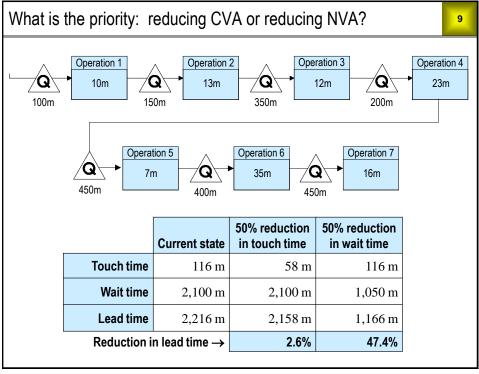
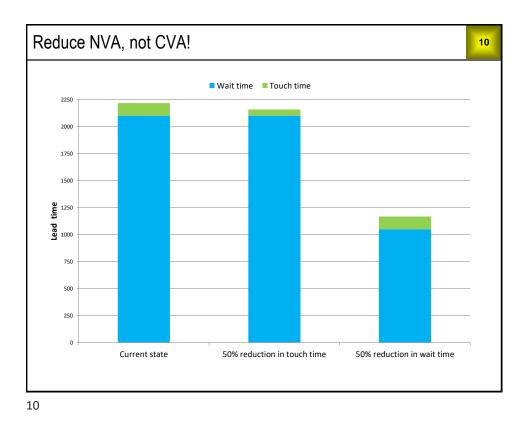
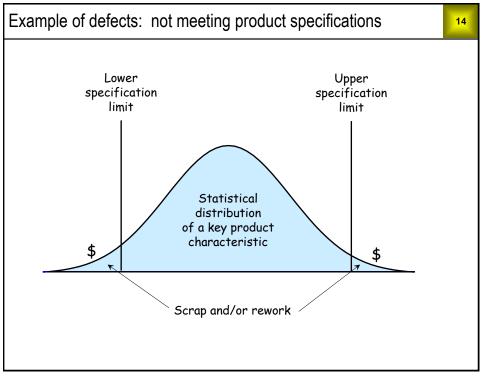
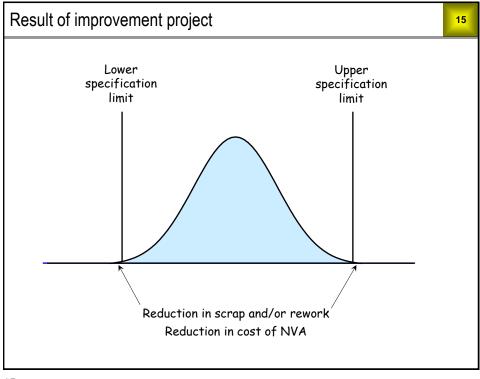
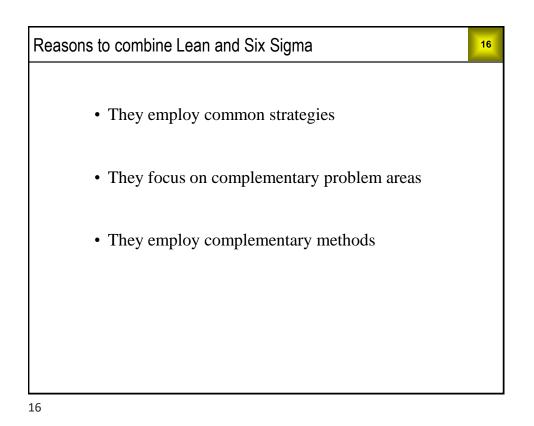

Learning Obje	ectives 3						
On completion of the	nis training course, you will be able to:						
	• Describe how the concepts and tools of Lean and Six Sigma can be integrated to provide a focus on customer value streams and the reduction of non-value-added activities, defects and waste.						
 Identify what c improvements. 	identify what constitutes a Lean bix bigina (Ebb) project and the factors that road to effective						
 Explain each pl (DMAIC) meth 	nase of the LSS roadmap using the Define, Measure, Analyze, Improve and Control odology.						
	and concepts to communicate with others and provide support to Green Belts and Black eading LSS improvement projects.						
• Apply the most	widely used tools for LSS projects, to include:						
Define:	project charter for problem statement, value stream and workflow scopes, SIPOC, project metrics, team and resource definition						
Measure:	process observation, process mapping, value stream mapping, data collection planning, and use of statistical metrics						
Analyze:	run charts, Pareto charts, stratification analysis, root cause analysis (5 whys, affinity analysis, cause and effect diagrams)						
Improve:	structured brainstorming, benchmarking, multi-voting, cause and effect matrix for solution impact, Lean solutions, stakeholder engagement and solution piloting						
Control:	control plan, statistical monitoring via control charts, response plans, process capability						



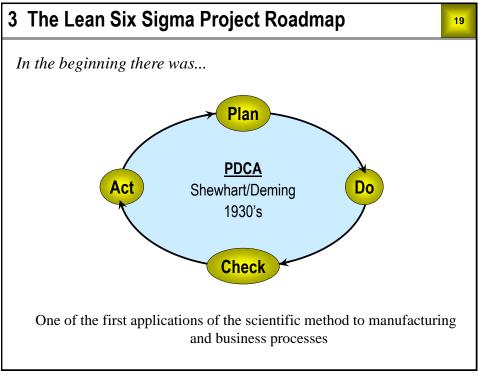

1 Basic Concepts of Lean						
The goal	• Provide the greatest value for customers using the fewest resources					
The methods	• Principles and practices based on the Toyota Production System (TPS)					
The barrier	• Culture can always defeat methodology					
The path forward [*]	 Management must foster a culture of <i>continuous improvement</i> Improve all processes, every day Improvement cycles must be an integral part of the daily work of all employees 					
*See Toyota Kata (2010	*See Toyota Kata (2010) by Mike Rother.					

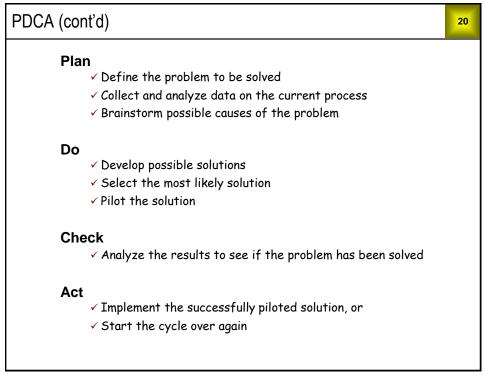


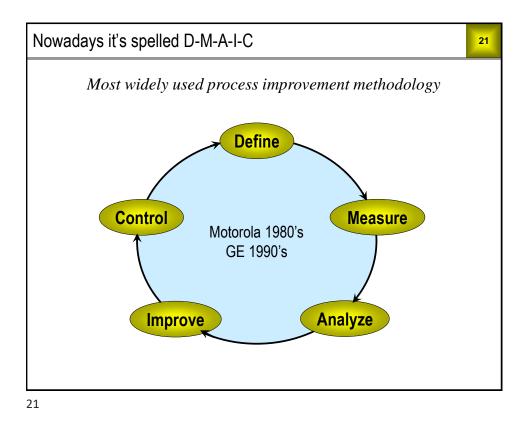


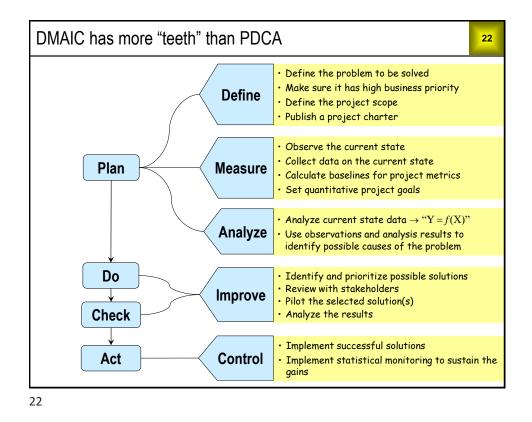

Cate	Categories of NVA					
D	Defects: Failure to meet expected standards of quality or delivery					
ο	Over production: Making or doing more than is needed at the time					
w	<i>Waiting</i> : People waiting to work, or things waiting to be worked on					
N	<i>Not utilizing creativity</i> : Failure to integrate improvement cycles into the daily work of all employees					
т	<i>Transportation</i> : People or things being moved from one place to another					
Т	Inventory: Supplies, WIP, or finished goods beyond what is needed					
м	<i>Motion</i> : Excessive motion in the completion of work activities					
Е	<i>Extra processing</i> : Producing or delivering to a higher standard than is required					

Think of processes in your organization, and list examples of non-value adding (NVA) activities. Try to identify more than one for each 'DOWNTIME' category.						
D	Defects:					
0	Over production:					
W	Waiting:					
Ν	Not utilizing creativity:					
Т	Transportation:					
I	Inventory:					
М	Motion:					
Е	Extra processing:					

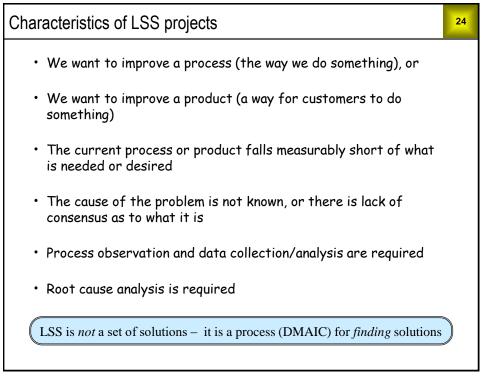

Common strategies

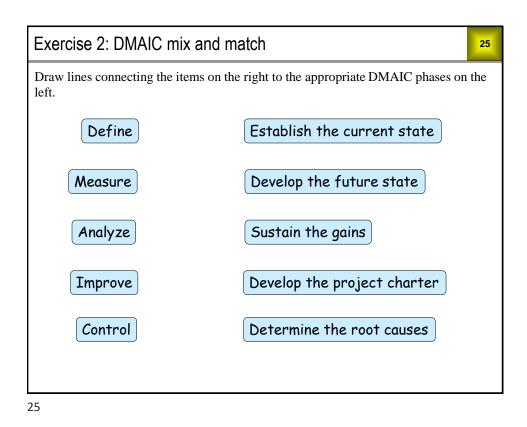

- Focus on customer satisfaction
- Focus on reducing waste and its cost
- Focus on processes and process improvement

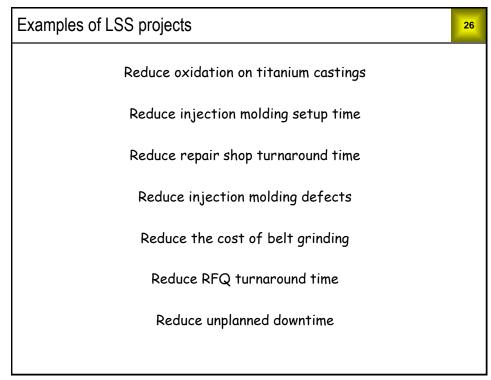

17

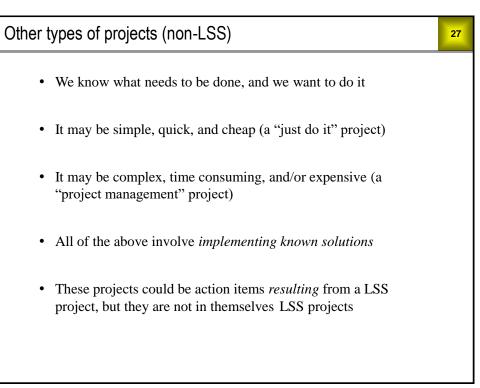

- Improving processes via team projects
- Keep the improvement cycles going

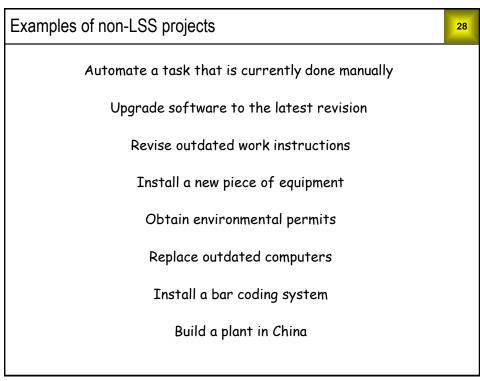
Complementary problem focus and methods				
Lean	Six Sigma			
Lead and Cycle time WIP Other visible waste	Defects "Invisible" waste			
Defects caused by chaos and confusion	Defects caused by materials and equipment			
Root causes easier to determine	Root causes harder to determine			
Value stream mapping Geographic mapping	Basic process mapping Cross functional process mapping			
"Tribal knowledge" "Wisdom of the organization"	Data analysis			
Best practices from TPS provide a set of known solutions	Project roadmap provides a method for finding new solutions			

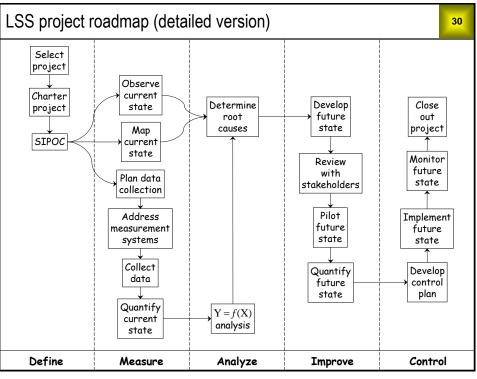


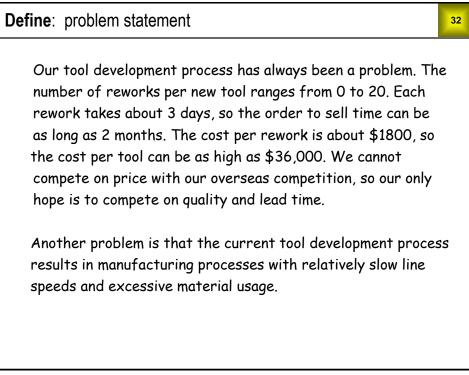

Strengths of LSS projects


- ✓ Utilization of the DMAIC methodology
- ✓ Alignment with business priorities
- Clearly defined scope and boundaries
- Combined process observation and data analysis
- Problems solved by understanding them
- Conclusions supported by statistical standards of evidence

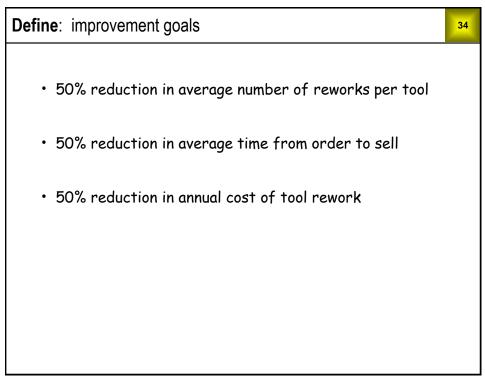

23


- ✓ Improvements verified quantitatively
- Statistical monitoring used to sustain gains





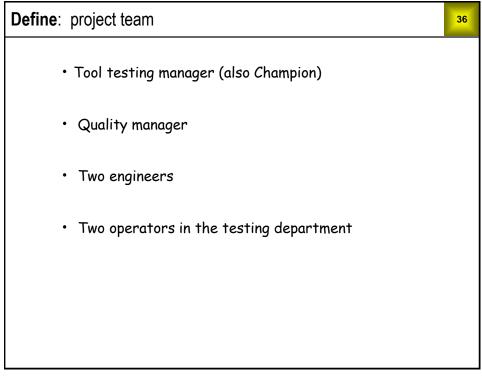
Exercise 3: LSS vs other projects		29
Classify these projects	LSS	Other
Implement the new ERP system we have decided to use		
Reduce errors in processing purchase requisitions		
Reduce wave solder defects		
Open a new branch office in the next town		
Reduce billing lead time		
Install a web-based ordering system		
Reduce non-manufacturing time from order to sell		
Reduce scrap in the coiling department		
Eliminate cracking of molded housings		
Reduce installation & warranty costs		
Increase the percentage of quotes that produce a PO		

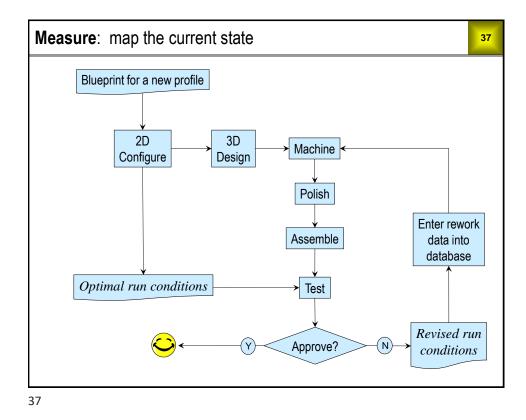


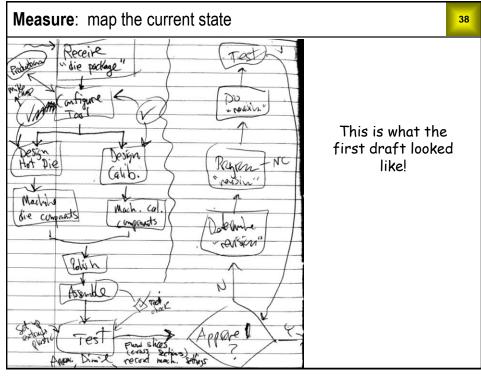
A LSS Case Study — Tool Development Process Background An extrusion supplier receives a blueprint for a new profile about once a day on average The supplier designs and machines the tools that will be used to extrude the profiles The supplier bears the development cost, then becomes the sole supplier for the life of the contract Once machined, a new tool is tested If necessary, it goes back to the machine shop for rework

Define: project metrics and current values					
• Average cost per rework:	\$1800				
 Average time per rework: 	3 days				
 Number of reworks per tool: 	0 to 20				
 Total rework cost per tool: 	up to \$36,000				
• Time from order to sell per tool:	up to 2 months				
• Average order to sell per tool:	9 days				
 Annual cost of tool rework: 	\$2.4 million				

Define: project scope

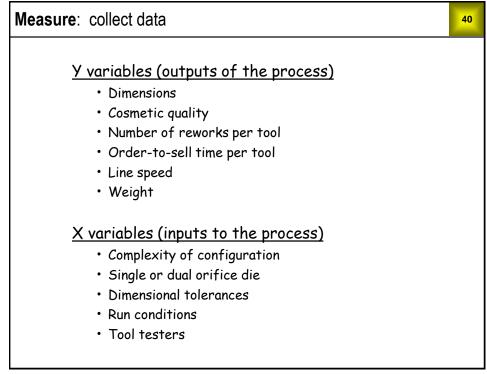

Value stream scope

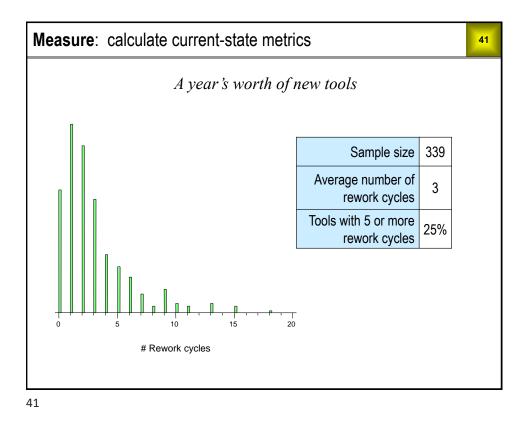

- Location A only
- PVC products only
- Out of scope: locations B & C, composite products
- These are **replication opportunities**

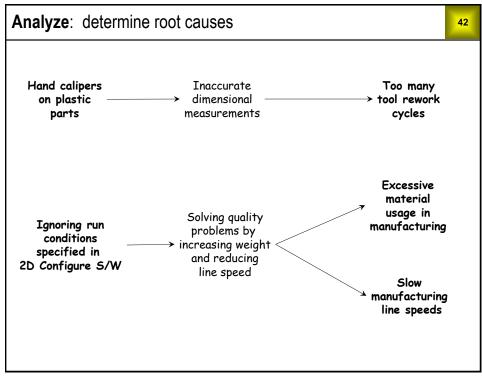

Workflow scope

• Starts with blueprint from external customer, ends with tool released to manufacturing

35

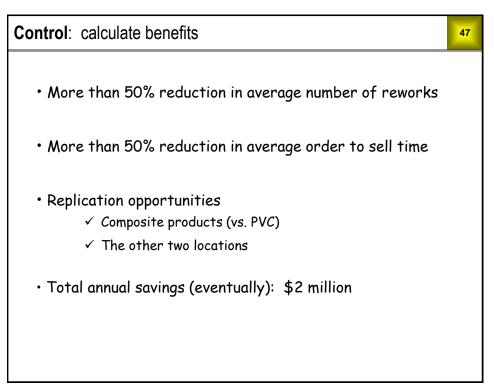


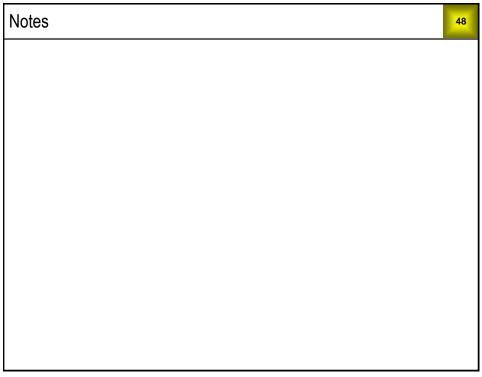

Measure: observe the current state

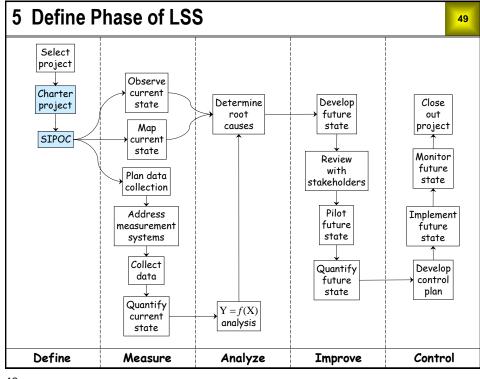

• Testers are under pressure to work quickly (new profile comes in just about every day)

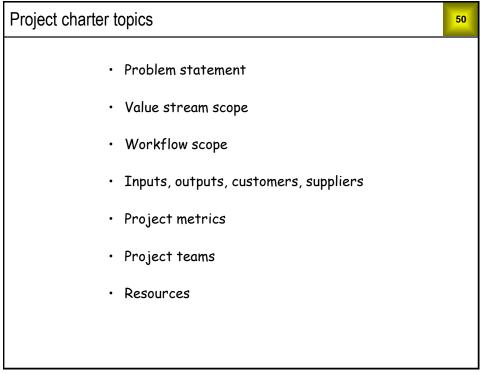
39

- Run conditions are modified by trial and error to solve dimensional or cosmetic problems
- Dimensional measurements to determine tool rework are taken with hand held calipers on plastic parts
- Testers ignore many of the run conditions specified in the 2D Configure process
- Testers often solve dimensional problems by decreasing the line speed and increasing the weight



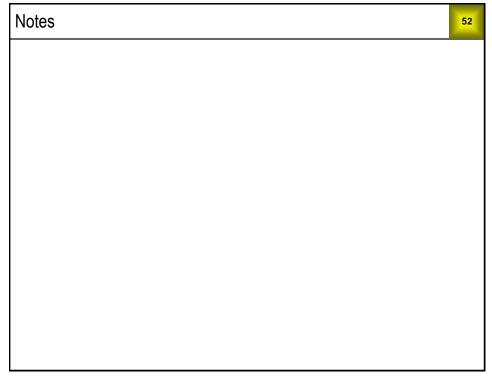

X	l vari	ables	5						Y	var	iable	25					
	Line		Die-cal.					C	ontrol	dimens	sions						Distortio
Weight	speed	Vac.	dist.	1	2	3	4	5	6	7	8	9	10	11	12	13	rating
51	1	53	1	4	1	-13	0	1	-5	-5	9	-1	-11	-7	3	0	3
48	1	53	1	-1	4	-12	2	3	-2	-4	5	-1	-11	-11	0	-3	3
49	1	70	2	-4	4	-14	-4	1	-3	1	4	-5	-11	-9	3	0	4
48	1	70	2	1	1	-17	6	7	-5	0	5	-4	-11	-9	1	-4	3
81	1	67	1	0	-1	-12	6	1	-4	-3	5	2	-5	-1	11	3	1
76	1	67	1	0	4	-13	2	2	-7	-5	5	1	-6	-2	7	4	2
77	1	50	3	2	2	-12	1	-1	-5	-4	6	1	-7	-3	17	2	1
74	1	50	3	1	1	-16	3	1	-6	-5	13	1	-5	-4	8	1	2
48	2	77	1	-2	2		-								$\overline{}^1$	-2	5
46	2	77	1	-2		This	s and	alvs	is sł	าอพล	ed tl	hat	test	ters	12	-2	4
47	2	50	3	-4									r the			2	3
45	2	50	3	-3												-4	4
67	2	67	2	-1	-	w	eiah	t ar	nd lii	ne s	peed	d to	solv	le.	5	2	4
64	2	67	2	-4											В	0	4
67	2	80	3	-2	ł		d	Ime	nsio	nai j	prob	len	IS		Ľ	6	3
65	2	80	3	-2	Q										5	3	4
77	2	50	1	-2	-2	-16	-4	0	-1	-4	6	-1	-8	-2	10	1	2
76	2	50	1	-4	-2	-14	-5	0	-2	-3	4	-1	-8	-1	7	3	3
78	2	80	2 2	-2 -3	1 -2	-14	-6	2 0	5	-3 -1	3 4	-1 -2	-8	-6	10	6	1
70	2	80	2			-15	-8 -2	0 5	3 -3	-1 0	4 -1	_	-9 -14	1	9	4	3
78		67	•	0	3 -3	-22 -22	-2 -5	5 -1	-3 -9	-4	-1 1	-9		-8 -9	9 0	0	4
49	3	07				-//	-5	-1	-9	-4	1	-8	-15	-9	0	0	3
49 48	3	67	1	-5				0	-	0		-	40	0	40	~	2
49 48 51	3 3	80	2	-2	-4	-22	-2	6	-7	0	1	-5	-13	-8	10	2	3
49 48	3						-2 -4 -4	6 6 4	-7 -4 -5	0 1 -3	1 1 -1	-5 -9 -6	-13 -14 -10	-8 -9 -4	10 1 7	2 0 4	3 3 4


mprove: develop the future state	44
 Teach testers to use variables other than weight and line speed to solve dimensional problems 	
 Require special approval to change weight and line speed from the values determined in 2D Configure 	
\cdot Allow testers more time to evaluate tools in each rework cycle (\rightarrow fewer rework cycles)	
 Provide testers with DVT gages to measure dimensions with greater accuracy 	


Improve: pilot the future state (one of several tools)							
	Current state	Future state					
Weight	381	366 (4% decrease)					
Line speed	129	200 (55% increase)					
Problems	6 dimensions needed rework Serious distortion	5 dimensions needed rework No distortion					

Control:	implement and monitor the future state	<mark>46</mark>
	 Conduct training as needed 	
	• Conduct periodic audits	
	 Determine control limits for: ✓ Number of days to release ✓ Number of rework cycles 	
	 When either variable exceeds its control limit: ✓ Find the cause 	
	✓ Take corrective action	

Problem statement


The problem statement should...

51

... Describe the current situation in objective terms

... Not suggest or imply solutions

- ... Locate the problem in time
- ... Include baseline values of project metrics, if possible
- ... Give enough information for "outsiders" to understand what the project is about
- ... Evolve and strengthen during the Define and Measure phases

Evolution of problem statements 53								
8		\odot						
We are upset with our customers for not paying us on time.	15% of invoices submitted to customers are paid more than 60 days late.	20% of invoices submitted to Stahl & Hyde last year were paid more than 60 days late. This compares to 5% for our other customers.						
Due to lack of training in work cell Z, cycle times have trended up.	The average cycle time in work cell Z has increased from 30 minutes to 60 minutes.	In the last 6 months, the average cycle time in work cell Z during second shift has increased from 30 minutes to 90 minutes.						

Evolution of problem statements (cont'd) 54		
$\overline{\mathfrak{S}}$		\odot
We are spending too much time searching for parts, paperwork, and supplies.	Over the last 3 months, searching for parts, paperwork, and supplies in the Assembly area has consumed 252 hours, equal to one half-time employee per month.	Over the last 3 months, searching for parts, paperwork, and supplies in the Assembly area has consumed 252 hours, equal to one half-time employee per month, or 7% of current FTEs. The burdened cost is \$25K per month. These delays have added 3.8 hours to our average lead time.

Problem statement guidelines

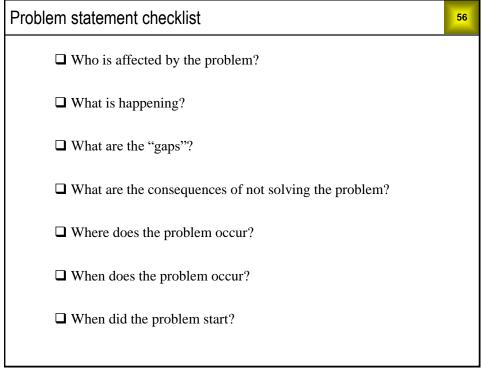
State the effect

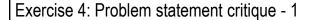
Say who and what are affected, and how they are affected. Say what is wrong, not why it is wrong. Avoid "due to" or "because of" statements — they imply solutions.

Be specific

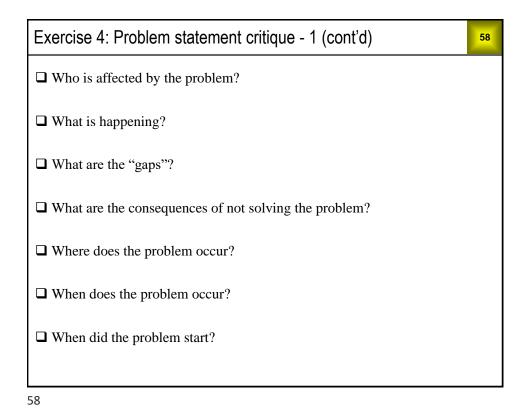
Avoid general terms like "morale," "productivity," "communication" and "training" — they tend to have a different meaning in each person's mind. Use specific, operationally defined terms to narrow the focus to the problem at hand.

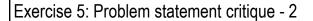
Use positive statements


Avoid "lack of" statements (e.g., not enough, we need, we should). Negative statements imply solutions. Do not state a problem as a question — this implies that the answer to the question is the solution.


Quantify the problem

Say how much, how often, when, where. Use project benefit metrics.

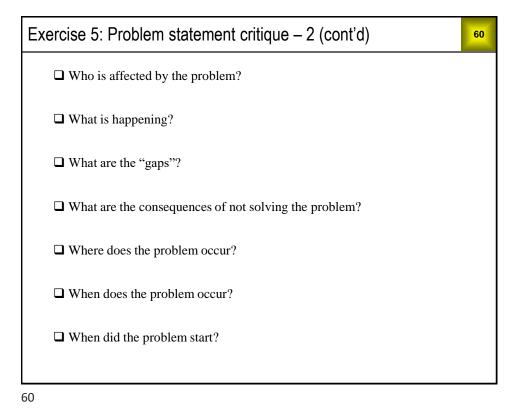

Focus on the "gaps"

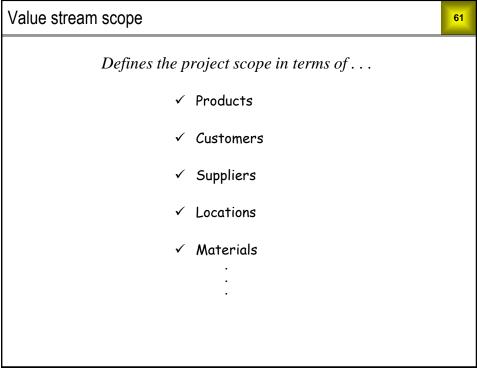

Compare the current levels of the project benefit metrics to previous levels, expected levels, or desired levels. Often this is covered in the goal statement.

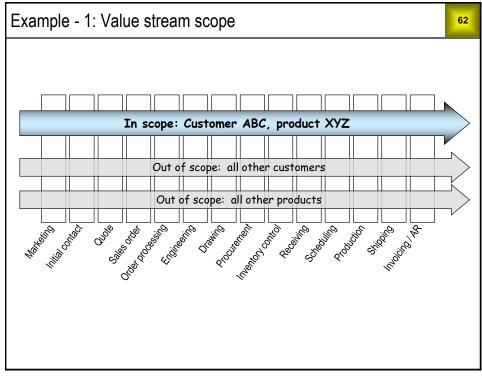
In 2008 there were 15 industrial accidents site wide. Previously, the annual average was 2.5 with at most 7 in a given year. This new level represents a significant decline in employee safety. If it continues, we will see a \$200,000 increase in annual costs, and substantially decreased productivity. 57

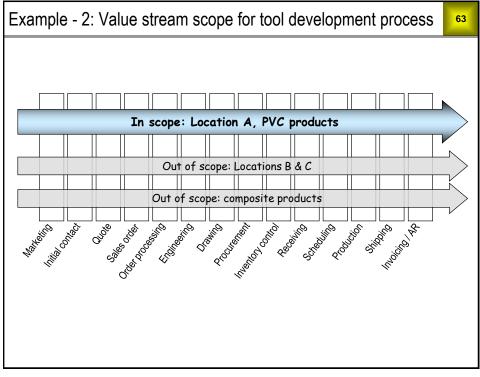
Critique this problem statement using the checklist on the next page. The important thing is to identify things that are missing.

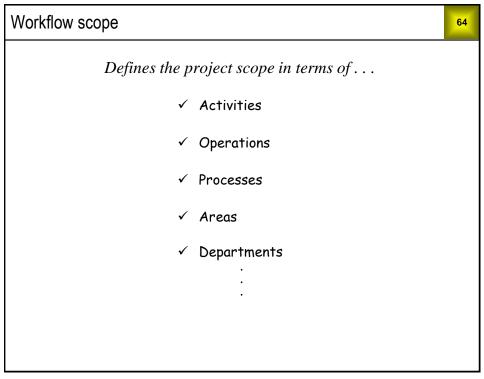
59

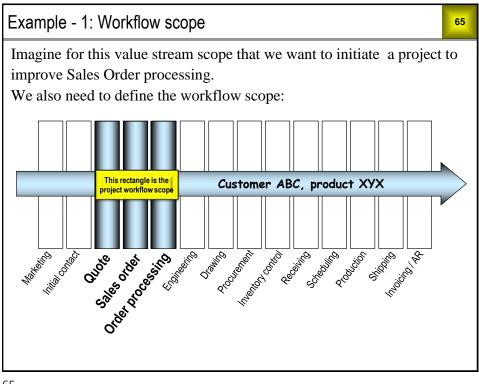

Customers are dissatisfied with telephone support

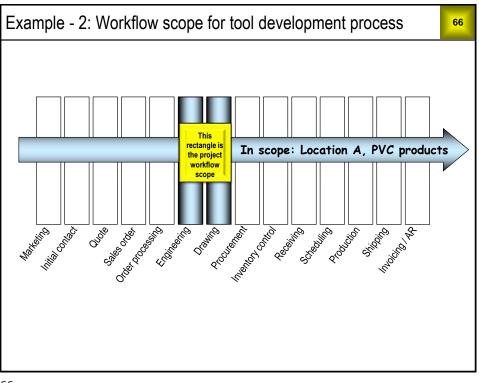

wait times for calls handled through our call

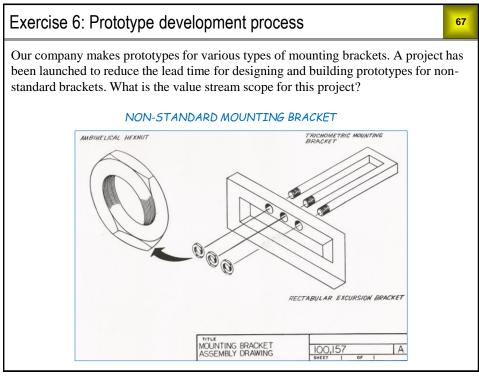

center in Uzbekistan. Our records show an average

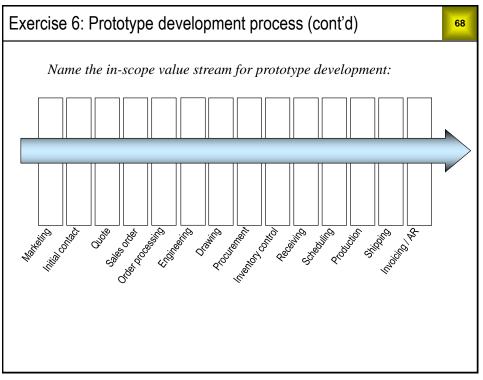

wait time of 8 minutes. 10% of wait times exceed

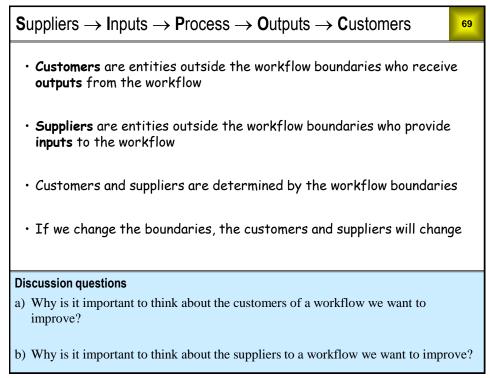

20 minutes.

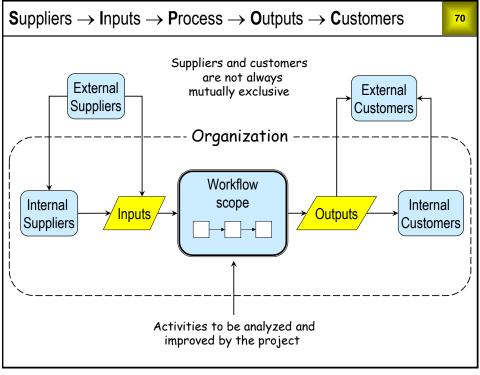










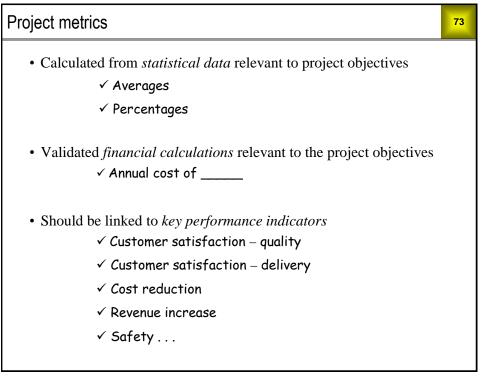


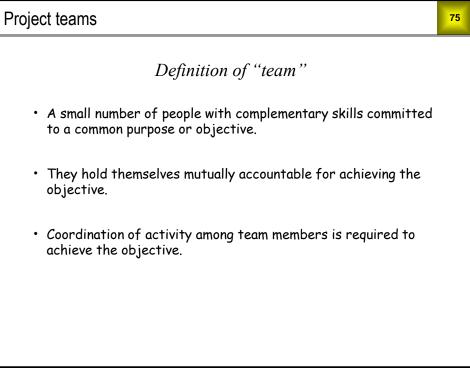
Exercise 7: SIPOC for prototype development process

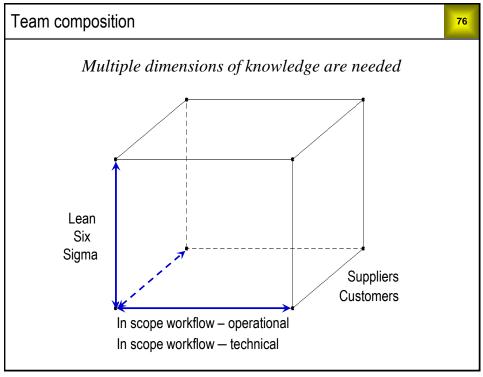
Our company makes prototypes for various types of mounting brackets. A project has been launched to reduce the lead time for designing and building prototypes for nonstandard mounting brackets. Use the information given in the next slide to answer the following questions:

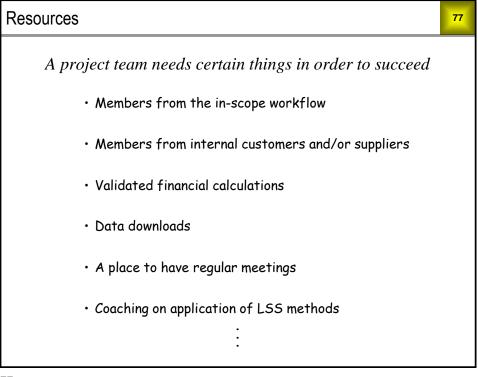
71

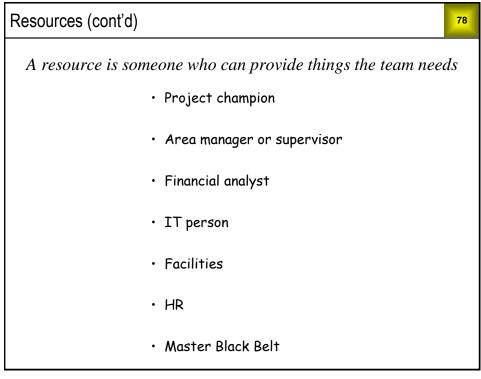
72

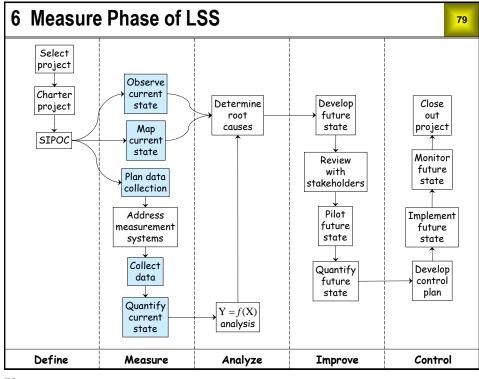

- (a) What are the outputs from this workflow?
- (b) Who are the customers that receive these outputs?
- (c) What are the inputs to this workflow?
- (d) Who are the suppliers that provide these inputs?
- (e) What is the workflow scope for this project?

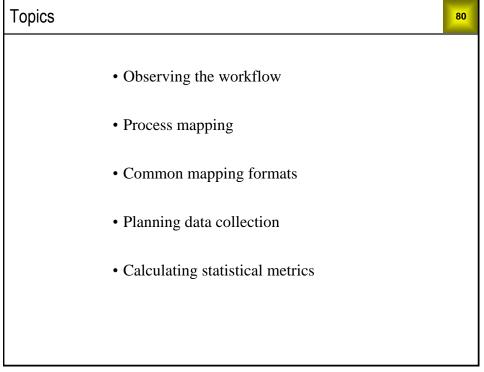

Exercise 7: SIPOC for prototype development process (cont'd)

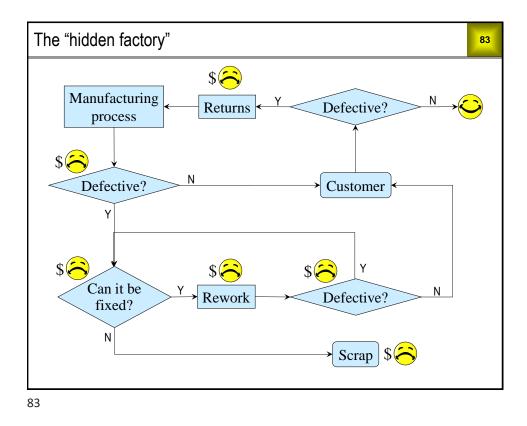

When a customer sends us a purchase order (PO) to design and build a prototype for a non-standard bracket, they provide us with the functional requirements, specifications, a sketch, and desired delivery date. We begin by developing a design specification for the desired bracket. The customer must approve the design specification. If they do, we develop an assembly drawing, which the customer does not have to approve. We build the prototype from the assembly drawing, test it for conformance to the functional requirements and specifications, then ship it to customer.

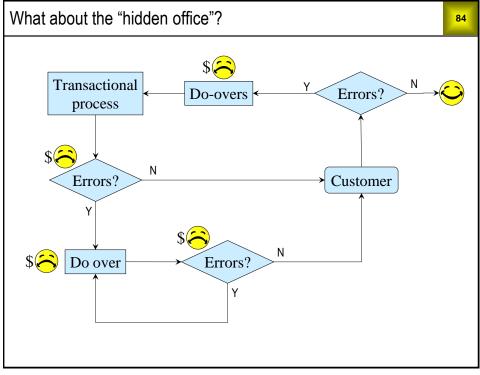

Sometimes a customer will order a quantity of production parts based on an approved prototype. When this happens, the drawing is released to Manufacturing (MFG).




Example - 1: Sales Order Proce	essing			
Project metrics		Baseline	Goal	
Quote turn around time (TAT)		5 days	50% reduction	
% Lost bids		40%	50% reduction	
% of Scrap caused by SO processing errors		7%	50% reduction	
Annual cost of SO rework ("do-overs")			70% reduction	
Annual cost of SO rework ("do-ove		\$50K	70% reduction	
Annual cost of SO rework ("do-ove Example - 2: Tool Development			1	
		, [70% reduction Goal	
Example - 2: Tool Development			1	
Example - 2: Tool Development Project metrics		Baseline	Goal	
Example - 2: Tool Development Project metrics Annual cost of tool testing		Baseline \$2.4M	Goal \$1.2M	
Example - 2: Tool Development Project metrics Annual cost of tool testing Avg. number of reworks		Baseline \$2.4M 3	Goal \$1.2M 1.5	



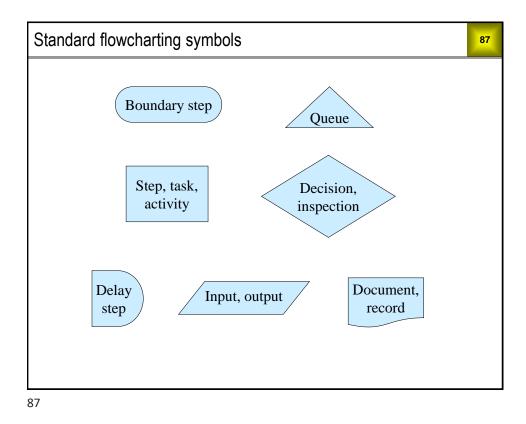

Observing the workflow


- Take a guided tour
- Interview workflow participants
- Uncover the "hidden factory"
- Identify opportunities for improvement

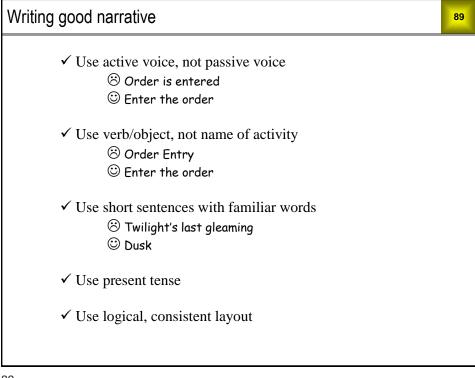
81

• Begin drafting process map(s)

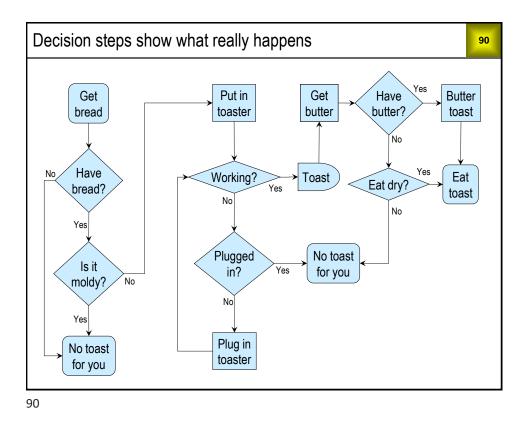
Guidelines	82
• Scope and boundaries should match the project charter	
• Workflow participants must have advance notice	
• The project and its objectives must be explained (preferably ahead of time)	
• The purpose is to gain information related to the project	
• Auditing work performance is <i>not</i> the purpose — it's a <i>treasure hunt</i> , not a witch hunt!	
• Try to minimize the "thundering herd" syndrome	

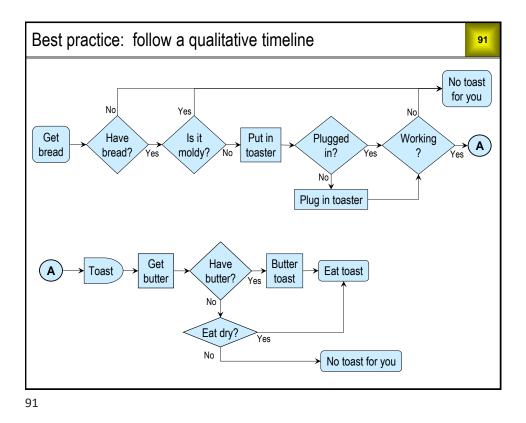

Process mapping

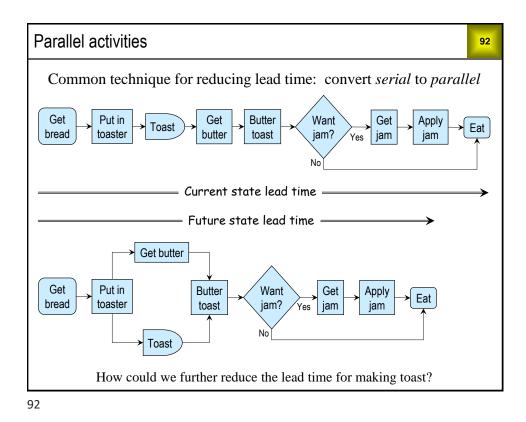
- Appealing, energizing team activity
- Easy to learn, results in useful products
- Graphically documents the in scope workflow inputs, outputs, sequence and relationship of activities and decisions

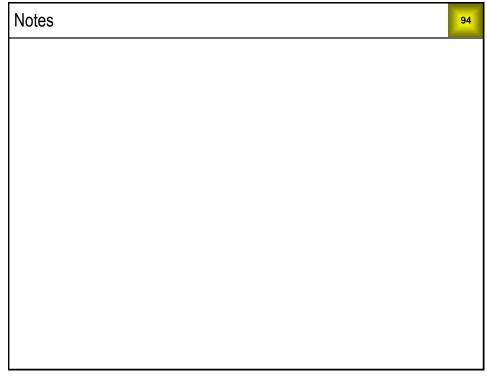

85

- Shows what actually happens, not what should happen
- Identifies opportunities for improvement


Process map boundaries
Your project charter should identify the boundaries of your target process. This boundary setting occurs at several levels, first with the value stream scope, then workflow scope.
Building off the workflow scope, the first, last, and main intermediate steps of the target process give you a <i>high-level process map</i> .
This outlining is the starting point for <i>detailed process maps</i> showing the component tasks and decisions for some or all of the main steps.




Mapping as a team act	tivity 88
Suspend your disbelief	Map the workflow the way it really is, not the way you think it should be.
Don't make assumptions	If you don't know what happens at a certain point, or can't agree on what happens, put a question mark there. Then, go ask someone who does know.
Solicit feedback	Ask in scope workflow participants, and their internal customers, to review the map for accuracy and clarity.

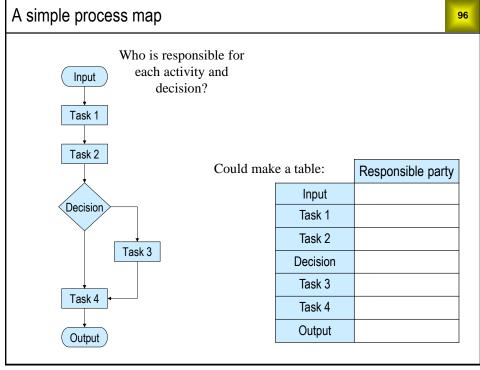


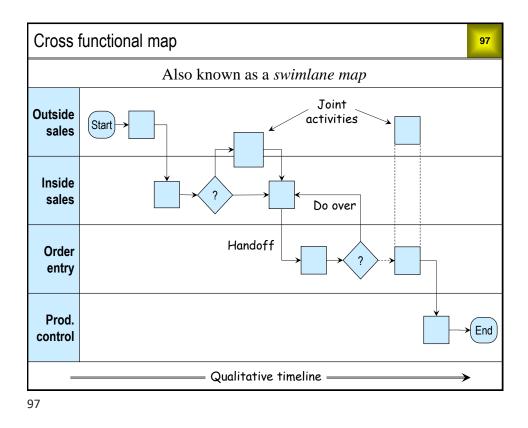
Exercise 8: Process Map

Create a process map based on the information given here. Do not make unwarranted assumptions! The instructor will provide guidance on options for creating the map either digitally or in hard copy.

You have two types of material, A and B. When the need arises, take the material to a processing center. There are two steps in the process. For Process 1, the A and B materials must be processed in separate Type 1 machines. If there are two Type 1 machines available, load the A material into one machine, the B material into another, and run the two machines at the same time. If there is only one machine available, you have to run the two loads sequentially.

When Process 1 is completed, move on to Process 2. Process 2 requires Type 2 machines. If there are two Type 2 machines available, load the A material into one machine, the B material into another, and run the two machines at the same time. If there is only one machine available, you can process the A and B material together in the same machine. This will take longer than processing the A and B materials in separate machines, but not as long as running two loads sequentially. When Process 2 is completed, organize the material in an orderly configuration, take it back to your original location, and store it for subsequent use.

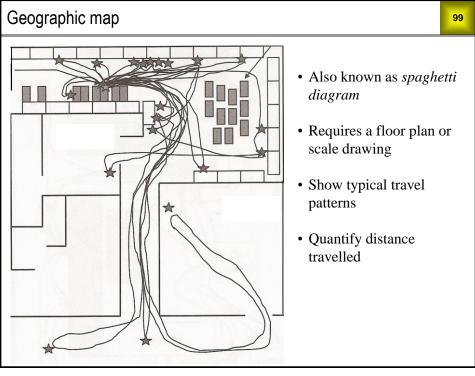

Common mapping formats

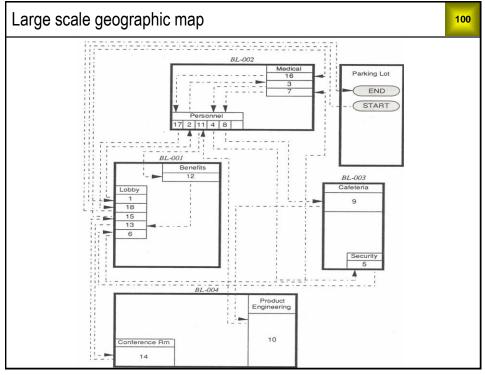

- Simple
- Cross-functional (aka Swimlane)

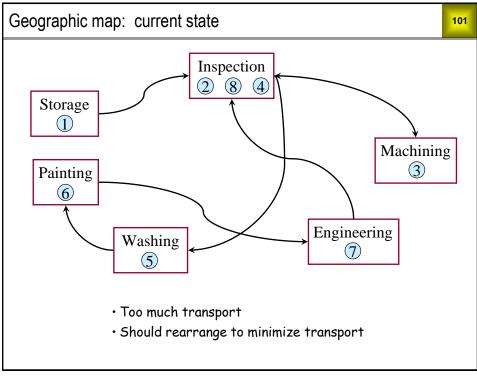
95

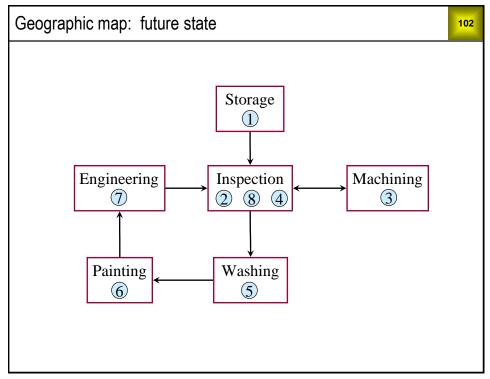
- Geographic (aka Spaghetti)
- Topological

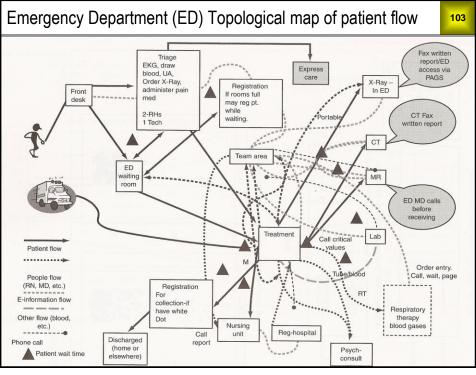
95


Cross functional map (cont'd)


A cross functional map visually portrays the responsibilities for all process activities and decisions. In addition to showing responsibilities, cross functional maps are much better than simple maps for identifying opportunities for improvement.

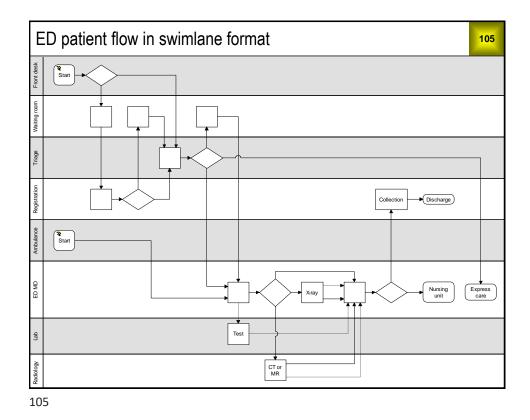

98

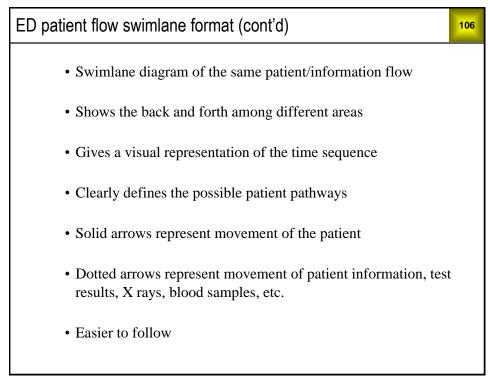

To draw a cross functional map, first determine all the departments or functions involved in the activities and decisions you want to map. Enter swimlanes for departments or functions from top to bottom in the order they are first called for in the sequence of activities and decisions. Also, you should follow a qualitative timeline in placing activities and decisions on the map.


With this method, the general flow of the activities and decisions will be from Northwest to Southeast on the map. This usually leads to the simplest and easiest to read depiction of the process.

ED patient flow (cont'd)

topological adj: concerned with relations between objects abstracted from exact quantitative measurement


A topological map is similar to a spaghetti diagram, but without the geography/scale. It shows connections, but not distances. It may or may not indicate a time or process sequence. The routing diagrams in the London Underground are famous examples of topological maps.


104

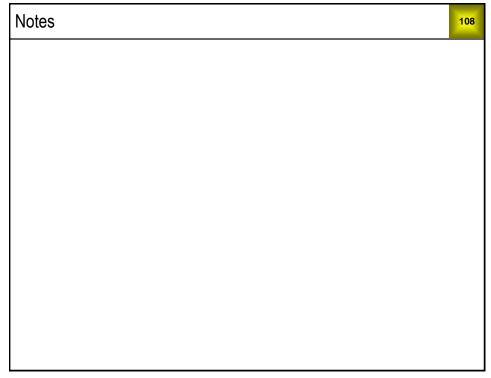
The ED patient flow map shows the flow of patients, staff, and information or patient specimens in a hospital Emergency department.

Like geographic maps, topological maps are extremely effective for conveying the complexity of a process. Also, the free form nature of topological mapping lends itself to team brainstorming.

On the other hand, we often need information on the sequence and location of process steps to move beyond the first impression of complexity. Topological mapping is typically not a very good format for displaying this kind of information.

Exercise 9: Process Map for prototype development process

The instructor will divide the class into teams. Each team is to create a cross functional process map of the prototype development process described on the next pages.


107

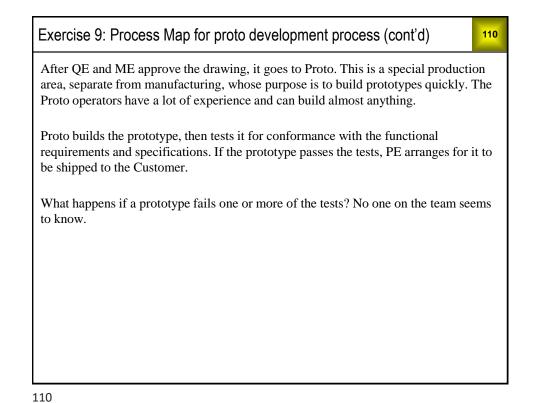
The instructor will provide guidance on options for creating the map either digitally or in hard copy.

Enter swimlanes (departments) as they occur in the narrative. (If using "sticky notes," make the swimlanes at least two sticky notes wide.)

Add a sticky note for *each* step or decision in the process, although it's recommended to combine QE and ME in one lane.

You'll need to add flow lines as you go; draw them lightly and wait until your map is finished to make them permanent.

Exercise 9: Process Map for proto development process (cont'd)

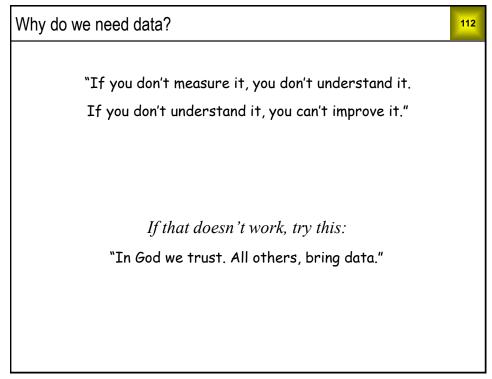

When a customer sends Sales a purchase order (PO) to produce a prototype for a nonstandard bracket, Sales meets with Product Engineering (PE) to review the functional requirements, specifications, sketch, and desired delivery date. PE creates an initial design specification, then reviews it with the customer. If the customer is not satisfied, PE makes the required changes, then meets with the customer again.

After the customer approves the design spec, copies go to Quality Engineering (QE) and Manufacturing Engineering (ME) for review. If either group has any problems with it, PE makes the required changes, then meets with the customer again. If the customer is happy with the revised design spec, copies go back to QE and ME.

After QE and ME approve the design spec, it goes to Drafting to create an assembly drawing. The first draft goes to PE for review. If PE is not satisfied with the drawing, it goes back to Drafting for revision, then back to PE.

After PE approves the drawing, it goes to QE and ME for review. If either group has any problems with it, it goes back to Drafting to make the required changes. Drafting sends the drawing back to PE for review. If PE is satisfied with the changes, the drawing goes back to QE and ME again.

109



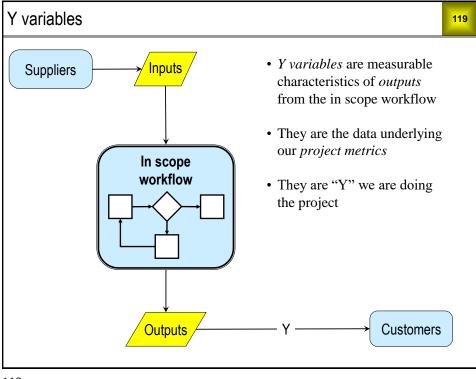
Planning for data collection

- Why do we need data?
- Project metrics and underlying data

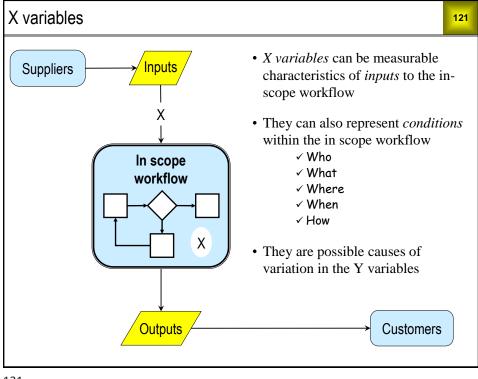
111


- Types of data
- Y variables and X variables
- Operational definitions
- Getting representative data

Case Study — Tool Development: Project metrics & underlying data			
Metric	Data		
Average number of rework cycles	Number of rework cycles for each tool, for some number of tools		
Average order to sell time	Order to sell time for each tool, for some number of tools		
Average weight of shipments	Weight of each shipment, for		
% of shipments exceeding an upper limit	some number of shipments		
Average time from purchase order (PO) to prototype delivery (PD)	PO-PD time for each prototype,		
% PO-PD time exceeding 25 days	for some number of prototypes		


General: Project metrics and underlying data			
Metric	Data		
Average lead time	Lead time for each part or transaction, for some number		
% of lead times exceeding an upper limit	of parts or transactions		
% Defective	Defective (Y/N) for each part, for some number of parts		
Average number of errors	Number of errors in each transaction, for some number of transactions		
Average bond strength	Strength of each bond, for		
% of bond strengths below a lower limit	some number of bonds		

Types of data	a	115
	Also known as	Examples
Quantitative	Measurement Continuous Parameter Variable	Properties (physical/chemical/electrical/optical) Dimensions Distance Time Counts
Categorical	Qualitative Attribute Nominal Ordinal	Pass/fail, failure modes Quality ratings Customer, supplier, product Machine, operator Method, type Batch, lot, work order, serial number Time period

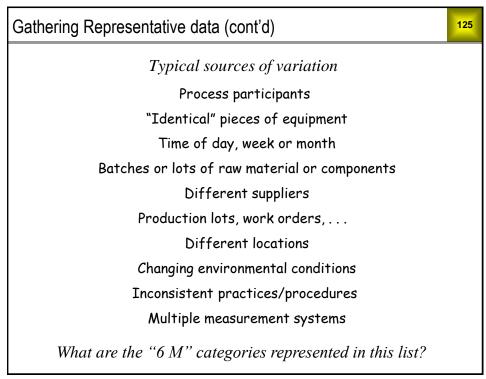


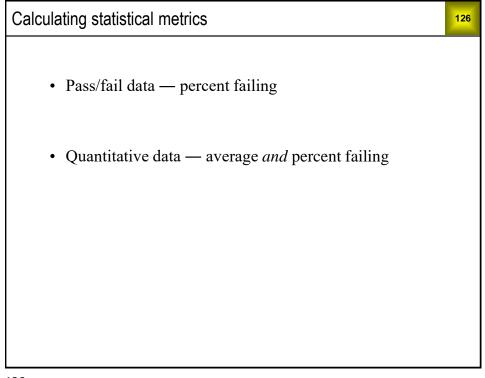
Exercise 10: Types of data					
		Quantitative	Categorical		
Pretend that the table on the next slide contains actual data on actual	Model year				
cars (as opposed to nominal values	Origin				
published by manufacturers). Check the appropriate data type for each	Make				
variable.	Model				
Are there any that could go either way?	Cylinders				
	Displacement				
	Horsepower				
	Weight				
	Accel				
	MPG				

Exercise 10: Types of data (cont'd)					118				
Model year	Origin	Make	Model	Cylinders	Displace	Horsepower	Weight	Accel	MPG
79	Europe	Mercedes	300D	5	183	77	3530	20.1	25.
80	Europe	Mercedes	240D	4	146	67	3250	21.8	30.
79	America	Cadillac	Eldorado	8	350	125	3900	17.4	23
81	Japan	Toyota	Cressida	6	168	116	2900	12.6	25
81	Europe	Volvo	Diesel	6	145	76	3160	19.6	30
81	Europe	Peugeot	505S DI	4	141	80	3230	20.4	28
82	America	Chevrolet	Camaro	4	151	90	2950	17.3	27
81	Japan	Datsun	810 Maxima	6	146	120	2930	13.8	24
81	Europe	Saab	900S	4	121	110	2800	15.4	
80	Japan	Datsun	280-ZX	6	168	132	2910	11.4	32
80	Europe	Audi	5000S DI	5	121	67	2950	19.9	36
82	Japan	Toyota	Celica GT	4	144	96	2665	13.9	32
82	America	Oldsmobile	Cutlass DI	6	262	85	3015	17.0	38
82	America	Buick	CenturyLmt	6	181	110	2945	16.4	25
80	Japan	Mazda	RX-7 GS	3	70	100	2420	12.5	23
80	Europe	Volkswagen	Rabbit	4	98	76	2144	14.7	41
80	Europe	Volkswagen	Rabbit	4	89	62	1845	15.3	29
81	America	Oldsmobile	Cutlass LS	8	350	105	3725	19.0	26
81	America	Buick	Century	6	231	110	3415	15.8	22
82	Japan	Honda	Accord	4	107	75	2205	14.5	36
82	Japan	Nissan	Stanza XE	4	120	88	2160	14.5	36

Case Stud	y — To	ool Development:	Examples of Y var	iables 120		
	1					
Project Title	Tool Tes	ting Process Improvement				
Project Scope	PVC pro	PVC products only, not composite				
Process boun	Idaries	Outputs	Y variables	Customers		
Starts with a blu from external cu defining the des profile.	istomer	Approved tool	Number of revisions Order to sell time	Manufacturing External customer		
Ends with an approved tool and run conditions		Run conditions	Line speed Weight	Manufacturing		
released to manufacturing.		Samples of extruded product with desired profile	Dimensions Cosmetic quality rating	External customer		

1	2	1

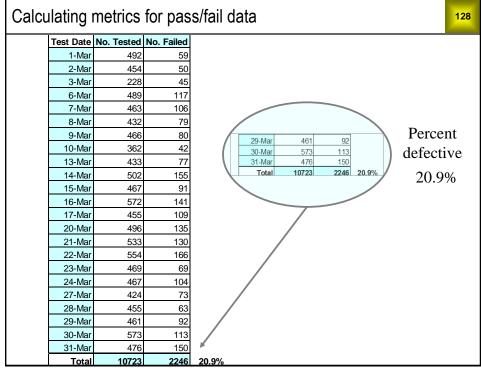

Project Title	Tool Testing	Process Improvement		
Project Scope		s only, not composite		
Suppliers	Inputs	X variables	Workflow boundaries	X variables
External customer	Blueprint	Profile complexity Single or dual orifice Dimensional tolerances	Starts with a blueprint from external customer defining the desired profile.	Which tester Which machine Material (PVC or composite)
External suppliers	Raw materials	Cost Quality Delivery	Ends with an approved tool and run conditions released to manufacturing.	(FVC of composite)

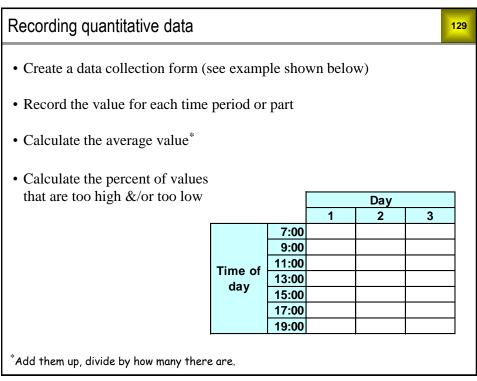

Exercise 11: Y variables

We want to do a study of automotive performance using the data set below. Which are the Y variables?

Model year	Origin	Make	Model	Cylinders	Displace	Horsepower	Weight	Accel	MPG
79	Europe	Mercedes	300D	5	183	77	3530	20.1	25.4
80	Europe	Mercedes	240D	4	146	67	3250	21.8	30.4
79	America	Cadillac	Eldorado	8	350	125	3900	17.4	23.0
81	Japan	Toyota	Cressida	6	168	116	2900	12.6	25.4
81	Europe	Volvo	Diesel	6	145	76	3160	19.6	30.7
81	Europe	Peugeot	505S DI	4	141	80	3230	20.4	28.1
82	America	Chevrolet	Camaro	4	151	90	2950	17.3	27.0
81	Japan	Datsun	810 Maxima	6	146	120	2930	13.8	24.2
81	Europe	Saab	900S	4	121	110	2800	15.4	
80	Japan	Datsun	280-ZX	6	168	132	2910	11.4	32.7
80	Europe	Audi	5000S DI	5	121	67	2950	19.9	36.4
82	Japan	Toyota	Celica GT	4	144	96	2665	13.9	32.0
82	America	Oldsmobile	Cutlass DI	6	262	85	3015	17.0	38.0
82	America	Buick	CenturyLmt	6	181	110	2945	16.4	25.0
80	Japan	Mazda	RX-7 GS	3	70	100	2420	12.5	23.7
80	Europe	Volkswagen	Rabbit	4	98	76	2144	14.7	41.5
80	Europe	Volkswagen	Rabbit	4	89	62	1845	15.3	29.8

Gathering representative data 124
• More data is better than less
• Longer time period is better than shorter
• Try to cover all the <i>typical sources of variation</i> , often categorized using the "6 M's"
• This method usually gives you a representative sample of adequate size




Recording pass/fail data

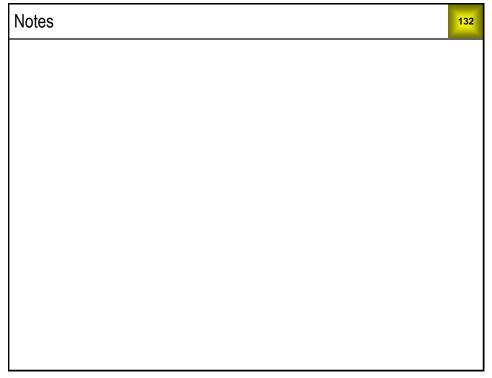
- Create a data collection form (see example to the right)
- Enter the number of items tested and the number failed for each time period (hourly, for each shift, daily, weekly whatever makes sense)
- When finished, calculate the column totals
- Divide the total failed by the total tested to get the % failing

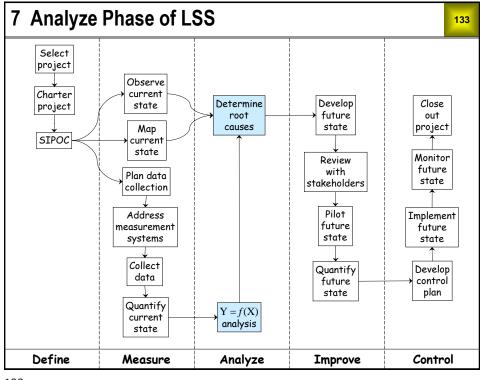
Test Date	No. Tested	No. Failed	
1-Mar			
2-Mar			
3-Mar			
6-Mar			
7-Mar			
8-Mar			
9-Mar			
10-Mar			
13-Mar			
14-Mar			
15-Mar			
16-Mar			
17-Mar			
20-Mar			
21-Mar			
22-Mar			
23-Mar			
24-Mar			
27-Mar			
28-Mar			
29-Mar			
30-Mar			
31-Mar			
Total			

127

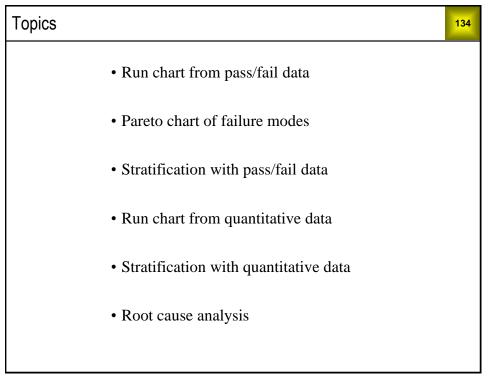
Day1237:001370131214389:0014621405150611:0014371398157413:0014761466144015:0013891406137217:0012881459126719:00130413691395	alculating	metrics	for quan	titative	data	1
7:001370131214389:0014621405150611:00143713981574Time of day11:0014371398157411:0014371398157413:0014761466144015:0013891406137217:00128814591267				Day		
9:00 1462 1405 1506 11:00 1437 1398 1574 13:00 1476 1466 1440 15:00 1389 1406 1372 17:00 1288 1459 1267			1	2	3	
Time of day 11:00 1437 1398 1574 Average = 1406.3 13:00 1476 1466 1440 15:00 1389 1406 1372 17:00 1288 1459 1267		7:00	1370	1312	1438	
Time of day 13:00 1476 1466 1440 15:00 1389 1406 1372 17:00 1288 1459 1267		9:00	1462	1405	1506	
13:00 1476 1466 1440 day 15:00 1389 1406 1372 17:00 1288 1459 1267	-	11:00	1437	1398	1574	Average = 1406.3
15:00 1389 1406 1372 17:00 1288 1459 1267		13:00	1476	1466		-
17:00 1288 1459 1267	uay	15:00	1389	1406	1372	
		19:00	1304	1369	1395	

Calculating metrics for quantitative data (cont'd)

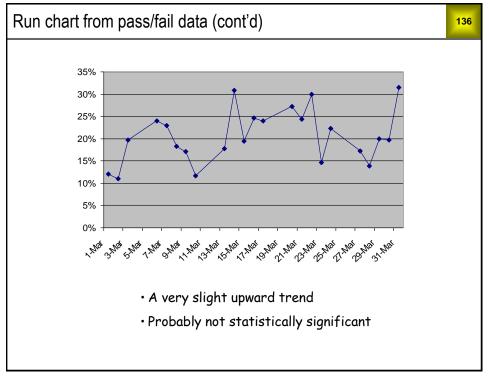

			Day	
		1	2	3
	7:00	1370	1312	1438
	9:00	1462	1405	1506
T ion a a (11:00	1437	1398	1574
Time of day	13:00	1476	1466	1440
uay	15:00	1389	1406	1372
	17:00	1288	1459	1267
	19:00	1304	1369	1395

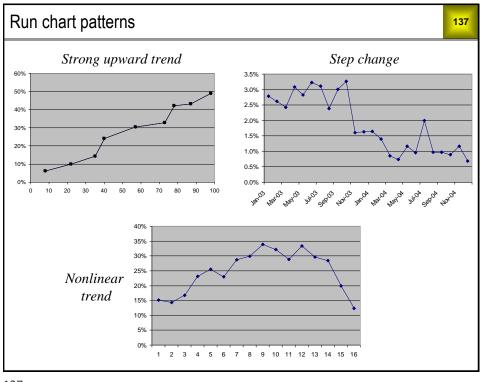

Lower Spec = 1350

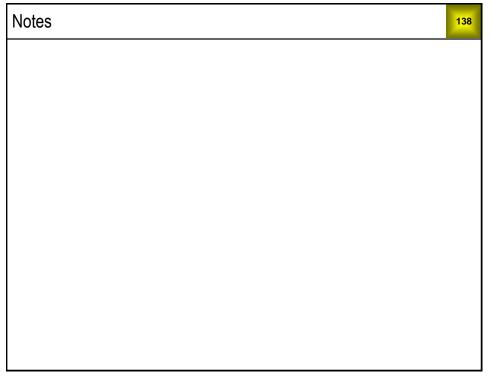
% Defective = **19.0%**


131

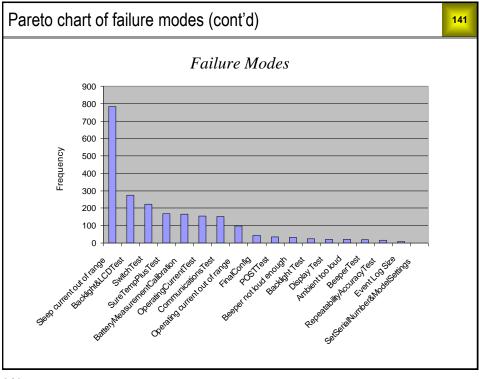
(Values below 1350 occurred 4 out of 21 days)

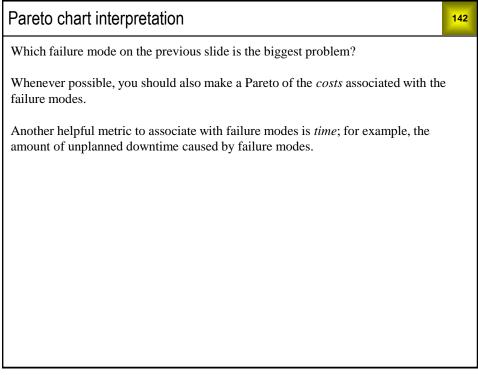






Run chart from	pass/f	ail data						<mark>135</mark>
	Test Date	No. Tested	No. Failed		Test Date	No. Tested	No. Failed	
	1-Mar	492	59		1-Mar	492	59	12.0%
	2-Mar	454	50		2-Mar	454	50	11.0%
	3-Mar	228	45		3-Mar	228	45	19.7%
W	6-Mar	489	117		6-Mar	489	117	23.9%
We want to	7-Mar	463	106		7-Mar	463	106	22.9%
look for a trend	8-Mar	432	79		8-Mar	432	79	18.3%
in daily failure	9-Mar	466	80		9-Mar	466	80	17.2%
5	10-Mar	362	42		10-Mar	362	42	11.6%
rates	13-Mar	433	77		13-Mar	433	77	17.8%
	14-Mar	502	155		14-Mar	502	155	30.9%
	15-Mar	467	91	N	15-Mar	467	91	19.5%
	16-Mar	572	141		16-Mar	572	141	24.7%
	17-Mar	455	109		17-Mar	455	109	24.0%
	20-Mar	496	135		20-Mar	496	135	27.2%
	21-Mar	533	130		21-Mar	533	130	24.4%
	22-Mar	554	166		22-Mar	554	166	30.0%
	23-Mar	469	69		23-Mar	469	69	14.7%
	24-Mar	467	104		24-Mar	467	104	22.3%
	27-Mar	424	73		27-Mar	424	73	17.2%
	28-Mar	455	63		28-Mar	455	63	13.8%
	29-Mar	461	92		29-Mar	461	92	20.0%
	30-Mar	573	113		30-Mar	573	113	19.7%
	31-Mar	476	150		31-Mar	476	150	31.5%
	Total	10723	2246	20.9%	Total	10723	2246	20.9%

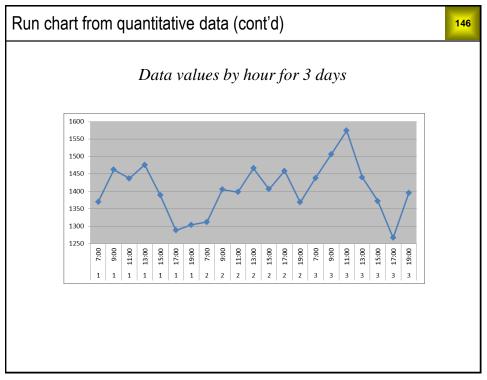




Pareto chart of	fa	ilu	re	m	00	les	5																	139
			L	Dai	ily	ta	ılly	v o	of f	ail	lur	·e i	ma)d	es									
	1-Mar	2-Mar	3-Mar	6-Mar	7-Mar	8-Mar	9-Mar	10-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	Total
Ambient too loud														17	4									
Backlight Test	3	1	1						3	4	1	3	2	1		1						3	2	
Backlight&LCDTest	14	10	8	13	12	13		6	12	12	12	13	3	18	17	15	16	8	13	12	12	14	17	
BatteryMeasurementCalibration	2	4	4	7	4	3	3	1	8	10	2	10	5	10	11	14	5	9	8	10	9	11	15	
Beeper not loud enough											2			3	27								1	
BeeperTest				4	3	1	3		1				1						2		1	1	2	
CommunicationsTest	3	2	7	22	11	3	19	6	6	20	7	4	1		1	3			3	5	11	11	8	
Display Test			3	1	3	4			1		1	1		6		1						2		
Event Log Size		1											2	1	1	1			1			1	1	
FinalConfig	1		2	5	2	7	7		2	2	3					2	2				4	3	1	
Operating current out of range	9	7	1	14	13	10	5		2	2	3		1	7	4			1	4		4	2	10	
OperatingCurrentTest	1	8	3	15	5	10	4	5	2	3	8	4	5	3	13	14	11	10	7	5	5	8	6	
POSTTest		1			4		3		2	3	1	1	1	3	1	3	2	2	1			2	5	
SetSerialNumber&ModelSettings				1																				
Sleep current out of range	4	2	1	14	24	21	10	6	30	70	43	90	60	41	41	92	25	55	17	15	29	37	57	
SureTempPlusTest	5	9	2	1	5	1		9		18	5	3	8	6	7	12	5	16	14	7	8	16	11	
SwitchTest	17	5	12	20	20	6	21	7	7	10	3	12	15	19	3	6	3	3	3	8	8	2	14	
RepeatabilityAccuracyTest			1					2	1	1			5			2				1	1			

				Fa	ilı	ıre	e n	no	de	s v	vit	h	tot	al	S									
	1-Mar	2-Mar	3-Mar	6-Mar	7-Mar	8-Mar	9-Mar	10-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	Tota
Ambient too loud														17	4									2
Backlight Test	3	1	1						3	4	1	3	2	1		1						3	2	2
Backlight&LCDTest	14	10	8	13	12	13	5	6	12	12	12	13	3	18	17	15	16	8	13	12	12	14	17	2
BatteryMeasurementCalibration	2	4	4	7	4	3	3	1	8	10	2	10	5	10	11	14	5	9	8	10	9	11	15	1
Beeper not loud enough											2			3	27								1	:
BeeperTest				4	3	1	3		1				1						2		1	1	2	
CommunicationsTest	3	2	7	22	11	3	19	6	6	20	7	4	1		1	3			3	5	11	11	8	1
Display Test			3	1	3	4			1		1	1		6		1						2		:
Event Log Size		1											2	1	1	1			1			1	1	
FinalConfig	1		2	5	2	7	7		2	2	3					2	2				4	3	1	
Operating current out of range	9	7	1	14	13	10	5		2	2	3		1	7	4			1	4		4	2	10	9
OperatingCurrentTest	1	8	3	15	5	10	4	5	2	3	8	4	5	3	13	14	11	10	7	5	5	8	6	15
POSTTest		1			4		3		2	3	1	1	1	3	1	3	2	2	1			2	5	;
SetSerialNumber&ModelSettings				1																				
Sleep current out of range	4	2	1	14	24	21	10	6	30	70	43	90	60	41	41	92	25	55	17	15	29	37	57	78
SureTempPlusTest	5	9	2	1	5	1		9		18	5	3	8	6	7	12	5	16	14	7	8	16	11	10
SwitchTest	17	5	12	20	20	6	21	7	7	10	3	12	15	19	3	6	3	3	3	8	8	2	14	2
RepeatabilityAccuracyTest			1					2	1	1			5			2				1	1			

Strat	ificat	tion	with	pas	s/fail data	a					143
	Mode	690	Mode	692			Mode	690	Mode	692	
Date	Tested	Failed		Failed		Date	Tested		Tested	Failed	
1-Mar	166	12	326	47		1-Mar	166	12	326	47	
2-Mar	347	36	107	14		2-Mar	347	36	107	14	
3-Mar	111	21	117	24		3-Mar	111	21	117	24	
6-Mar	289	76	200	41		6-Mar	289	76	200	41	• Model 692
7-Mar	220	62	243	44		7-Mar	220	62	243	44	has a high an
8-Mar	330	63	102	16		8-Mar	330	63	102	16	has a higher
9-Mar	288	56	178	24		9-Mar	288	56	178	24	failure rate
10-Mar	283	32	79	10		10-Mar	283	32	79	10	than 690
13-Mar	268	44	165	33		13-Mar	268	44	165	33	than 090
14-Mar	158	52	344	103		14-Mar	158	52	344	103	
15-Mar	179	36	288	55	•	15-Mar	179	36	288	55	
16-Mar	329	81	243	60		16-Mar	329	81	243	60	• There are larger
17-Mar	220	37	235	72		17-Mar	220	37	235	72	U
20-Mar	280	61	216	74		20-Mar	280	61	216	74	differences
21-Mar	293	57	240	73		21-Mar	293	57	240	73	among the 3
22-Mar	273	64	281	102		22-Mar	273	64	281	102	testers (see next
23-Mar	181	21	288	48		23-Mar	181	21	288	48	
24-Mar	198	46	269	58		24-Mar	198	46	269	58	page)
27-Mar	187	31	237	42		27-Mar	187	31	237	42	
28-Mar	219	35	236	28		28-Mar	219	35	236	28	
29-Mar	257	60	204	32		29-Mar	257	60	204	32	
30-Mar	414	86	159	27		30-Mar	414	86	159	27	
31-Mar	233	59	243	91		31-Mar	233	59	243	91	
							5723	1128 19.7%	5000	1118 22.4%	

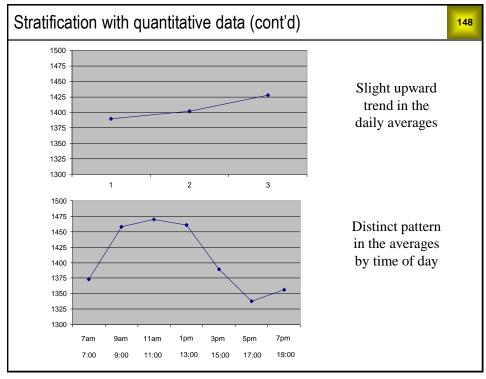

Strati	ficat	ion	with	pa	ss/fa	ail da	a (conťd)						144
]	Test	er 1	Test	er 2	Test	er 3		Tes	ter 1	Test	er 2	Test	er 3
Date	Tested	Failed	Tested	Failed	Tested	Failed	Date		Failed	Tested			Failed
1-Mar	142	13	183	34	167	12	1-Ma	ar 142	13	183	34	167	12
2-Mar	155	20	168	12	131	18	2-Ma	ar 155	20	168	12	131	18
3-Mar	87	10	73	17	68	18	3-Ma	ar 87	10	73	17	68	18
6-Mar	184	42	153	33	152	42	6-Ma		42	153	33	152	42
7-Mar	159	25	164	29	140	52	7-Ma		25	164	29	140	52
8-Mar	196	37	177	29	59	13	8-Ma		37	177	29	59	13
9-Mar	137	12	203	33	126	35	9-Ma		12	203	33	126	35
10-Mar	132	15	170	22	60	5	10-Ma		15	170	22	60	5
13-Mar	114	22	189	25	130	30	13-Ma		22	189	25	130	30
14-Mar	166	54	198	65	138	36	13-Ma		54	198	65	130	36
15-Mar	148	32	176	35	143	24	15-Ma		32	176	35	143	24
16-Mar	185	50	221	48	166	43	16-Ma		50	221	48	143	43
17-Mar	181	54	115	26	159	29	17-Ma		50	115	40 26	159	43 29
20-Mar	162	33	148	39	186	63							
21-Mar	165	25	187	41	181	64	20-Ma		33	148	39	186	63
22-Mar	198	41	176	49	180	76	21-Ma		25	187	41	181	64
23-Mar	181	21	146	21	142	27	22-Ma		41	176	49	180	76
24-Mar	199	45	145	25	123	34	23-Ma		21	146	21	142	27
27-Mar	192	31	106	21	126	21	24-Ma		45	145	25	123	34
28-Mar	167	33	139	10	149	20	27-Ma		31	106	21	126	21
29-Mar	113	28	189	37	159	27	28-Ma		33	139	10	149	20
30-Mar	213	52	199	33	161	28	29-Ma		28	189	37	159	27
31-Mar	175	37	133	24	168	89	30-Ma	ar 213	52	199	33	161	28
l							31-Ma	ar 175	37	133	24	168	89
								3751	732 19.5%	3758	708 18.8%	3214	806 25.1%

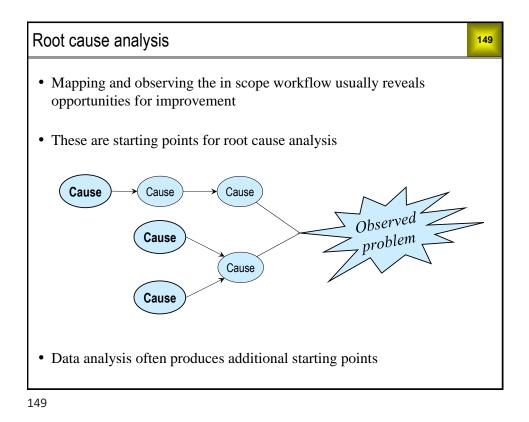
Run chart from quantitative data

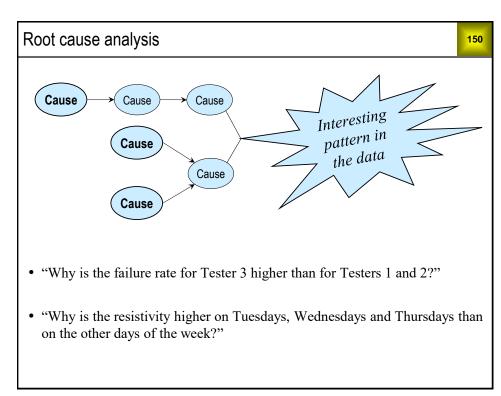
			Day	
		1	2	3
Time of	7:00	1370	1312	1438
	9:00	1462	1405	1506
	11:00	1437	1398	1574
Time of	13:00	1476	1466	1440
day	15:00	1389	1406	1372
	17:00	1288	1459	1267
	19:00	1304	1369	1395

145

145

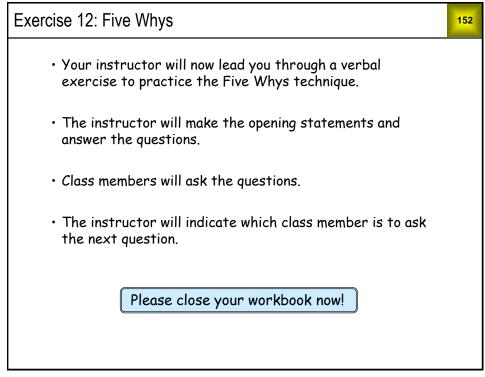



Stratification with quantitative data


		1	2	3	Avgs.
	7:00	1370	1312	1438	1373.3
	9:00	1462	1405	1506	1457.7
Time of	11:00	1437	1398	1574	1469.7
	13:00	1476	1466	1440	1460.7
day	15:00	1389	1406	1372	1389.0
	17:00	1288	1459	1267	1337.8
	19:00	1304	1369	1395	1355.8
	Avgs.	1389.4	1402.0	1427.4	

147

147



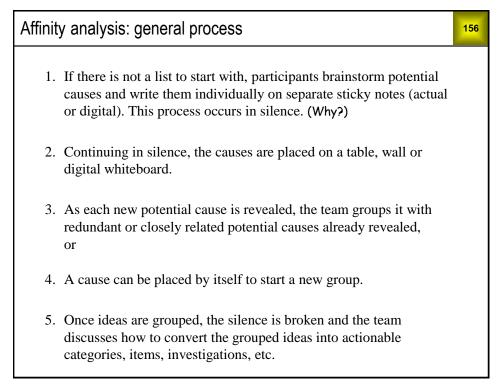
Getting to root cause — "Five Whys"

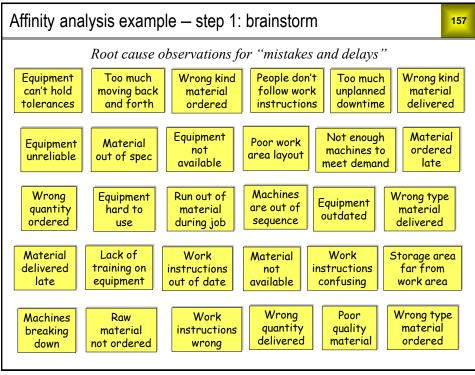
- For each problem or observation, ask a series of questions
- The purpose of each question should be to take you closer to the root cause of the problem or observation

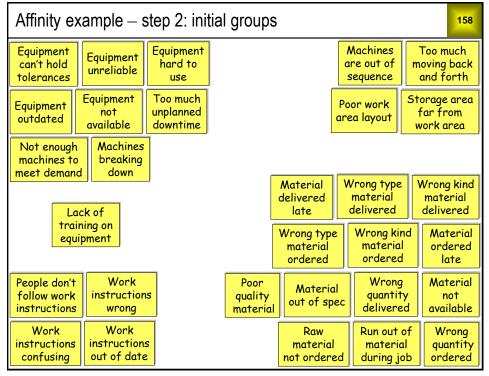
151

- The questions do not have to start with "why"
- Put some thought into how you phrase your questions you don't want to annoy or antagonize the person you are interviewing
- Bring the conversation back to the root cause path if it wanders into "solution space" or "who's to blame"
- Once you have the root cause, the solution is not far away

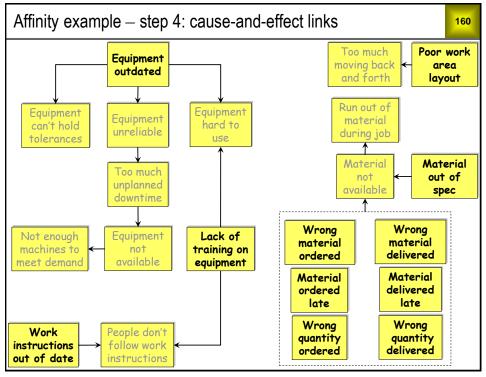
Exercise 12: Five Whys for scrap in the Coiling department					
Opening statement:	There's too much scrap in the Coiling Department!				
What kinds of defects are causing the scrap?	The vast majority are due to bad welds.				
Why do we have so many bad welds?	The welders aren't very good.				
Why aren't they very good?	It's an entry level position, and they don't get much training.				
Why aren't they given more training?	I don't know. I guess there isn't enough time. This is the way we've always done it.				
Why don't you use certified welders?	Are you kidding? We would have to pay them too much.				

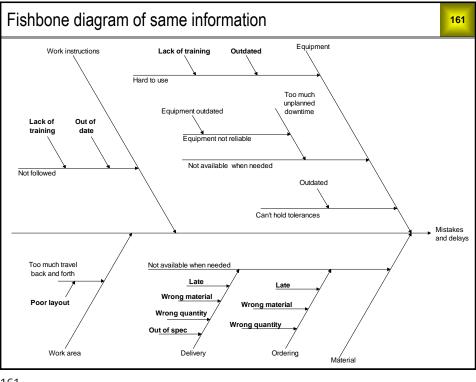

Exercise 12: Five Whys for scrap (cont'd)					
Don't your welders get better as they become more experienced?					
Why do they leave this department so soon?	Used. As soon as there's an opening over there.				
Why are they so eager to work in the other department?	We have the highest accident rate in the company. The working conditions in the other department are much better. Also, they get a dollar an hour more than here.				
What is the annual cost of scrap in the Coiling Department?	I don't know, but every day they fill a large dumpster with scrap metal.				


Affinity Analysis of potential causes


• A team may accumulate a long list of potential causes of the problem, developed over the course of the project

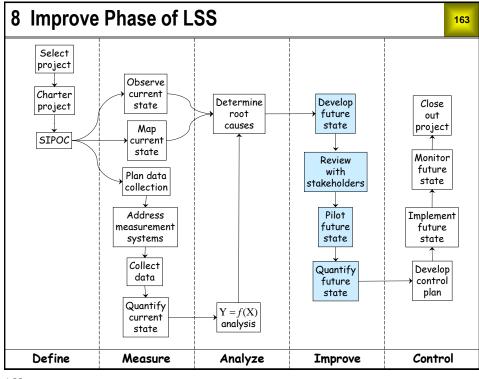
155

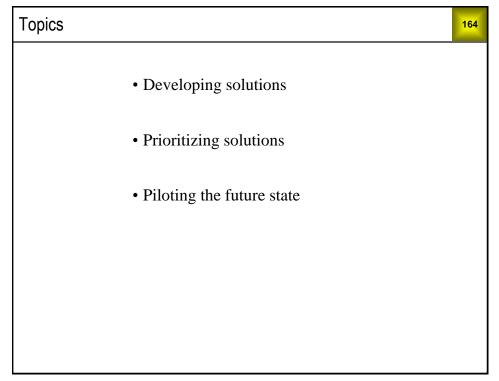

- Usually, some of these are redundant or closely related
- Also, some of the items on the list may have a cause-and-effect linkage with each other
- The objective of affinity analysis is to reduce an initial list down to a relatively short final list of distinct root causes
- These will be the basis for developing the solution ideas that define the future state

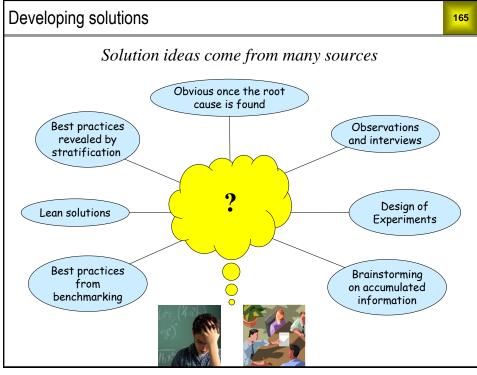


Affinity example – step 3: consolidated groups					
Equipment can't hold tolerances	Equipment unreliable	Equipment hard to use		Poor work area layout	Too much moving back and forth
Equipment outdated	Equipment not available	Too much unplanned downtime			
Not enough machines to meet deman	,				
tra	ining on ipment		Wrong material delivered	Wrong material ordered	
			Materia delivere late		y not
People don't follow work instructions	instruction		Material out of spe	matania	d quantity

Fishbone (cont'd)


The team process usually associated with a fishbone (aka Cause and Effect Diagram) starts with broad categories (Man, Machine, Materials, Methods, Measurement, Environment) that are used as the main branches. The 5 whys process is then used to add smaller branches representing causes. The root causes are on the smallest branches.


162

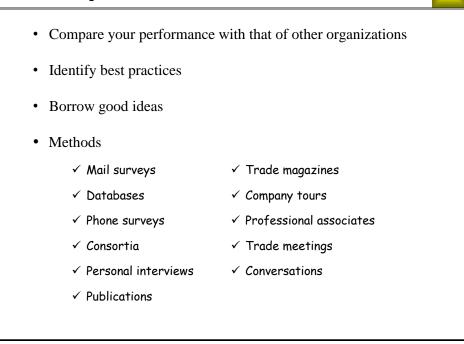

A fishbone is a good way to document this Affinity process after it is completed, but it can be inefficient to try to develop the fishbone during the process if team members waste time worrying about the structure of the diagram, which can become complex and difficult to modify as the process unfolds.

Affinity analysis is an open, flexible process. It is easy to add new things as they arise and move things around as needed. The broad categories of the fishbone diagram (the 5 M's and an E) should be brought in only at the end of the process to make sure nothing has been overlooked.

Solution ideas often come directly from root causes					
Root causes of "mistakes and delays"	Solution ideas				
Equipment outdated	Replace equipment				
Poor work area layout	Redesign work area layout				
Material not ordered					
Wrong material ordered	Project on ordering process				
Wrong quantity ordered					
Material delivered late					
Wrong material delivered	Project on supplier order fulfillment				
Wrong quantity delivered					
Material out of spec	Project on supplier quality				
Work instructions out of date	Update work instructions				
lask of training on aquinmont	Implement document control system				
Lack of training on equipment	Training on document control system				

Brainstorming

- A structured team activity for generating ideas
- Can produce many ideas in a short period of time


167

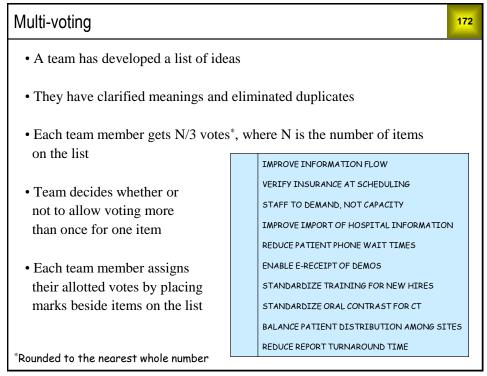
- Separates *generation* of ideas from *organization* and *assessment* of ideas
- In the traditional brainstorming process, ideas are expressed verbally
- Often, it is better to have people write their ideas on pieces of paper (why?)

167

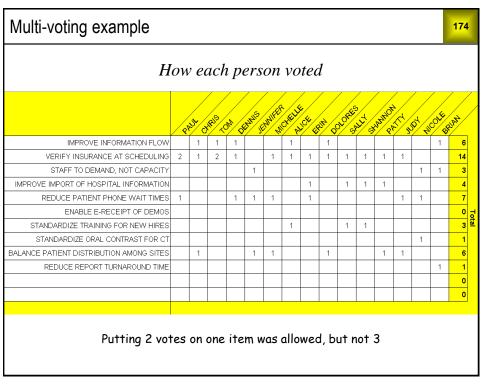
Brainstorming "rules of engageme	nt"
Do	Do not
 Allow individuals to complete their thoughts Build on existing ideas or ideas of others State ideas as concisely as possible State and accept "ridiculous" ideas Strive for quantity 	 Discuss or criticize ideas during the process Paraphrase an individual's idea when scribing Dominate the session Allow someone else to dominate the session Organize, categorize or evaluate ideas during the process

Benchmarking

169



Prioritizing solutions


• Multi-voting (N/3 technique)

171

• Impact - Feasibility Analysis

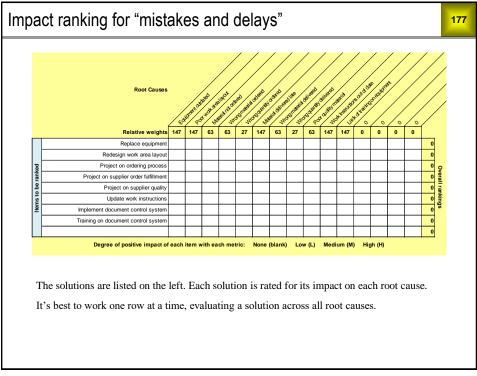
Multi-voting example	ti-voting example				
10	10 items, 15 people, 3 votes each				
11111 1	IMPROVE INFORMATION FLOW				
///// //// ////	VERIFY INSURANCE AT SCHEDULING				
111	STAFF TO DEMAND, NOT CAPACITY				
////	IMPROVE IMPORT OF HOSPITAL INFORMATION				
	REDUCE PATIENT PHONE WAIT TIMES				
	ENABLE E-RECEIPT OF DEMOS				
///	STANDARDIZE TRAINING FOR NEW HIRES				
/	STANDARDIZE ORAL CONTRAST FOR CT				
11111 1	BALANCE PATIENT DISTRIBUTION AMONG SITES				
1	REDUCE REPORT TURNAROUND TIME				

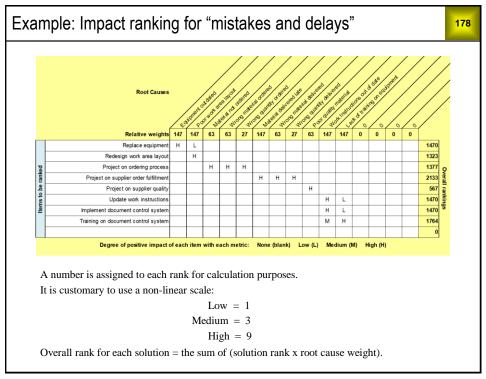
Impact - Feasibility analysis

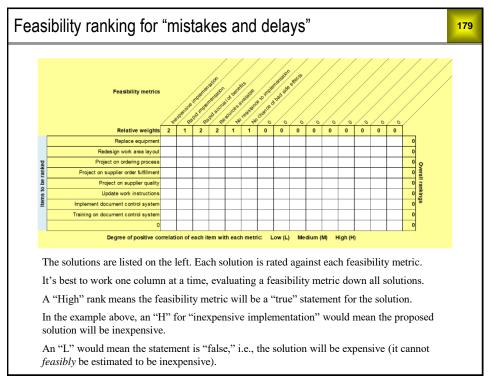
For a given team with a specific list of solution ideas, ranking each solution in terms of its potential impact on the identified root cause(s) usually gives a different result than multi-voting. The impact prioritization method forces us to think about the *reasons* certain items should be given higher priority than others. Using a method that considers impact is superior to multi-voting.

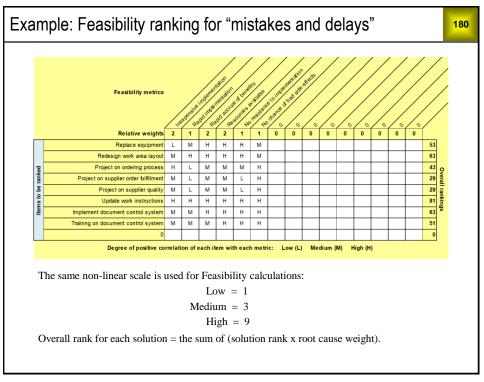
Even better is to include an evaluation of the feasibility of solutions.

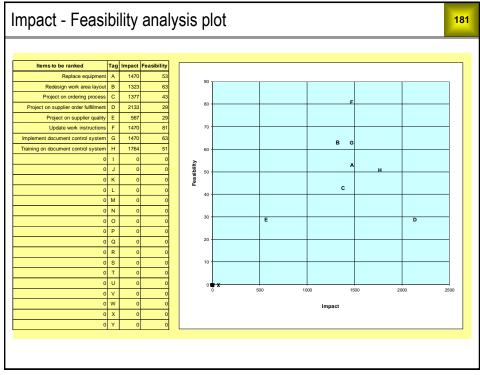
Ultimately best is to apply weights to root causes:

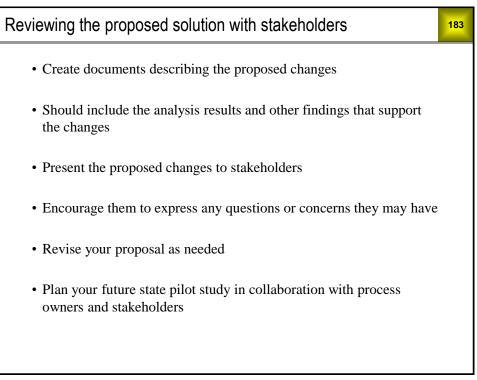

- weights are determined using criteria such as frequency of occurrence, severity, degree of correlation to the problem effect, etc.);
- solutions that impact higher-weighted root causes will rank higher than solutions that only impact lower-weighted root causes.

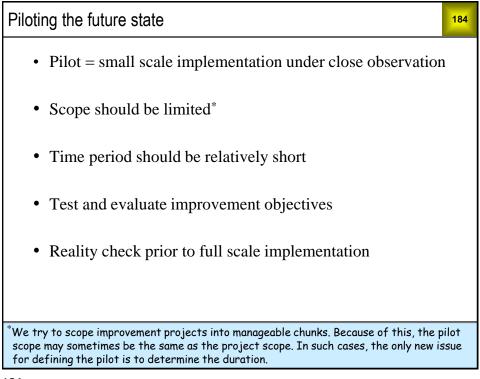

Of course, multi-voting is quicker and easier. The decision as to which method to use is a judgment the team leader or facilitator must make.


To get the best of both worlds, multi-voting can be an efficient way to narrow down a long list of items for further prioritization.


t - Feasibility analysis for "mistakes and delays"					
Root Causes	Relative weights	Feasibility metrics	Relative weights		
Equipment outdated	147	Inexpensive implementation	2		
Poor work area layout	147	Rapid implementation	1		
Material not ordered	63	Rapid accrual of benefits	2		
Wrong material ordered	63	Resources available	2		
Wrong quantity ordered	27	No resistance to implementation	1		
Material delivered late	147	No chance of bad side effects	1		
Wrong material delivered	63				
Wrong quantity delivered	27				
Poor quality material	63				
Work Instructions out of date	147				
Lack of training on equipment	147				



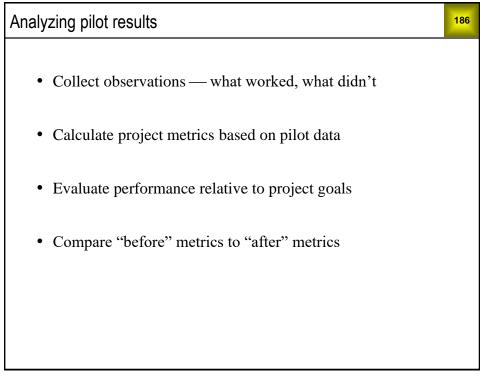

Realities of prioritizing


In a perfect world, the highest priority would be to implement the solution with highest impact-feasibility score. The second highest priority would be to implement the solution with the second highest score, and so on.

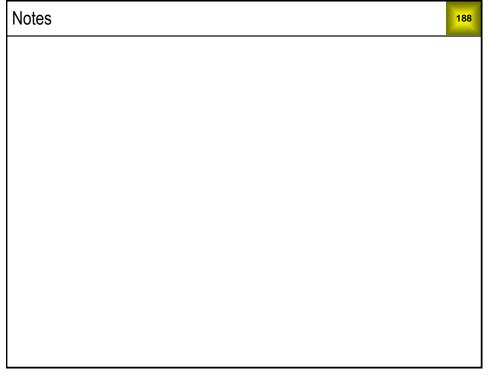
182

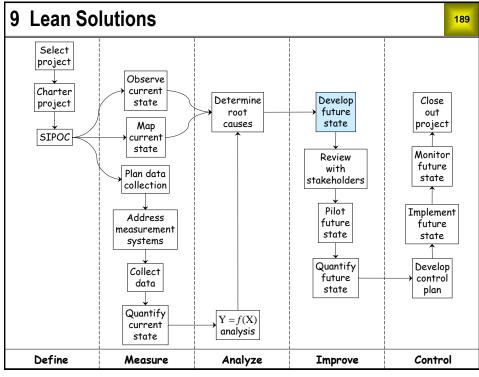
In reality, the solution rankings must be viewed holistically in the context of the organization and its current environment. Think of the Impact-Feasibility plot as an aid to discussion in determining how many solutions to implement at a given time, and in what order.

It may be helpful to implement a lower impact but highly feasible solution as a "demonstration" project to build support for LSS efforts.



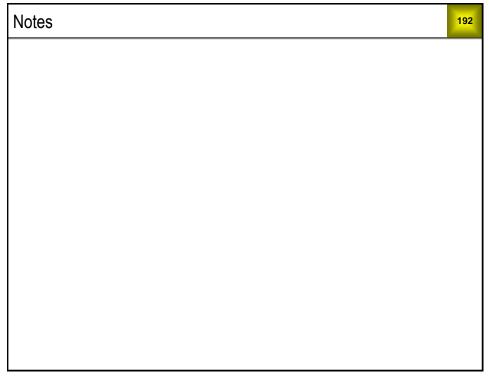
Piloting checklist


- □ What is the scope? (Location, work area, products, . . .)
- □ What is the duration?
- □ Who are the participants? (Process owner, process participants, stakeholders, team members...)


- □ What data is to be collected? (Y variables and project metrics must be same as in Define and Measure phases.)
- □ Have we communicated plans to all concerned parties?

185

Examp	Example: project to reduce lead time and improve quality								
Comparison of current state and future state metrics									
	Currer	nt state		Future	e state				
	Lead time	Complete		Lead time	Complete			Current	Future
Transaction	(days)	& accurate	Transaction		& accurate			state	state
1	10	Yes	1	4		A	. lead time	9.4	4.9
2	4	No	2		Yes	Avg	. lead time	9.4	4.9
3	13	No	3			%Lead	times > 10	40.0	4.3
4	2	Yes	4	-		70 Ecuu		40.0	4.0
5	6	No	5	-			% C & A	52.0	91.3
6	11	No	6	-					
7	6	No	7						
8	<u>5</u> 27	Yes No	8						
9 10	19	Yes	10						
10	4	Yes	11						
12	17	No	12	-					
13	9	No	13						
14	11	No	14	3	Yes				
15	6	Yes	15	4	Yes				
16	5	Yes	16		Yes				
17	12	Yes	17	-					
18	8	Yes	18	-					
19	1	Yes	19	-					
20	12	No	20						
21	2	Yes	21						
22 23	2	Yes No	22						
23	15	NO	23	3	res				
24	21	Yes							

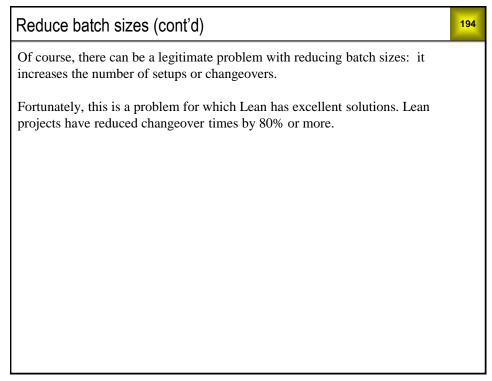

Common Lean solutions	<mark>190</mark>
Stop & fix	
Pull systems	
Standardization	
Setup reduction	
Mistake proofing	
Reduce batch sizes	
Value stream teams	
Work balancing	
Visual management	
5S: Sort, Stow, Sweep, Standardize, Sustain	

Examples of mistake-proofing

• Designing connecting cables and ports so that a cable cannot be plugged into the wrong port

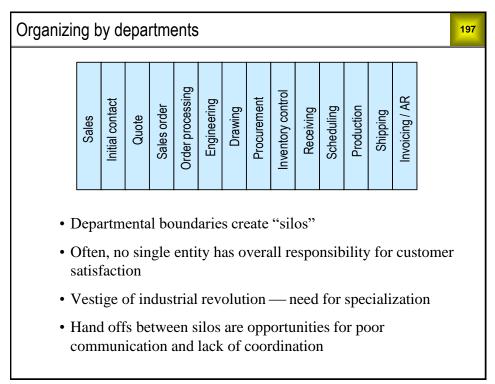
191

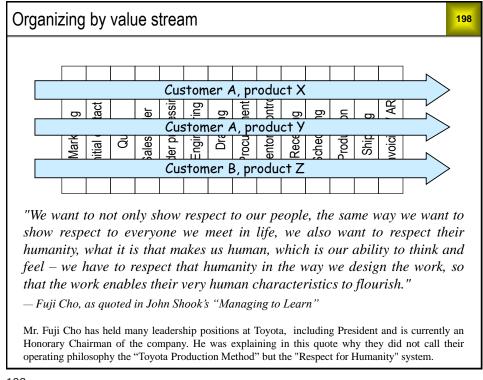
- Programming software so that the user cannot proceed unless necessary information is filled in
- Auto fill of previously entered information on electronic forms
- Pull down menus in computer programs especially for data entry
- Using feedback control systems and alarms on equipment
- Fixturing to prevent incorrect placement and hold things in place

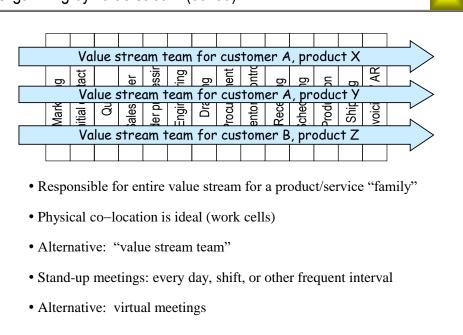


Reduce batch sizes (keep the work moving)

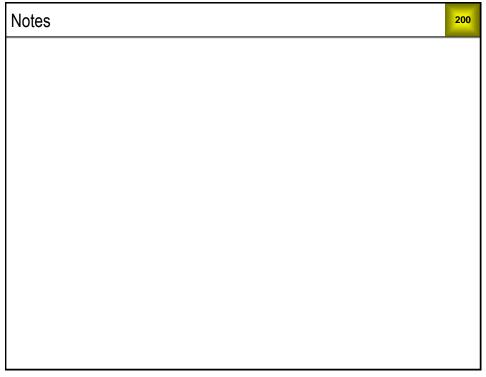
Don't do things in batches. The ideal is to do one thing at a time. Come as close to this as you can.

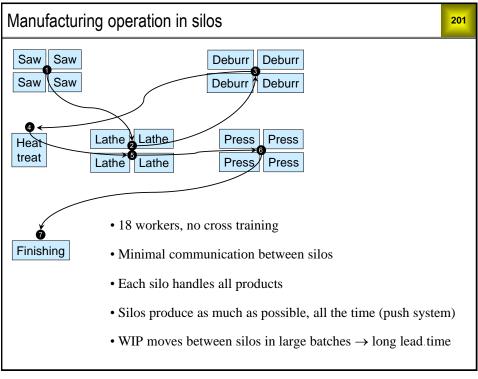

- Wait a minute batching is supposed to be "efficient"
- Maybe, but here are some problems with batching:
 - \checkmark One mistake can ruin a whole batch before the problem is detected
 - ✓ A customer who wants just one item has to wait for a whole batch to be completed
 - ✓ Items accumulate until the batch quantity is reached wastes space, creates opportunities for defects

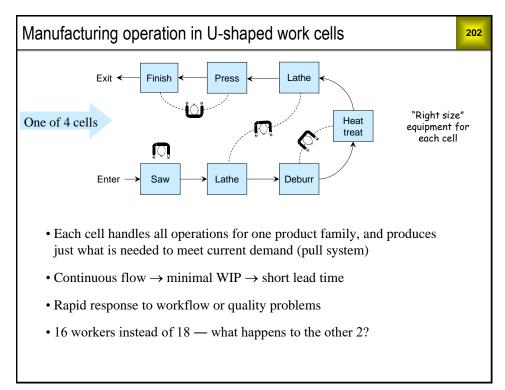


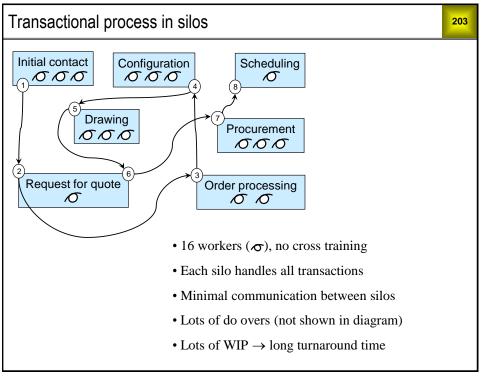

Current state: daily batching							
3 operations 2 hours per transaction per operation							
Hours	1 to 8	9 to 16	17 to 24	25 to 32	33 to 40	41 to 48	
Sort / collate	0000	0000	0000	0000	0000	0000	
Coding		0000	0000	0000	0000	$\odot \odot \odot \odot$	
Billing			0000	0000	0000	0000	
Billing ©©©© ©©©© ©©©© ©©©© Lead time = 24 hours (3 days)							

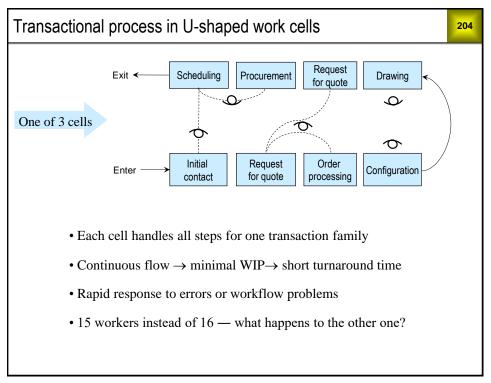
Future state: continuous flow					196	
3 operations 2 hours per transaction per operation						
Hours	1 to 8	9 to 16	17 to 24	25 to 32	33 to 40	41 to 48
Sort / collate	QQQQ	0000	0000	0000	0000	0000
Coding	000	0000	$\odot \odot \odot \odot$			
Billing	0	000	0000	0000	0000	0000
Lead time = 6 hours (less than one day) Reducing batch size reduces cycle time!						

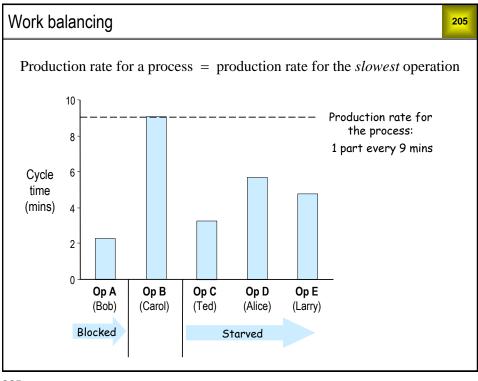


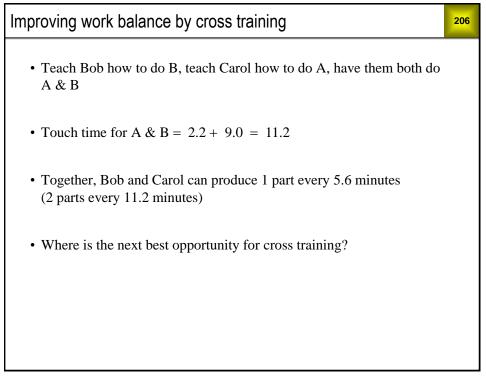


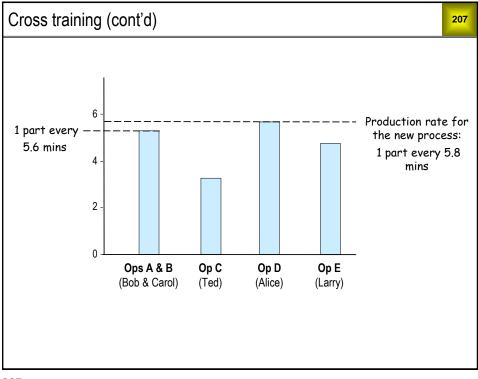

Organizing by value stream (cont'd)

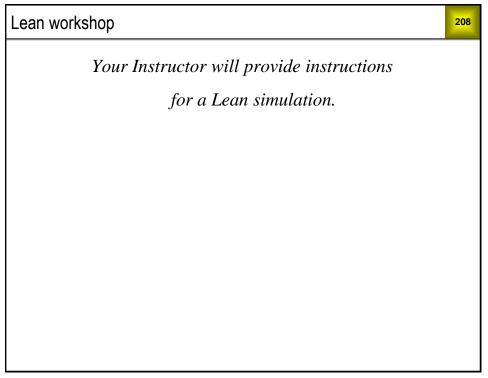


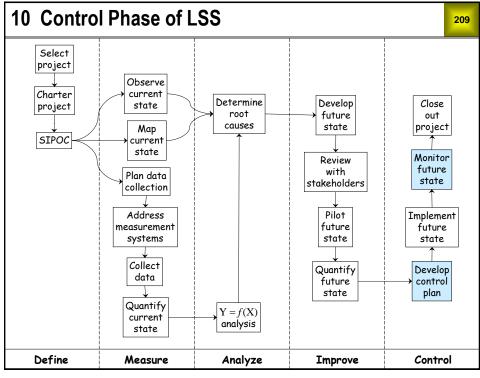

199

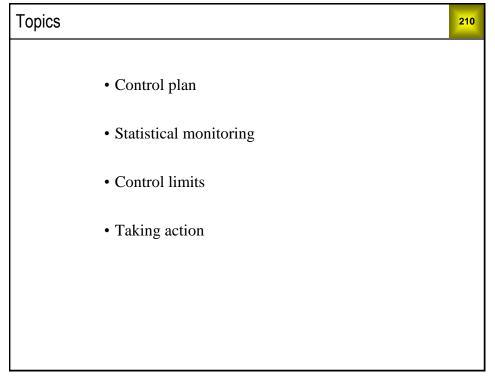


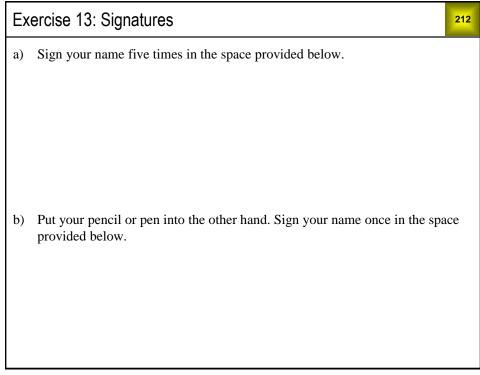


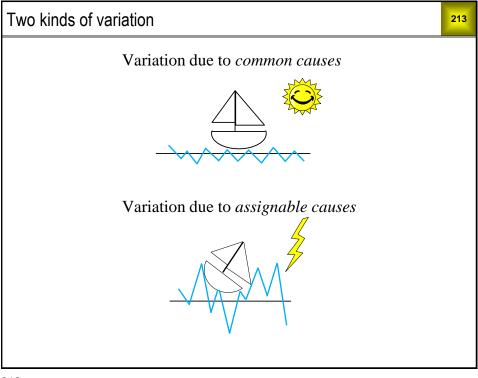


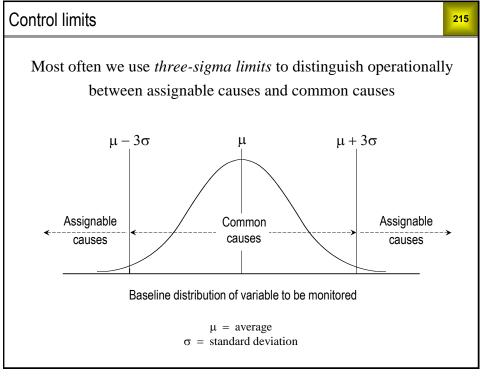


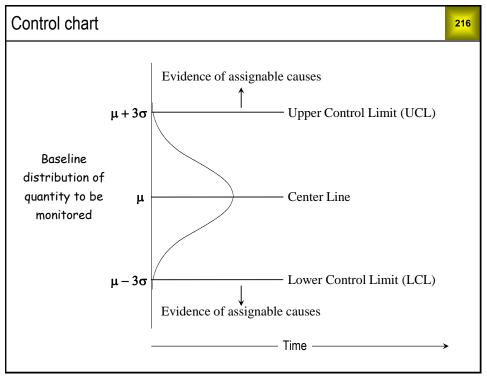


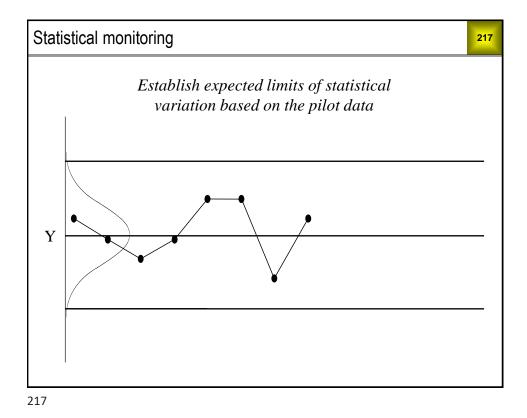


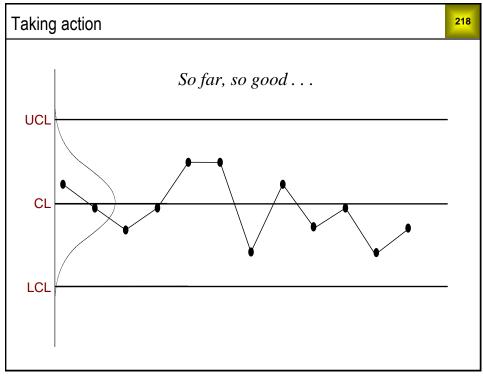


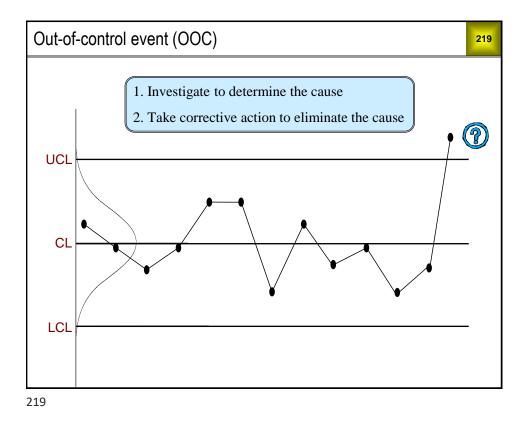


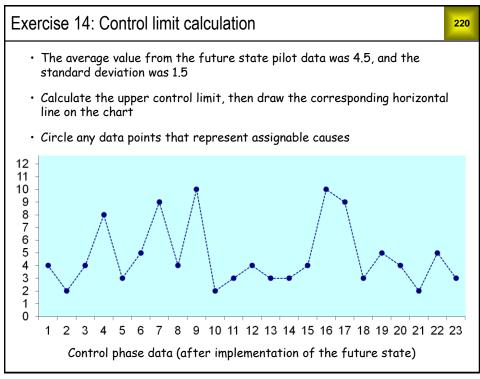

Process name:	Process name: Tool Testing Process								
Process owner:	- Testing Area Manager								
Revision date:									
Process step	Control method	Frequency	Data variable	Meas. system	Metric to monitor	Control limits		Response	Response
						Lower	Upper	plan owner	plan location
Determine run conditions	Audit compliance with new procedure requiring special approval to change weight or line speed	Monthly, then Quarterly	Run conditions						
Determine run conditions	Disable weight and line speed controls on test line								
Release to manufacturing	Control chart	Weekly	Number of days in testing	Database	Average	0	8.5	Testing area manager	Doc Control system
Release to manufacturing	Control chart	Weekly	Number of rework cycles	Database	Average	0.4	2.8	Testing area manager	Doc Control system
Dimensional inspection	Install DVT gage and trainer testers to use it	one-time, refresher training							
Dimensional inspection	Periodic gage R&R	Monthly, then Quarterly	Spec dimensions	DVT	% of Tolerance (goal <u><</u> 30%)			Testing Engineer	

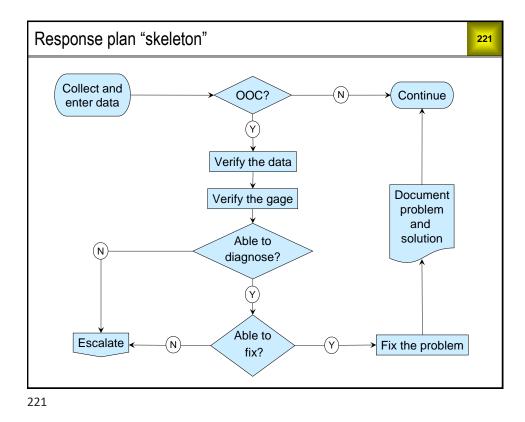


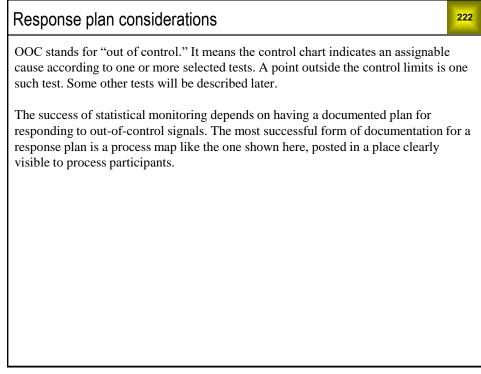


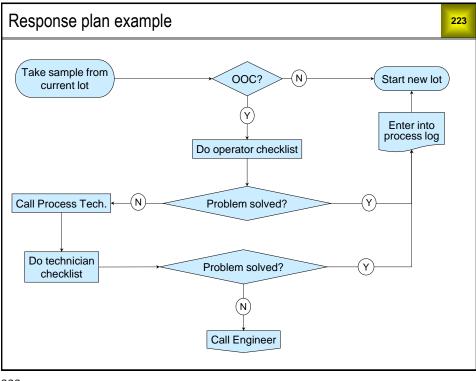


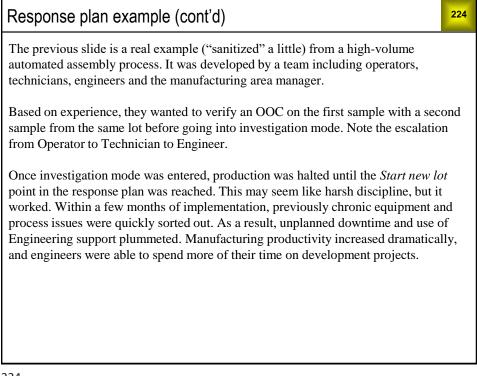

Two kinds of variation (cont'd)	214				
Common causes	Assignable causes				
Random variation	Systematic variation				
Inherent in the process as currently defined	External factors, mistakes, malfunctions, miscommunications, etc.				
Myriad small fluctuations, causes <i>cannot</i> be assigned	Relatively few large fluctuations, causes <i>can</i> be assigned and removed				
Outcomes are predictable within statistical limits	Outcomes are not predictable at all				

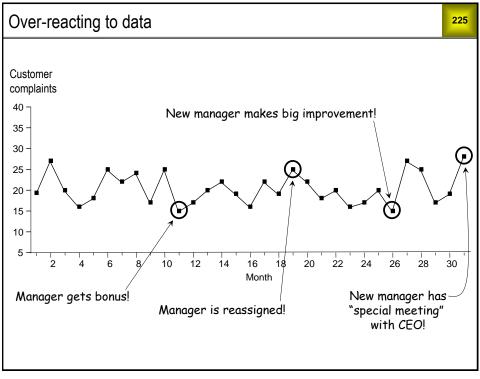


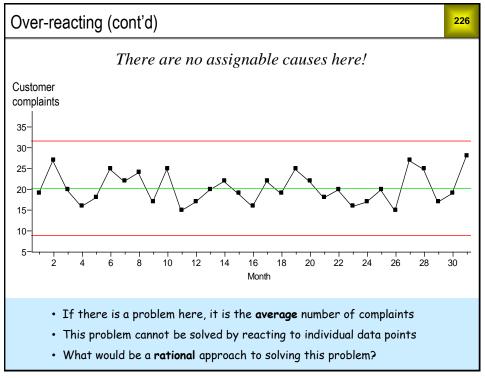


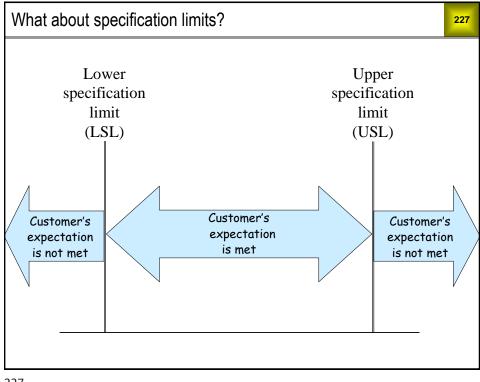


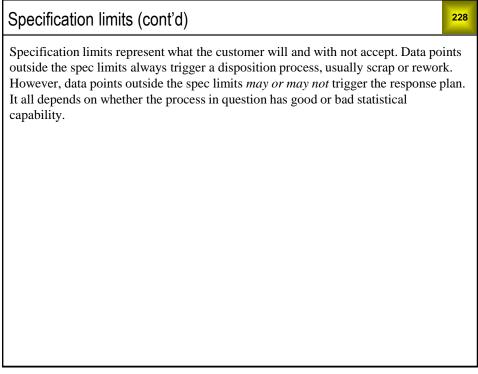


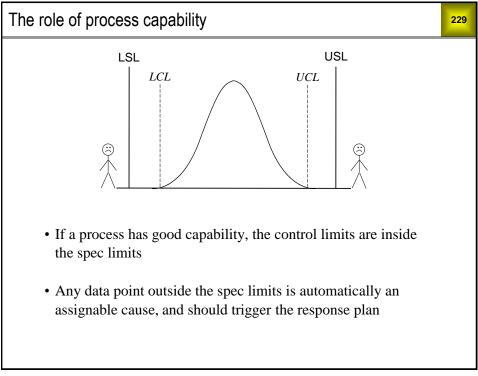


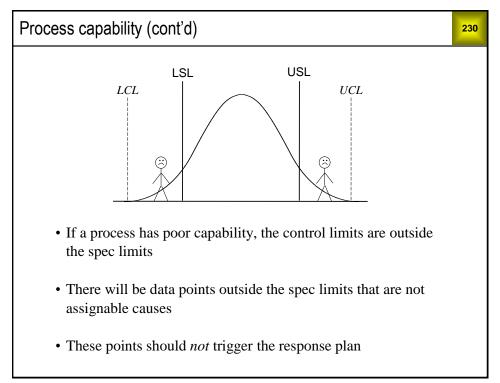












Thank you for participating in ETI Group's Lean Six Sigma Yellow Belt Workshop! We will "test" our knowledge and share key learnings together. You will also receive a link to a Course Evaluation.

We appreciate you taking a few minutes of your time to give us constructive feedback.