for the given number of factors —
saves time and money

* They are based on main-effect models, although with some designs,
factors with interactions and quadratic effects can be 1dentified

* They usually consist of factors at only two levels

* They rank the factors by the size of their estimated effects



Bold strategy 457

Levels of X are far enough apart to quantify the effect

. Data points -~

-
-
-
P
-
-
-
-
-
-
-
-
-
-

Two-level categorical X



Not bold enough 458

Levels of X are too close to quantify the effect

Two-level categorical X



Example

* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations




Example (

cont'd)

Black Belt

"We should brainstorm factors
for a DOE."

Plant manager
"We can't experiment with such
an expensive part!”

Ti metallurgist

“The problem doesn't replicate
on smaller parts.”

Part engineer
"What have got to lose? It's
been weeks since we shipped
any of thesel!”



Example (cont'd)

461

Current state | Possible future
Process area Factor Levels X variable state solution
Slurry Batch 1 vs Batch 2 v
# Dips 14 vs 18 v
Shell making
Bake time 6 hrs vs 48 hrs v
Bake temp 1950° vs 2050° v
Alloy cost Low vs High v
Alloy status New vs Revert v
Casting
Heat shield Mild vs Stainless v
2400 vs 3200 4

Fan speed




Example (cont'd) 462

Above i1s the list that emerged from the brainstorming session.
» Three of the factors are variables in the current state.

* The other five are possible improvement ideas for the future state.
« Total: 8 factors

* Plant manager agreed to 16 castings

e All factors are at two levels



Steps in creating a Screening Design

463

1)
2)
3)

4)

5)

6)

/)

DOE — Classical - Two Level Screening — Screening Design
Responses — Response Name — O2 — Goal — Minimize

Factors — Add all factors as in previous designs (continuous or
categorical, number of levels for categorical)

Enter factor names and levels from the table on the previous page —
Continue

Choose Screening Type — Construct a main effects screening design
— Continue —> Make Desigh — Make Table

(The matrix below has been sorted by Slurry, # Dips, Bake time and
Bake temp)

Save as Ti casting alpha case



Design matrix

=] Ti casting alpha case - IMP

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

A

90 Lol | =

160

Lo I« T (U o TR 0, R oSy R IR O R S

el el e i e
(e PR Y N W IR B T SO

Slurry
Batch 1

Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2

# Dips
14
14
14
14
18
18
18
18
14
14
14
14
18
18
18
18

Bake time Bake temp Alloy cost Alloy status

6 hrs
b hrs
6 hrs
48 hrs
b hrs
48 hrs
48 hrs
48 hrs
6 hrs
48 hrs
48 hrs
48 hrs
6 hrs
6 hrs
6 hrs
48 hrs

1950°
1950°
2050°
2050°
2050°
1950°
1950°
2050°
2050°
1950°
1950°
2050°
1950°
1950°
2050°
2050°

High
High
Low
High
Low
High
Low
Low
Low
Low
Low
High
High
Low
High
High

Mew
Revert
Revert
Mew
Revert
MNew
Revert
Mews
MNew
Revert
Mew
Revert
Revert
Mew
MNew
Revert

Heat shield Fan speed

Mild
Stainless
Mild
Stainless
Stainless
Mild
Stainless
Mild
Mild
Mild
Stainless
Stainless
Mild
Stainless

Stainless
Mild

3200
2400
3200
2400
2400
2400
3200
3200
2400
2400
3200
3200
3200
2400
3200
2400




Analyzing the Screening Experiment . . .

... two months (and many sleepless nights) later...

DOE participant files \ Ti casting alpha case with data

::ﬂ Ti casting alpha case with data - JMP -

File Edit Tables Rows Cols DOE  Analyze Graph Teools View Window Help

-

= |Ti casting alp... [* q

Design Custom Desi | [™ Slurry  #Dips Bake time Bake temp Alloy cost Alloy status = Heat shield | Fan speed 02
b Model 1 Batchl 14 48 2050 High Revert Mild 3200 191
2 Batchl 14 48 2050 Low New sS 2400 a1
3 Batchl 14 ] 1850 High New 55 3200 76
= |Columns {3/ 4|Batch1l 14 6 1350 Low Revert Mild 2400 a0
:i’%’lgg’; S5 Batchl 18 48 1950 High Revert S5 2400 184
& Bake time 3 6 Batchl 18 48 1850 Low New Mild 3200 132
i, Bake temp 3K 7 Batchl 18 6 2050 High New Mild 2400 144
ik Alloy cost 3¢ g Batch 1 18 6 2050 Low Revert 55 3200 197
ik Alloy status 3 o Batchz 14 48 1350 High New Mild 2400 174
th Heat shield 10 |Batch? 14 48 1950 Low Revert s 3200 128
:FDaE”;}EEd ¥ 11 Batch2 14 ] 2050 High Revert 55 2400 166
12 |Batch2 14 6 2050 Low New Mild 3200 255
= |Rows 12 |Batch2 18 48 2050 High New 55 3200 318
All rows 16 14 Batch2 18 48 2050 Low Revert Mild 2400 186
— L 15 Batch2 18 ] 1950 High Revert Mild 3200 111
E’E;';:ne'j g 16 |Batch2 18 6 1950 Low New sS 2400 713
Lakelled 0




The model dialog

| Model Specification
Select Columns

* 8 Columns

ik Slurry

ik # Dips

ik Eake time
ik Eake temp
th Alloy cost
il Alloy status
i Heat shield
il Fan speed
402

Pick Role Yanables
AC

AR ETAFA

Weight

Freg

By

=t

FAETAF PSS FTr
QR TIORE L 1L EFIC

FAETAF PSS FTr
QR TIorRG L F1L EFIC

FFETELO
L L

Construct Model Effects

Add

Cross

Mest

Macros -

Degree

2

Attributes |
Transform |+

] Mo Intercept

Slurny

Z Dips

Bake time
Bake temp
Alley cost
Alloy status
Heat shield
Fan speed

Perscnality: |5tandard Least Squares - |

Emphasis: |I"-.-'1ir1irnal Report ""|
Help m
Recall | [7] Keep didlog open
Remove

* Can't analyze
interactive
or quadratic
effects in
this
screening
experiment

« Just click on
Run

B O




Analysis

467

The parameter estimates have equal vanances.
The parameter estimates are not correlated.

Estimate

-27.87500

-27.50000 |
-19.62500 ||
-10.00000 /1

0.50000
9.37500 [
-5.62500

[ Red triangle ]< Response 02
l Effect Screening
[ Effect screening ]
Lenth P5SE
l 14.625
Pareto Plot of Estimates
[ Pareto Plot ] > | Term
Slurry[Batch 1]
e . " Bake temp[1950]
Big hitters # Dips[14]
Fan speed[2400]
Slurry Bake time[48]
Bake Temp Alloy status[MNew]
) Heat shield[Mild]
#H DIPS Alloy cost[Low]

-4.50000 1

* Slurry 1s a variable 1n the current state

* The O, values for castings made from Batch 1 shells were much lower

than those from Batch 2

* The operators did not report any differences in the make-up of the two

batches



Notes 468

To interpret screening experiments, use the Effects Screening analysis element as
shown above. It shows showing the relative magnitude of the factor effects. The 1dea is
to use the factors with the largest effects in a subsequent optimization experiment.

The interactive and quadratic effects are left out of the model. This biases the signal-to-
noise ratios downward. The P-values are not to be trusted, so factors appear less
significant than they really are.



Ideal follow-up plan 469

* Do a screening experiment in the shell-making area

* Include Bake temp, # Dips and the important shell-

making variables 1n an optimization experiment



What actually happened 470

* They changed Bake temp to 1950 and # Dips to 14 (easy)

* The problem immediately went away

13 of the 16 DOE castings were good to ship as is

* Only 1 eventually scrapped

e Worst-case annual cost avoidance: $20.8M

* No immediate follow-up



Root causes 471

* Investigation of the slurry effect eventually lead to the root
cause of the problem

— The density of the ceramic powder used to make the
shell had increased over time, resulting in heavier shells

— The increase had been noted, but no action was taken
because the densities were still within spec limits

— At the time, shell weights were not monitored

* Why no significant correlations 1n the “file cabinet” data?

— The O, data in the engineering database was post rework
rather than first pass



Control limits vs. spec limits 472

USL

Density

* The data was trying to tell us something

* Disaster could have been averted



Exercise 10.1 473

a) Create a standard screening design matrix for the 10 factors shown below.
Note: A sample size of 16 would have been adequate, but the project team
decided to use a sample size of 24.

b) Save the table of factors for use in the next exercise:
Click the red triangle next to Screening Design > Save Factors (table opens)

File > Save as... > extrusion design factors

c) Save your design matrix as extrusion design I.jmp.

d) DOE Participant Files \ extrusion 0.jmp. Analyze the data as shown for
standard screening designs.

¢) Based on the results for Strength and Ductility, find the best set of 4 factors for
a subsequent optimization experiment.



Exercise 10.1 (cont'd)

474

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

0.0
2.0
60
0.1

260
260
260
260

to
to
to
to

to
to
to
to

100 to

150

to

0.5
4.0
80
0.25

320
320
320
320

200
300

Responses are Strength and Ductility of the extrusions



Another way to analyze 475

The experiment in the previous example was conducted years ago.

JMP can now analyze this experiment differently,
giving more information!

The O2 experiment can be analyzed using JMP’s Fit Two Level Screening
Requirement for this type of analysis: All factors are at 2 levels
Reports and interpretation are very different
Based on the assertion that relatively few of the effects are active
Most are 1nactive (insignificant), meaning their effects are negligible

Often, 1n screening experiments, there are no degrees of freedom for
error

Estimates of inactive effects are used to estimate random error in this
analysis

Some information can be gained about 2-factor interactions

2-Factor interactions are aliased with each other



Fit Two Level Screening

DOE participant files \ Ti casting alpha case with data

- DOE > Classical > Two Level Screening > Fit Two Level Screening

- Set up as shown (all factors are cast into X)

- Click OK

TH' Fit Two Level Screening - IMP

Select Columns

* 9 Columns

- NSlurry

| 4 Dips

| §Bake time
| NBake temp
" MAlloy cost
- NAlloy status
| MHeat shield
| NFan speed
40z

Locking at lots of effects to help decide which te put in the medel.

H 4
Cast Selected Columns into Roles Action
Y 402 0K
optional numeric Cancel
¥ ik Slurry
i, # Dips Remowve
ik, Bake time Recall
il Bake temp Help
E.!'f '\.-'_- '\_-.P. i




Fit Two Level Screening (cont'd) 477

Below is the Contrasts report:

«  Contrast column shows the regression parameter estimate
o An asterisk shows estimate is not the same as the regression estimate
o An asterisk would indicate that we need to use the Fit Model platform
o There are no asterisks in this report

« Individual p-Values indicate significant effects

- Bar Chart shows terms significant at the 0.10 level

« Analysis may not be exactly the same 1f re-run, due to the analysis process
« Note that there 1s an interaction that 1s significant!

o We cannot tell 1f the significant interaction 1s Bake temp*Fan speed
o It could be any of the interactions under Aliases
o The estimate of the effect (Contrast) is actually the sum
of all of the aliased interactions
o This 1s because this 1s a screening design
o Additional experimentation is needed determine the active interaction



Contrasts report

4 Contrasts
Lenth Individual Simultaneous
Term Contrast t-Ratio  p-Value p-Value Aliases
Slurry
Bake temp
2 Dips 19.6250 1 1.62 0.1126 0.7222
Fan speed 100000 : if i : WM [ i 0.83  0.3818 1.0000
Bake time 95000| : i : : M| 0.79  0.4068 1.0000
Alloy status 93750 | i i R R -0.78  0.4133 1.0000
Heat shield 56250| : il : i |H 047  0.6697 1.0000
Alloy cost 4.5000 [ 037  0.7320 1.0000
Slurry*Bake temp 987350| : :| : : ::] N 0.82 0.3882 1.0000 # Dips*Bake time, Fan speed*Alloy status, Heat shield*Alloy cost
Slurry*# Dips -65000( : i : ‘MM : :[ : -0.54  0.6237 1.0000 Bake temp*Bake time, Alloy status*Heat shield, Fan speed*Alloy cost
Bake temp*# Dips =1 8750 | RS 10z s O -0.16 0.8871 1.0000 Slurry*Bake time, Fan speed*Heat shield, Alloy status*Alloy cost
Slurry*Fan speed -0.8750| i il i i | i Q[ -0.07  0.9474 1.0000 Bake temp*Alloy status, Bake time*Heat shield, # Dips*Alloy cost
! Slurry*Alloy status, # Dips*Heat shield, Bake time*Alloy cost
# Dips*Fan speed -6 1250 || & il G s sk -0.51 0.6434 1.0000 Bake time*Alloy status, Bake temp*Heat shield, Slurry*Alloy cost
Fan speed*Bake time 67500 : :': : HE : " : 0.56 0.6115 1.0000 # Dips*Alloy status, Slurry*Heat shield, Bake temp*Alloy cost




Fit Two Level Screening (cont'd)
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The Half Normal Plot graphically identifies significant effects

Significant effects or terms fall off (away from) the blue line
- The additional point off the line is # Dips, which was near the cut-off

- Here, 1t appears to be significant

- One could choose to carry this term forward

< Half Normal Plot

40
35
30
25
20
15
10

5

Absolute Contrast

0
-5

e

0.0 0.5

Lenth PSE=12.0038
P-Values dernved from a simulation of 10000 Lenth t ratios.

Make Model

Run Model

Bake temp?Fan speed
ske temp, Fan spee

Slurry

Bake temp

1.0 1.5 2.0 2.5
Half Mormal Quantile



Fit Two Level Screening (cont'd)

« Click Make Model

« Fit Model window will come up

O

O

©)

Significant terms have been carried forward

Terms can be added to the model

480

# Dips could be added (probably should be, based on Half Normal Plot)

B Selected Model - IMP

4 =/ Model Specification

Select Columns

* 19 Columns

i Slurry

i # Dips

i Bake time
ik Bake temp
i Alloy cost
i Alloy status
ik Heat shield
i Fan speed
A0z

Pick Role Variables

4o

Weight
Freg aptional nurmeric
By

Construct Model Effects

Add Slurry
Bake temp

Cross Bake temp*Fan speed

Mest

Macros =

Degree
Attributes (=
Transform [=

[] Mo Intercept

Personality: | Standard Least Squares
Emphasis: | Eefect Screening

| Help | | Run

[ ] Keep dialog open

L

L




Fit Two Level Screening (cont'd) 481

° Clle Run B= Report: Fit Model - IMP — O >

. L 4 = Response 02
« This familiar report comes up  seffect summary

. . Source LogWorth S PValue
e This analy81s got us further Bake temp*Fan speed 2.869 = (0 i |oooms
Slurry 2.074 SRR A 0.00544
o Presence of interaction T e e e e et e Y
Femove Add Edit |:| FDR ('* denctes effects with containing effects above them)
o Need higher level terms N
A Summary of Fit
- Additional experimentation to: RS 075372
RSgquare Adj 0.69215
o Determine interaction o

O tlmlze Observations [or Sum Wgts) 16
© p I* Analysis of Variance

< Parameter Estimates

Term Estimate S5td Error tRatio Prob:|t]
Intercept 166 8.861419 18.73 <.00071*
Slurry[Batch 1] -27.875 8.861419  -3.15 0.0084°
Bake temp[1950] -275 8861419 -3.10  0.0091%
Bake temp[1950]*Fan speed[2400] 3675 8861419 415 0.0014°
[ Effect Tests
[ Effect Details




Definitive Screening Design 482

A Definitive Screening Design is a very effective screening design
« Factors must be either continuous or two-level categorical

« It can be a good alternative to a Custom Design when six or more factors

“A minimum run-size DSD 1s capable of correctly identifying active terms with high
probability 1f the number of active effects is less than about half the number of runs
and if the effects sizes exceed twice the standard deviation. However, by augmenting
a minimum run-size DSD with four or more properly selected runs, you can identify
substantially more effects with high probability. . . . Extra Runs substantially
increase the design’s ability to detect second-order effects.”

--From JMP’s Overview of the Fit Definitive Screening Platform

. . .y b
“Effect sizes exceed twice the standard deviation” - ;" > 1,

which means that the difference between the average response at the high level and
at the low level 1s 2o, or 2 * std dev. (Remember, the coefficient is the effect/2.)

“Second order effects” include 2-level interactions and quadratic terms.



Example

Using the same situation as in the previous example:

-  Enter response and factors, as usual

«  Set up Design Options, as shown. (4 Extra Runs are recommended!!!)

) DOE - Definitive Screening Design - JMP — ([ X

File Edit Tables Rows Cols DOE  Analyze Graph Toeols View Window Help
A = Definitive Screening Design

4 Responses I

|Add Response '|| Remowve ||Number of Responses.., |

Response Mame Geal Lower Limit Upper Limit Impeortance
N - [ [ [

< Factors
Marne Role Walues :
4l Bake temp Continuous 1950 2050 i
ik Alloy cost Categorical Low High
ik Alloy status Categorical MNew Rewvert
ik Heat shield Categorical Mild Stainless
4l Fan speed Continuous 2400 3200

A Design Options

) No Blocks Required
@ Add Blocks with Center Runs to Estirnate Cuadratic Effects
) Add Blocks without Extra Center Runs

Mumber of Blocks :
Mumber of Extra Runs =

D
[]
4




Example (cont'd)

This Definitive Screening Design requires 22 runs

The Definitive Screening can be run, then augmented, if needed

In the previous example, only 16 runs were required
However, a follow-on optimization experiment was needed

This requires many fewer runs (and other resources) overall

[

-

[ T s R L (R ERR R W I U [

Pl | Mg | Mg | | et | et | ek | et | ek | b | ek | ok | ek
Pl | ek | S| WD 0D = | O WA | WD P = S| WD

Block  Slurry | # Dips Bake time Bake temp

Fd  Pod Pod Ped Pod Pod Pod o Pd Pod Pl —b b b ek ok ek ok R ok ok ok

Batch 2
Batch 2
Batch 1
Batch 2
Batch 1
Batch 1
Batch 1
Batch 2
Batch 1
Batch 2
Batch 2
Batch 1
Batch 2
Batch 1
Batch 2
Batch 1
Batch 1
Batch 1
Batch 2
Batch 2
Batch 1
Batch 2

18
14
18
18
14
14
18
18
14
14
18
14
18
18
18
18
14
14
14
14
14
18

27
B
E
43
B
43
43
27
27
45
B
27
43
E
43
43
B
B
43
B
45
E

2000
2050
1950
1950
2050
2050
1950
2050
2000
2050
1950
1950
2050
2050
1950
2050
1950
2050
1950
1950
2000
2000

Alloy cost | Alloy status | Heat shield | Fan speed

High
Low
Low
Low
High
High
High
High
Low
High
Low
Low
Low
Low
High
Low
High
Low
High
High
Low
High

Revert
Revert
Mew
Mew
Revert
Mew
Mew
Revert
Mew
Revert
Revert
Mew
M ew
Mew
Revert
Revert
Revert
Mew
Revert

Revert
Mew

Stainless
Stainless
Stainless
Stainless
Mild
Stainless
hild
Stainless
ild
Mild
Mild
iild
Stainless
Stainless
Stainless
Mild
ild
hild
Mild
Stainless
Stainless
Mild

2800
2800
3200
3200
2400
3200
2800
3200
2800
2400
2400
2400
2400
2400
2400
3200
3200
3200
3200
2400
2400
3200

02

L] L] L] L] - L] L] - L] L] L] L] L] L] L] - L] L] L] L] L] L]
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Analyzing the Definitive Screening Design 485
When you create a Definitive Screening Design in JMP,
the Table will contain a script for analysis
Help > Sample Data Library ~ Design Experiment / Extraction 3 Data
E5l Extraction3 Data - JMP
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
Run the File Edit \ T
experiment L gt WALl A
w |Extraction3 Data Bl 4 - Methano
1 Locked File Ch\Program File | i i
Enter data lntO Design Defin.itiv..fe Ecreenin 11 Lot I 5 Ethanu; PrupanuIE Butanu; PH?E Tlmf5 ‘l’;zliﬂ
the table D Dt et 3 0 0 o 2 e
. B+ Evaluate Design 3|1 10 10 0 0 75 2 7954
Click on the b DOE Dialog 4|1 0 0 10 0 9 2 2558
: 51 5 0 0 0 6 1 4880
green trlangle to |- Columns (8/0) 61 10 0 5 10 9 1 6819
analyze the data | io% 7|1 0 10 5 0 & 2 803
(run the SCI‘ipt) g?f*‘”ﬂ* g1 10 10 0 10 6 1 5075
4 Ptro?}r;im* 9 (1 0 0 10 10 7.5 14920
d Butanol ¥ 102 5 5 5 s 75 15 1555
Yf)ll mUSt. l.lse A pH% 112 10 10 10 0 9 1 1857
Fit Definitive gTime: 122 10 0 0 5 9 2 2239
. Vield
Screenlng for E 132 10 5 10 10 6 2 2601
. 142 0 5 0 0 9 1 865
the analysis, to 152 10 0 10 0 6 1.5 3206
take advantage 16 2 0 0 0 10 6 2 2,10
. =|Rows 172 0 10 10 5 6 1 0.3
of the deSlgn f;l”l rons 15 182 0 10 0 10 9 15 1507
electe
structure Excluded 0
Hidden 0
Labelled 0



Make Madel| |Run Model

/ Click Run Model

| ] n n | ] | ] ] ,
Analyzing the Definitive Screening Design (cont'd) 486
| Stage 1 - Main Effect Estimates
JMP does all the Work' Term Estimate 5td Error t Ratio Prob:|t|
: Methanol 97133 03674 26438 <.00071°
o Stage 1 tests Main Effects e gaem ces oo
o Stage 2 tests interactions and Time 40798 0367 11104
. . . Statistic  Value
quadratic terms of significant RMSE  1.3747
: DF
Main Effects
o Combined Model includes both
| Stage 2 - Even Order Effect Estimates
4 Combined Model Parameter Estimates Lo Exguunalieg Besiat[Eawom g et oviots 38|
: : Intercept 34,568 1.3459 25.683 0.0015°
Term Estimate 5td Error tRatio Prob:>|t| Lot[1] 17197 07757 32171
Intercept 34,568 1.0452 3307 <0007 Methanol*Ethanol 0367 07127 -0.515 0.6581
Lot{1] Uoelelr Lofhis 2ok Methanol*Time 0.5266 07127 07389 0.5360
Methanol 8.7133 04281 22.697 Ethancl*Time 0.8258  0.8534 11514 0,007
Ethanol 23166 0.4281 54118 Methanol"Methanol ~ 7.637  1.4914 51208 0.03&1
Time "4.0798 04281 95307 <.00C Ethancl*Ethancl -1.449 1477 -0.981 04299
Methanol*Ethanol -0.367 0.553 -0.663 05287 Tirne*Time -3.297 1477 -2.232  0.1552
Methanol*Time 0.5266  0.5534 09516 0.3730 Statistic  Value
Ethanol*Time 08258  0.6627 14.828 <0001 RMSE  2.0626
Methanol*Methanol ~ 7.637  1.1581 6.5%45 0.0002 DF 2
Ethanol*Ethanal 1449 11460 1,264 0.2468
Time*Time -3.207  1.1469 -2.875 0.0238°
Statistic Value
RMSE  1.6017
DF 7




Analyzing the Definitive Screening Design (cont'd)

A familiar report comes up

Proceed as before: Check residuals and remove insignificant terms

Note that interactions and quadratic terms are estimated!

This 1s what 1s meant by Definitive Screening

In this case, an additional optimization experiment 1s not necessary!

A Effect Summary

Source LogWorth

Lot 7719 -
Methancl(0,10) 7.087 |
Ethanol*Time 5.818 [ER:
Time(1,2) 4,532 P
fMethanol*Methanol 3.514

Ethancl(0,10) 3.002

Time*Time 1623

Ethanol*Ethanol 0.608 [

Methanol*Time 0.428 | :

Methanol*Ethanol 02770 |

Remove Add Edit [ ] FDR (* denctes effects with contzining effects above them)

PValue
0.00000
0.00000
0.00000
0.00003
0.00031
0.00100
0.02382
0.24682
0.37300
0.52873

487



Full Factorial vs. Definitive Screening Design (not randomized)

488

Full Factorial Design with Definitive Screening Design with
4 Center Runs: 4 Extra Runs and 2 Center Runs:
X1 | X2 | X3 @ x4 Y X1 X2 X3 X4 | X5 X6 Y
-1 -1 -1 -1 . 0 1 1 1 1 1
-1 -1 -1 1 . 0 -1 -1 -1 -1 -1
-1 - 1 -1 . 1 0 1 1 -1 1
- . ! ! ’ 1 0 1 1 1 1
- L I I : 1 -1 0 1 1 -1
! 1 - 1 : -1 1 0 -1 -1 1
! 1 LIS ' 1 0 1 1
8 1 1 1 ) -1 1 1 0 - -1
1 1 1 1 .
1 E E 1 . 1 1 1 1 0 1
: ; : ; . 1 1 1 1 0 1
1 _1 1 1 . 1 1 1 1 1 0
1 1 ; ; . 1 1 1 1 1 0
1 1 K 1 5 1 1 1 1 1 1
: 1 . 1 . -1 -1 1 -1 1 1
1 1 1 1 . 1 1 1 -1 1 -1
0 0 0 0 . -1 -1 -1 1 1 1
0 0 0 0 . 0 0 0 0 0 0
0 0 0 0 . 0 0 0 0 0 0
0 0 0 0 .

Note the structural differences in these two classes of designs.



Exercise 10.2 489

Using the same factors and levels as Exercise 10.1, create a Definitive Screening
Design.

* When you are ready to enter the factors:

» Click the red triangle next to Definitive Screening Design > Load Factors
(select the file extrusion design factors saved during Exercise 10.1)

e Be sure to add the recommended 4 runs!

* The previous experiment required 16 runs, but they used 24 runs. Further
experimentation would be needed with that screening design.

 How many runs does this Definitive Screening Design require?



Factors from Exercise 10.1

490

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

0.0
2.0
60
0.1

260
260
260
260

to
to
to
to

to
to
to
to

100 to

150

to

0.5
4.0
80
0.25

320
320
320
320

200
300

Responses are Strength and Ductility of the extrusions
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12. Experiments with Hard-to-Change Factors E

Sometimes it’s not feasible to completely randomize,
because a factor is hard-to-change

There are many situations when this 1s the case. Here are a few examples:

 Temperature in a furnace takes a very long time (hours) to stabilize after
changing

* Special material needed (a factor) are made in large batches and cannot be
stored, or it 1s run in a continuous flow through the process

* Material or part used in a machine 1s difficult to change, requiring a
complete breakdown and cleaning

* Type of 1irrigation on a plot of land 1s very difficult and costly to change (an
example of the origin of split-plot designs)

What are examples in your workplace?



Experiments with Hard-to-change factors (cont'd) [ 4«

When you have hard-to-change factors that cannot be randomized,
you need to create and analyze your experiment as a “split-plot” design

If you don’t do this (if you design and analyze as usual), you are more likely to:

* Conclude that unimportant factors are important among the hard-to-change factors

o You think that a factor (X) 1s impacting your response (Y), when it is not
o This is a Type I error

o Hard-to-change factors are those in the “Whole Plots” or main treatments, that
were not randomized

 Fail to recognize factors that are significant among the easy-to-change factors

o You think that a factor (X) is NOT impacting your response (Y), when it is
o This 1s a Type II error

o Easy-to-change factors are those in the “Subplots” or split-plots, that were
randomized



Experiments with Hard-to-change factors (cont'd) [ 4s

The decision to consider a factor as “hard-to-change”
should not be taken lightly

* Subplot (easy-to-change) factors are compared with higher precision

o Usually, subplot error is smaller than whole-plot error

o Whenever possible, the treatment(s) or factors we are most interested in
should be assigned to the subplots

* To increase the precision of the test on whole-plot (hard-to-change)
factors, additional replicates of the experiment or additional whole-plots
are needed

o Clearly, this takes more time and resources

o Several (3-6) replicates could be needed to gain an adequate level of
precision

o So, you could be back to changing that hard-to-change factor many times



Creating a Split-Plot Design

* DOE > Custom Design

496

* Enter the factors as usual, except double-click on “Changes™ and change to
Hard for the hard to change factor

e Click Continue

< Factors
Add Factor =|| Remove | Add M Factors 1

MName Rele Changes Values
4l Temp Continuous Hard 120 180
4l Dwell Continuous Easy 0.2 2
w Matenal Categorical Easy A E |C




Creating a Split-Plot Design (cont'd) 497

e (lick on RSM.

* JMP will suggest a reasonable number of Whole Plots for the number of
factors and levels entered

* The number of Whole Plots shows the number of times the hard-to-change
factor will need to be changed in the experiment

* Click Make Design 4 model

|Main Effectsl llnteractions v‘ l RSM I l Cross I lPowers v‘ lRemove Term
Name Estimability
Intercept Necessary
Temp . Necessary
Dwell Necessary
Material Necessary
Temp*Temp Necessary
Temp*Dwell Necessary
Dwell*Dwell Necessary
Temp*Material Necessary

> Alias Terms

4 Design Generation
Number of Whole Plots 5

Number of Runs:

) Minimum 12
) Default 20
® User Specified 20



Creating a Split-Plot Design (cont'd)

* The design is presented.
* As before, click Back to make adjustments. Click Make Table.

* Run the experiment in the order shown in the table.

Design Table:
Run Whole Plots Temp Dwell Material

1 1 150 1.1 A Whole Plots Temp Dwell Material ¥1

2 1 150 0.2 C 1 150 11 A .
3 1 150 0.2 B 1 150 02 C .
4 1 150 3 B 1 150 0.2 B .
5 2 180 0.2 A 1 150 2 B .
g 2 180 1.1 C 2 180 02 A .
7 2 180 1.1 B . 180 1.1 C :
g 7 180 % A 2 180 1.1 B .
9 3 120 0.2 A i Eg D; :
10 3 120 1.1 C . e e CIE .
11 3 120 2 A . 20 an -
12 3 120 1.1 B 5 200 1118 -
12 4 150 1.1 B R ol 1118 .
14 4 150 0.2 C 4 ol oz lc .
15 4 150 2 C 4 150 > Tc .
16 4 150 1.1 A 4 TIEERIN .
17 5 150 0.2 B : 150 02 8 .
18 5 150 1.1 A 5 150 141 A .
19 5 150 2 B 5 150 58 .
20 5 150 2 C 5 150 2 C .



Blocking in a Split-Plot Design 499

What if there are too many runs to complete in one day (or lot of material, or
by one tester, etc.)?

* Once you see that there are too many runs, click Back (before making the table)

* Add a Categorical Factor with the number of levels as the number of batches or
days or shifts, etc. needed for the experiment (In this example, two days will be
needed to run the experiment, so a 2-Level Categorical Factor was added.)

* Name the factor something that you can easily pick out of the lists of terms (Here it
1s named REMOVE.)

* Set Changes for this factor to Very Hard

e (Click Continue

Factors

Add Factor || Remove | Add M Factors 1

Mame Role Changes Values
4l Temp Continuous Hard 120 180
4l Dwell Continuous Easy 0.2 2
w Matenal Categonical Easy A B C
w Categonical Very Hard |L1 L2




Blocking in a Split-Plot Design (cont’'d)

* Click RSM

* Remove from the Model every term that contains the Categorical factor that
you added

* Highlight the term then click Remove Term N

Model
|Main Eﬂ’e::t5| |Interactiun5 'r|| R5M || Cross ||ine)§ '| Remove Term
Name Estimabilit)
Intercept MNecessary
Temp Mecessarny
Dweell ) MNecessary
Material MNecessary
REMOVE [
Temp*Temp Mecessarny
Temp*Dwell MNecessary
Dwell*Dwell MNecessary
| Mode!
|Main Effects] Ilnteractions v] [ RSM l l Cross ‘ lPowers v‘ [Remove Terrn]
Name Estimability
Temp™Temp Necessary
Temp*Dwell Necessary
Dwell*Dwell . Necessary
Temp*Material Necessary
Dwell*Matenal Necessary
Temp*REMOVE Necessary
Dwell"REMOVE L
Material*"REMOVE Necessary




Blocking in a Split-Plot Design (cont’'d)

* Change the number of Whole Plots to the number of levels of the
Categorical Factor

* In this example, two days were needed

* So, a 2-Level Categorical Factor called REMOVE was added
* Now, the Number of Whole Plots 1s changed to 2

* Click make Design

Design Generation
|| Hard to change factors can vary independently of Very Hard to change factors.

Mumber of Whole Plots 2
MNumber of Subplots B
Number of Runs:

) Minimum 12

‘@ Default 18

) User Specified 18

Make Design




Blocking in a Split-Plot Design (cont’'d)

* The Design 1s developed

* Whole Plots show the number of days required

« REMOVE is still in the table, as 1t was entered as a factor
* Click Make Table

Design

Run Whole Plots Subplots Temp Dwell Material REMOVE
1 1 1 120 0.2 C L1
2 1 1 120 2 A L1
3 1 1 120 1.1 E L1
4 1 2 180 2 C L1
5 1 2 180 0.2 A L1 i i
6 1 2 180 11 B L If you get this warning,
7 1 3 150 1.1 C L1 ) ) X
: 1 3 150 1 AL it’s okay to ignore it, IN
9 1 3 150 2 B L1
10 2 4 120 1.1 B L1 THIS CASE, because you
11 2 4 120 0.2 A L1 . .
12 2 4 120 2 c L1 are not trying to estimate
13 2 5 150 0.2 E L1
14 2 5 150 1.1 C L1 effects of the whole plOt
15 2 5 150 1.1 A L1
16 2 6 180 1.1 E L1
17 2 6 180 2 A L1
18 2 6 180 0.2 C L1

I“HI-: |.I-a—\.|: -\.la—\.- I_— _—-I-a—\.l-a— |-_. I-:a—a—\.l-u-\.l-u-\.:l- rl:a—l |-I_— rl:_—lr I-
e NN |'\_--\_I.--\_-. _'_'.-\_-l-\.ll o o et o) [ L e 1E WT s -\.Il
:I-a—\. a-l- |.|-a—\.|= -\.|a—\.-_— ™~ :_—-II-\.-\.=.-= -|-: |.|-a—\.|= -ul;—\.-
el [ LR -\.I 1w 11T |.- S T N w— ] LT LIS Wl LT |.- i

Hance |-= "I""|= I T y—
i) ) L 1S Wy |-\_--\_|.- e e e

L
ﬁl': I'H' ':."Tll"-l:
(I [ RS R ] I ] N




Blocking in a Split-Plot Design (cont’'d)

* The table 1s generated
* Click on the column of the Categorical Factor (“REMOVE” 1n this example).

e (Cols > Delete Columns to delete the column from the table

Whole Plots Subplots Temp Dwell | Material | REMOVE ¥1
1 1 120 02 C L1 .
1 1 120 2 A L1 .
1 1 120 1.1 B L1 .
1 2 180 2 C L1 .
1 i EE ?12 : ﬂ : Whole Plots Subplots Temp Dwell Material M Y1
1 1 120 02 C L1
1 3 150 1.1/C L1 . 1 T = s . .
1 3 150 1.1 A L1 1 1 5 o g
1 3 150 2 B L1
2 4 1200 11 B L1 . 1 2 180 2 C L1
2 4 1200 02 A L1 ‘ - 180 02 A L1 .
2 4 120 2| C L1 1 2 180 1.1 B L1
2 5 150 02 B L1 . 1 3 150 1.1 C L1
2 5 150 1.1/C L1 1 3 150 1.1 A L1 -
2 5 150 1.1 A L1 1 3 150 2 B L1
2 6 180 1.1 B L1 2 4 120 1.1 B L1
2 6 180 2 A L1 2 B 120 02 A L1 .
2 6 180 02 C L1 2 B 120 2 C L1
2 5 150 02 B L1
2 5 150 11 C L1 .
2 5 150 1.1 A L1
2 6 180 1.1 B L1
2 5 180 2 A L1 .
2 6 180 02 C L1



Blocking in a Split-Plot Design (cont’'d)

* Ifyou open the Column Info for Whole Plots, you’ll see that the Design
Role 1s Random Block (JMP 1s pretty smart!)

* Rename the Whole Plots column with the name of your block

&% Day - JMP — 0O X
'Day’ in table 'Split Split Plot Example Table' OK
Column Name |Whole Plots Cancel

] Lock Apply
Data Type Character Help
Modeling Type | Nominal v

Column Properties «

Design Role

Value Ordering

Design Role indicates how the column is
used as a factor in a model for an
experimental design.

Random Block v

Remove




Blocking in a Split-Plot Design (cont’'d)

* This shows the final table, with Whole Plots renamed to Day
* This experiment is designed to be run in two days

* What you actually have now 1s a split-split-plot design

Subplots Temp Dwell Material ¥1
1 1 120 02 C
1 1 120 2 A
1 1 120 1.1 B
1 2 180 2 C
1 2 180 0.2 A
1 2 180 1.1 B
1 3 150 - 11 C
1 3 150 1.1 A
1 3 150 2 B
2 4 120 1.1 B
2 4 120 0.2 A
2 4 120 2 C
2 5 150 0.2 B
2 5 150 11 C
2 5 150 1.1 A
2 b 180 1.1 B
2 B 180 2 A
2 b 180 02 C



Analyzing the Split-Plot Design

* For the Split-Plot or the Split-Split Plot design, click on the green triangle
next to Model after entering data into the table.

File Edit Tables

LT

Rows

= | Split Split Plot Exa... [

Design  Custom Design
Critericn | Cptimal
B Model

b= Evaluate Design
= DOE Dialog

| Columns (6/1)
i Day

ik Subplots 3
dl Temp %k

4l Dwell %

ik Material 3¢
FRGE -

| Rows
All rows
Selected
Excluded
Hidden

Lahelled

P W e e W

Cols DOE Analyze Graph Tools
AhE  BEEE e

€] -
- Subplots | Temp | Dwell

02| = | O | Wh| P | | =t

R T S U D T G R — R — R [ — R —
e I = T T Sy Wy G o B ¥
[ B Y TR TR W T B W (Y W TR W T W [ T T T T [ T U (i

—
(4]

View Window Help
Material ¥1
1 120 0.2 |C .
1 120 2 A .
1 120 1.1 |B .
2 180 2|C .
2 180 0.2 |A .
2 180 1.1 |B .
3 150 1.1 |C .
3 150 1.1 A .
3 150 2|B .
4 120 1.1 |B .
4 120 0.2 A .
4 120 2|C .
5 130 02 B .
5 150 1.1 |C .
5 150 1.1 |A .
B 180 1.1 |B .
B 180 2 A .
B 180 02 C .

506



Analyzing the Split-Plot Design

e The Fit Model window will look a little different. Leave as 1s!
e (Click Run

* Analyze the residuals and remove terms as with other experiments

"y
-

4 =/ Model Specification

Select Colurmns Pick Role Variables Personality: | ctandard Least Squares  *
* 6 Columns Y A .
L Emphasis: | pMinimal Report "
ik Subplots Method:
' REML (Recommended ~
dTemp | J
A Dwell Unbounded Variance Components
:‘f‘;-'!latenal = [ ] Estimate Only Variance Components
optional
| Help | | Fun
[ ] Keep dialog open
Construct Model Effects
Dey & Randor
Subplots & Random
Temp & RS
Dwell & RS
Nest Material

Macros - Tem F}*TEFI'IF}

5 Temp*Dwell
. Dweel *Dhwell
Attributes [=| | Temp*Material

Transform |+ Chwwell*Material

[ ] MNo Intercept

2
i
Is}
L
i
i1

B [
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13 Multiple Response Optimization 509

* Experiments may have more than one response
variable

* You can optimize each response separately . . .

... but you will get different answers for each
response!



Notes 510

[t 1s not uncommon to have multiple response variables in a DOE. If you think you
have just one, you might want to solicit feedback from one or more knowledgeable
colleagues.

In this section we introduce and illustrate the most widely used technique for joint
optimization of multiple responses.



Example 1. heat sealing process 511
Response Bond
.. . Effect Tests
* DOE Participant Files \ Surm of

heat Sealing 2]mp Source NMparm DF Squares  F Ratio Prob:> F
Shift 1 1 3578 0.8499  0.3671

. Temp(120,180) 1 1 1540.835 366.0070 <0001’

* Run the Model script Press(50,150) 11 5430 20046 0.1715
Dwell(0.2,2) 1 1 1606513 381.6793 <0001

. Temp*Temp 1 1 1363.630 323.9142 <0001

* Response variables: Temp*Press 1 1 14607 34697 0.0766
Press*Press 1 1 1.385 03200 0.5724

v’ Bond (bond strength) Ternp*Dwell 1 1 20235249 4806642 <0001

: : : Press*Dwell 1 1 0750 0.1804 0.6754

v' Print (higher-1s- Dwell*Dwell 1 1 715715 170.0096 <0001

bettel' COSIIlCth RE‘SFD“SE‘ Frint
quality rating) Effect Tests
Sum of

° Shlﬁ‘ is the Only factor we Source NMparm DF Squares  F Ratio Prob>=F
o Shift 1 1 0137812 17253 0.2032

can eliminate Temp(120,180) 1 1 6821113 853920 <0001
Press{50,150) 1 1 25.625986 320.8095 1

Dwell(0.2,2) 1 1 2121674 26.5611 11

* All other factors are Temp*Temp 1 1 2148242 26.8937 <.0001
. Termp*Press 1 1 0300304 37595 0.0661
significant for at least one Press*Press 1 1 0257674 32258 0.0860
response Ternp*Dwell 1 1 1613751 202024 0.000
Press*Dwell 1 1 1065140 13334 15

Dwell*Dwell 1 1 1372400 17.1810 5



Example 1 (cont'd) E

Effect Summary
* The Effect Summary
. Source LogWorth PValue
displays the lowest Temp*Dwell 25550 ] ¢ 0 ¢ & | o.00000
p-value from each of Dwell(0.2.2) oot -—— R I N L
, Temp(120,180)  14.041 [ i 0.00000 *
the response’s Temp*Temp 13.515 k 0.00000
Effects Tests Press{50,150) 13.473 K 0.00000
Dwell*Dwell 10.800 [7 | 0.00000
: : Press*Dwell 28270 : ¢ ¢ ¢ P i bbb | 0.00149
e This makes it casy to e e 1.1801] 3.06606
find terms to remove Press*Press toelfll ¢ ¢ i P f i i | 0.08680
Shift o.02]' i ¢ i i i b bt 020319

from the model

* Remove
insignificant terms,
as before, using the
Effect Summary



Example 1 (cont'd)

We want Bond = 80 and Print as large as possible.
Here 1s a solution based on manually exploring the Prediction Profiler.

Prediction Profiler

100
30
5 80.00026  gg
5 [77.7497,
822508 0
20
0
5
4
_ 4.348456 ;
=
£ [4.0323
2
4.66461]
1
0
a0 O O O O O O L ] L 2 L Ln 2 Ln
A M T M D~ & D @ O M = ok e B
e e T e — o
155,85 150 0.5

Temp Press Drwell



Notes 514

In this example i1s 1t easy to find solutions by manually exploring the Prediction
Profiler.

v" Press should be set to 150, because this increases Print without significantly
affecting Bond.

v" The baseline value for Dwell was 1.0. Reducing this to 0.5 increases
throughput while staying above the lowest feasible dwell time (0.2)

v Once these settings are in place, we can manipulate 7emp to achieve
something very close to 80 psi for Bond.

Joint optimization of response variables was not needed 1n this example. In most
applications, however, manual optimization will not achieve the desired results.

Extreme versions of this are illustrated in the next two examples.

Close the analysis window and the data table without saving.



Example 2: extrusion process E

(Visc, Tlemp, Rate, RPM) = (80, 297, 100, 243)
Ductility = 13

Prediction Profiler

35000
30000

£ 20366.88) 25000
@ S [277529, 20000
& 300808 13000

10000
5000
40

f12.95379) 30
20
10

Ductility
LA .|"|
:_i'_': L
LaJ LAl
—_ O

Data sets \ extrusion 2



Notes 516

This example 1s based on data from an experiment to optimize the mechanical
properties of an extruded plastic material. We want Strength to be as high as possible
while maintaining a lower bound of 20 for Ductility.

The solution for Strength (29367) shown above was found by visually exploring the
Prediction Profiler. However, this approach resulted in an unacceptably low Ductility

(13).



Example 2 (cont'd)

(Visc, Temp, Rate, RPM) = (64, 260, 200, 300)
Strength =~ 6080

Prediction Profiler

A
30000

507 25000

T [4323.95 20000

& 783504 13000

10000

5000

a0

2345355 30

T [31.8807, 20
= . -

o 37.1903] 10

0

B0
65

70

75

80
260
270
280
300
310
320
100
120

5 140
160
180
200
150
200
250

300



Notes 518

The solution for Ductility (35) shown above was found by visually exploring the
Prediction Profiler. However, this approach resulted in an unacceptably low Strength

(6080).



Joint optimization of responses 519

* Each response has a goal (minimize, maximize or target)

Define a “desirability function” for each response

Combine the individual desirabilities into a single overall
desirability function

« Maximize the overall desirability to jointly optimize all
responses



Notes 520

Desirability 1s a unitless quantity between 0 and 1, defined so that higher 1s better. JMP
supplies default desirability functions based on the experimental data for your response

variables. You must redefine the desirability functions so that they represent your
objectives for each response variable.

You start by setting the general goal for each response: Maximize, Minimize or Match

1arget. Then you specify low, middle, and high data values to fine tune the shape of the
desirability functions.



Default desirability functions 521

|/ T\

0.5 Maximize 0.5 Minimize
0 | ] 0 | | 1
Low Mid High Low Mid High
" / \
0.5— Match Target

VRN

| |
Low Mid High




Notes 522

The desirability function 1s increasing for Maximize responses and decreasing for
Minimize responses. It is bell-shaped for Match Target responses.

For Minimize responses with a lower bound of 0, it 1s a good 1dea to make the Low
value equal to 0. Examples are number of defects, fraction defective, cycle time,
standard deviation, cost of waste, etc.

The low and high values for a Match Target response are used to define the allowable
deviation from the target value.



Overall desirability 523

* The overall desirability function for the response variables (Y,
Y2, . ) 1S

\/ (Y1 desirability)>< (Y2 desirability)x e

* It is the geometric mean of the desirability functions for all the
individual response variables

* With a geometric mean, the overall desirability will be zero
whenever any 1individual response desirability 1s zero



Notes 524

A weighted geometric mean can be used. The weights (called importance in JIMP)
allow users to specify relative priorities for the responses. The higher the importance,

the greater the influence the response has in determining the overall solution found by
the optimization algorithm.

The vast majority of users do not go into this level of detail.



Example 2 (revisited)

DOE Participant Files \ extrusion 2.jmp — Model script — Model
Specification — Run

4 = Model Specification

Select Columns Pick Role Variables Personality: |5tar1dard Least Squares. .. |
* 6 Columns A Strength :
Y g : .
A Visc - A Ductility Emphasis: |I"-.-'1|r1|mal Report - |
A Temp optional
: E;ﬁ Wewght || cptional numeric -
S Help Run
A Strength Freq ontional numeric —
A Ductility - Recall | [7] Keep dialog open
By optional [
- Rermmove
Construct Model Effects
Add Viscli RS #
Temp8t RS
Cross Rate8 RS =
RPM& RS
Mest Visc®Visc
Visc*Temp
bacos > Temp*Temp
DEQTEE 2 Visc*Fate
: Temp*Rate
Attributes (= Rate*Rate _

Transform (=
] No Intercept




Example 2 (cont'd) E

“® extrusion 2 - Fit Lea..[ne /) eS|

. IRT .
P Alt-click on Response Strength red triangle —
4 = Response Strength uncheck Parameter Estimates, Effect Details, Plot
> Residual by Predicted Plot Effect Leverage — OK
> Summary of Fit
> Analysis of Variance * Repeat for Response Ductility
> Parameter Estimates
» Effect Tests B Select Options and click OK
I Effect Details
- - Regression Reports || Parameter Power Row Diagnostics
4 RE!‘:FDI‘ISEDUHI":E}" Surnmary of Fit [ Correlation of Estimates "] Plot Actual by Predicted
> Residual b}l' Predicted Plot Analysis of Variance Effect Screening DP":"EEFFEC’ELE‘-‘EFEH'H
[> SI.II'I‘II'I‘IHI}I" of Fit " | Parameter Estimates || Scaled Estimates Plot Residual by Predicted
> Analysis of Variance Effect Tests "] MNormal Plot "] Plot Residual by Row
I Parameter Estimates || Effect Details [E] Bayes Plot ["] Plot Studentized Residuals
> Effect Tests | Show All Confidence Intervals [ | Pareto I?'I.Dt [E] F'res.s..
_ ] AlCc Factor Profiling [ Durbin Watson Test
 Effect Details Estimates Profiler Save Columns
[» [« |Prediction Profiler ("] Show Prediction Expression || Interaction Plots [ Prediction Formula
~ £l || Sorted Estimates || Contour Profiler || Predicted Values
i En |:| b
J [l Expanded Estimates || Cube Plots [] Residuals
Sequential Tests Box Cox ¥ Transformation Mean Confidence Interval
[C] Seq [l =
Custom Test Surface Profiler Indiv Confidence Interval
[ [l [
"] Multiple Comparisons [ Studentized Residuals
|| Joint Factor Tests [[] Hats
|| Inverse Prediction || Std Error of Predicted




“Pruning” the models

* The Effect Summary
combines the P-values for all

Iresponsces

* Removing terms here applies
to the Effects Tests for one or
more responses

e The usual threshold is P >

0.15

Effect Summary

Source

Rate*RPM*RPM
Rate*RPM
Rate(100,200)
Rate*Rate*RPM
RPM(150,300)
Rate*Rate
RPM*RPM
Temp(260,320)
Visc(B0,80)
Temp*RPM
Visc*Visc* Temp
Visc*Rate
Visc*RPM
Visc*Temp*Temp
Visc*Visc*RPM
Temp*Temp*Rate
Visc*Visc*Rate
Temp*Temp*RPM
Temp*Rate*Rate
Temp*RPM*RPM
Temp*Temp
Visc*Rate*Rate
Visc*Temp
Temp™*Rate
Visc*Visc
Visc*RPM*RPM

LogWorth

1.277
7.181
6.383
6.300
B6.165
5,354
4,800
3.121

2,913
1.805
1.568
1.559
1.549
1.526
1.420
1.212
0.844
0.826
0.808
0.792
0.668
0.571
0.470
0.358
0.299
0.215

B LT

PValue
0.00000

0.00000 ~
0.00000 ~

0.00000

0.00000 ~
0.00000 ~
0.00002 ~

0.00076
0.00122
0.01565
0.02705
0.02763
0.02822
0.02980
0.03723
0.06143
0.14308
0.14926
0.15550
0.16134
0.21486
0.26852

0.33863 ~
0.43877 ~
0.50227 ~

0.60885

Remove Add Edit [C] FDR (* denotes effects with containing effects above them)




“Pruning” the models (cont'd)

Effect Summary

Source

Rate*RPM*RPM
Rate™RPM
Rate*Rate*RPM
Rate(100,200)
RPM(150,300)
Rate*Rate
RPM*RPM
Visc(B0,80)
Temp(260,320)
Temp*RPM
Visc*RPM

Effect Tests for Strength /i< Vis<"R"M

Source
Visc(60,80)
Temp(260,320)
Rate(100,200)
RPM(150, 300}
Visc*FRate
Rate*Rate
Visc*RPM
Temp*RPM
Rate*RPM
RPM*RPM
Visc*Visc*Temp
Visc*Visc*Rate
Visc*Visc*RPM
Visc* Temp™Temp
Temp*Temp*Rate
Temp*Temp*RPM
Temp*Rate*Rate
Rate*Rate*RPM
Rate*RPM*RPM

Visc*Temp*Temp
Prob > F Visc*Rate

<.00017 Visc*Visc*Temp
<0001 Temp*Temp*RPM
<0001 Temp*Temp*Rate
<0001 Temp*Rate*Rate
0.0153" Visc*Visc*Rate
<.0001"

0.0045
<,0007"
<,00071"
0.0317*
0.1001
0.0116
0.0140°
0.0635
0.0577
0.0844
<.0001"

P
E. |||J_
(FLELE

LogWorth

11.246
10,339
10.023
9.762
0.741
8.273
7.572
6,093
4,727
2,347
2,138
1.935
1.853
1.815
1.499
1.238
1.197
1.074
1.000

EINEIEIE

PValue

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00002
0.00449
0.00727
0.01163
0.01404
0.01531
0.03171
0.05774
0.06350
0.08435
0.10006

Effect Tests for Ductility
Source Prob > F
Visc(B60,80) <.0001*
Temp(260,320) 0.0001
Rate(100,200) 0.0003
RPM(150,300) 0.0005
Visc*Rate 0.4624
Rate*Rate 0.8364
Visc*RPM 0.5440
Temp*RPM 0.7358
Rate*RPM <.0001*
RPM*RPM 0.4084
Visc*Visc*Temp 0.0527
Visc*Visc*Rate 0.8964
Visc*Visc*RPM 0.8700
Visc*Temp*Temp 0.8114
Temp*Temp*Rate  0.9857
Temp*Temp*™RPM  0.3483
Temp™*Rate*Rate 0.3080
Rate*Rate*RPM 0.9424
Rate*RPM*RPM 0.5257



Example 2 (cont'd)

Desirability
Prediction Profiler functions
35000 ;
. 30000- o
B, 2063313 25000 - | | v
 [19676.2, 20000 - , , A
& 215901 15000 | | 4
10000 - 5 5 5
5000 - - - | -
20 5 5 5
2 23.85617 %g 5 5
g (22409, 204 | ; P
82530209 13- | | 5
5 - | | |
U ] 1 1 1
> L é é |
= 0.75- | | |
©0.553439 05 - § § —'—*\\ //""— Overall
v 0.25- 5 5 € desirabil
& - : : | esirability
0- | |
I " I ' I 1 | | | | | 1 | | | | I 1 | | I 1 | | | |
= w4 w0 O O D D D oD O O o O Do = = 20 W W oW oA
L I & T T == L I v e g e s B e i R o I LY i R (R i [ W g L= L L= L I T
™ M T T e e ol o o e ™ ™ L} =i =
70 290 150 225
Visc Temp Rate RPM Desirability



Notes 530

Here 1s the default Prediction Profiler for the four-factor extrusion experiment. The
individual desirability functions are shown in the right-most column. In this case

they are both increasing functions because our general objective for both responses 1s
Maximize.

The overall desirability 1s a function of the experimental factors, and 1s shown 1n the

bottom row. By default, it is the unweighted geometric mean of the individual
desirability functions.



Example 2 (cont'd) |E|

Optimization and Desirability] > Maximize Desirability |

/

Prediction Profiler

35000

~ 30000
5, £2930.33 25000
& [243255, 20000
& 275355 15000
10000

5000

A0

1.50758 30

irability

0.000035 0.5

Des

Visc Temp Rate RPM Desirability



Notes 532

Shown above 1s the Prediction Profiler after selecting Maximize Desirability from the
red triangle menu. We have increased average Strength to 25930, and decreased
average Ductility to 21.5.



Example 2 (cont'd) E

Using a Match Target objective (see next slide)

Prediction Profiler

25000 -
20000 -
23000 - ===
20000 -{ =
:EQEDQ] 15000
10000 -

5000 -

AQ -

]
LN
L
LN
I'_"JI
fa g
LE3

StrE ngth
o T
Ll
==
Lad
o
L..l

1.99367 30
19.5411

24.4462]

DUEIZI|I1:],|’
—

¥

0.817515

Desirabilit

Desirability



Notes

To obtain the results shown above, double-click in the individual Desirability pane
(on the right) for Ductility. Change the specifications as shown below, click OK, run

Maximize Desirability again.

Predicted average Strength is now
25359, predicted average Ductility 1s
22.

The 95% confidence interval 1s

(19.5, 24.4). This 1s an improvement

over the previous confidence interval

(19.0, 24.0), which would have

allowed Ductility to vary a little further
below 20.

-~

b

E% Response Goal

e

|I"-.-'13tr_h Target -

Ductility Values Desirability
High: 23 0.0183
Middle: 22 1
Low: 21 0.0183
Impeortance: 1

| OK || Cancel || Help |

=

Note: Due to the iterative process used in the prediction profiler, results may

vary slightly from what’s shown 1n the above slide.

Least Squares Fit red triangle — Save Script — To Data Table — Save Script As —

Name: Fit Least Squares — OK.



Exercise 12.1 535

(a) DOE Participant Files \ heat sealing 2. Run the model script. Use the Effect
Summary to remove model terms with P> 0.15.

(b) Go to the Prediction Profiler. Our target for average Bond 1s 80, with a tolerance
of £5. The highest possible value for average Print 1s 5. Average Print must exceed
4. Modify the desirability functions for Bond and Print accordingly. Click
Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

(c) Click Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability.

d) The Production Manager is unhappy with our solution. It achieves excellent bond
strength (80) and print quality (4.8), but the proposed increase in dwell time would
reduce throughput from 300 to 50 bags per minute!

To look for a compromise, select Reset Factor Grid on the Prediction Profiler red
triangle. We want to hold Dwell at a low value, say 0.5. Type 0.5 for Current Value,
check the Lock Factor Setting box, then click OK. The vertical line on the Dwell
profile should now be solid.



Exercise 12.1 (cont'd) E

E% Factor Settings &

Factor Temp Press Dwvell

Current Value: 155,942 150 0.5
Minimum Setting: 120 50 0.2
Maximum Setting: 180 150 2
Mumber of Plotted Points: 41 41 41

Show

Lock Factor Setting: [E] 0]

o] ” Cancel |

¢) Run Maximize Desirability again. The optimal factor settings are shown in the
Current Value row. The response averages are 80.08 for Bond and 4.35 for Print.

f) Save your script, close and save the data table.



Exercise 12.2 537

a) Assembly of inkjet print cartridges includes an ultrasonic welding operation with
X variables Force, Energy, Amplitude, and Cavity (identifies the tool cavity in

which each plastic cartridge was molded). The response variables are Weld depth
and Leak rate.

b) DOE Participant Files \ ultrasonic welding 2. Run the model script. Use a Log
transformation for Leak rate. Use Effect Summary to prune the models.

c) Go to the Prediction Profiler. The target for average Weld depth 1s 0.20, with a
tolerance of £ 0.05. The lowest possible value for average Leak rate is 0. We
require mean Leak Rate to be no larger than 0.10.

d) Modify the desirability functions for Weld depth and Leak rate accordingly. Click

Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

e) Click Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability. See next slide.



Exercise 12.2 (cont'd) ﬂ

Prediction Profiler

=
£0201003
© [0.1845,

202175
= ]

0.012428
[0.00508,
0.03042]

Leak rate

0927128

Desirability

0.55
0.50
0.45
0.40
0.35
0.0
0.25
0.20

= = = o0 O O O O DO DO O LM L] il ] = LM un L —
M O N = DfF- 80 oh o o ot o P = 80 o0 oh N e
149.72463 275.86502 83.411844
Force Energy Ampltude Desirakility

f) Least Squares Fit — Save Script — 1o Data Table — Name: Fit Least Squares —

OK

g) Save data table.



Exercise 12.3 (Homework) 539

a) DOE Participant Files \ electron microscope. Run the Model script. In this case, it
will take you directly to the Model Dialog. Apply Log transformations to all 4
response variables, then run the model.

b) Click Least Squares Fit red triangle — Effect Summary — prune the models. See
slide below.

c) Go to the Prediction Profiler. We want to minimize all 4 responses. Use the same
desirability functions for all 4 responses: High =2, Middle = 1, Low = 0. Click
Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

d) Click Prediction Profiler red triangle — Reset Factor Grid — Factor Settings —
click the Lock Factor Setting box under Tool — OK. See next page.

e) Run Maximize Desirability separately for each 700l (A, B, C). Give the average
values of the 4 responses for each tool. See next page.

f) Save your script, close and save the data table.



Exercise 12.3 (cont'd)

(b) Effect Summary
Source LogWorth PValue
Tool 19514 1| 0.00000
Total Dose(2,16) 7057 R 0.00000
Bias*Tool 5.140 U R 0.00001
Bias(-10 100 4,892 o 0.00001
Total Dose*Tool 3.203 I A 0.00063
W Time*Bias 2,204 A T T R A S B 0.00509
W Time(30,90) 2,232 [ A T 0.00586
Total Dose*Total Dose 2,229 I 0.00580
Bias*Bias 2.003 A 0,000%
Integrations 1.961 0,01054
W Time*Tool 1.957 0.01103
Total Dose™W Time 1.915 0.01216
W Areal4,16) 1.858 A 0.01388
W Area*Tool 159 | ¢ ¢ ¢ ¢ b1 | 0.02936
Integrations™W Time 1.499 ] 0.03172
W Time*W Time 1483 | 0.03288
Integrations™W Area 1371 ] 0.04255
Polish Time(5,20) 1.247 0.05662
W Area®W Time 0.950 [ 0,11211
W Area*Bias 0.941 ] ! 0.11449




Exercise 12.3 (cont'd)

(d) Reset Factor Grid

-
E‘g— Factor Settings

)

Factor

Current Value:

Minimum Setting:
Maximum Setting:
Mumber of Plotted Points:

Show
Lock Factor Setting:

Total Dose Integrations W Area W Time

10.2766
2
16
41
O

O &

Polish Time Bias Tocl
16 || 89,9536 5 10
4 30 5 -10
16 90 20 10
41 41 41 41
] ] ] ]
OK || Cancel |




Exercise 12.3 (cont'd)

542

(e¢) Average responses by tool

Tool | S-Height | S-Width | D-Height D-Width
A 1.33 1.13 1.10 0.95
B 1.41 0.76 1.36 1.08
C 1.48 1.32 1.94 1.57
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