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LSS Vol 2, Sections 2-5, 29
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Recommended default preferences for JIMP

. Platforms Options
File .
¢ v/ Attribute Gauge Chart
. v" Show Agreement Points
Preferences Atribute Chart v’ Connect Agreement Points
»L v" Show Agreement Grand Mean
Platforms Bivariat v Show Points
ivariate v Eit Line
v Mosaic Plot
v Contingency Table
Contingency v Tests
v’ Count
v Row %
v Summary Statistics
v' Horizontal Layout
N v Histogram
Distribution v" Outlier Box Plot
Uncheck any options v Frequencies
not shown here v Separate Bars
JMP defaults (cont'd)
. Platforms Options
File
~L v Mean
o v' Std Dev
Preferences Distribution Summary | N
~l« Statistics o
v Minimum
Platforms v Maximum

Uncheck any options
not shown here

v'Suppress Cotter Designs

DOE v/ Optimality Criterion — Make D-
Optimal Design
o v Diagnostic Plot
Fit Distribution :

v Density Curve

Fit Least Squares

v Profiler

v Summary of Fit

v" Analysis of Variance

v Effect Tests

v" Plot Regression

v" Plot Residual by Predicted




JMP defaults (cont'd)

File
d
Preferences

\J

Platforms

Platforms

Options

Fit Nominal Logistic

v Logistic Plot
v Likelihood Ratio Tests
v’ Profiler

Life Distribution

v' Show Points

v" Show Statistics

v" Show Confidence Area

v Interval Type — Pointwise

v Center Polynomials

Model Dialog v" Emphasis — Minimal Report
v Means/Anova
v" All Graphs
v Points
Oneway v" Mean Diamonds
v" Connect Means
Uncheck any options v’ X Axis Proportional
not shown here v Points Jittered
JMP defaults (cont'd)
. Platforms Options
File P
~L v Overlay Y's
Preferences v Separate Axes
*L v" Show Points
Platforms Overlay Plot

Uncheck any options
not shown here

v’ Connect Points
v’ Line Width — Thin

v’ Automatic Recalc

Variability Chart

v Variability Chart

v" Show Points

v" Show Range Bars
v Connect Cell Means
v' Show Separators
v" Show Group Means
v Points Jittered







1 JMP menu map 1

Calculate basic statistics, create statistical graphics, find % of
data points beyond given limits

Distribution

Fit distribution models for regular quantitative data, evaluate
goodness of fit, predict % or PPM beyond given limits

. Hypothesis testing, comparing populations, testing for
Fit Y by X e .
significant differences
- Correlating variables, modeling Y as a function of one X and
Fit Model ) - L2
multiple Xs, prediction, optimization

Analyze
Quality and Variability / Attribute . .
ST TIES Gauge Chart 4[ Categorical MSA with no standards J
Reliabilit Fit distribution models for life data
d Survi y | Life Distribution (time to failure), evaluate goodness of
and surviva fit, predict failure probabilities
JMP menu map (cont'd) 2

: Specity desired default settings
File «{ Preferences }—{ Platforms }—L for IMP analysis platforms

Derive a smaller data table by calculating

ST statistics over subsets of a larger data table
Subset Extract a subset of a data table ]
Tables @ Sort a data table
Stack Stack a data table
Split Unstack a data table ]

Calculate sample size for a designed experiment }

DOE

Create the design matrix for a designed experiment ]

Graph H Overlay Plot }—( Plot one or more data series in time sequence ]




2 Basic Statistics and Statistical Graphics

* Frequency histogram

+ Cumulative distribution function
 Percentiles

* Box and whisker plot

» JMP distribution analysis
 Data validation

* Distribution analysis options

* Plotting data in time sequence

+ Saving analyses and data tables

Notes

Y variables are characteristics of parts or transactions that determine customer
satisfaction, or lack thereof. They provide the data from which project metrics are
computed. In sections 2 and 3 we focus on quantitative Y variables. Examples
include:

* Properties: physical, chemical, electrical, optical, . . .
* Distance, time, dimensions, cost, quantity

» Event counts (when there is not a discrete number of opportunities for the
event to occur)

JMP uses the term continuous for quantitative variables, and often uses the term
nominal for categorical variables.




Frequency histogram

Number of data points in each bin
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Continuous Y variable

Cumulative percentage histogram

Percentage of data points < upper limit of each bin
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Cumulative percentage histogram (cont'd)

Made the bins smaller

100 — R

0 —
1 T T ' T T T T T T T T T
1200 1300 1400 1500 1600 1700 1800 1900 2000

T T T T

Continuous Y variable

Cumulative distribution function (CDF)

* Bins are so small they isolate
individual data values

100 * For small sample sizes, the CDF aoo®
] looks like a staircase with a step /ﬂ“’
. at each data value »
80 —
60 —
40— m == m e :  About 40% are 1600 or less
i ! * About 5% are 1400 or less
20 !
0 I ;
T

]
T T T T } . T T T T T T T . . T
1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable




Percentiles 9

A percentile 1s a value that divides a population or data
set into two groups, based on a stated percentage

10% are less than the 10t percentile, 90% are greater
25% are less than the 25th percentile, 75% are greater
50% are less than the 50t percentile, 50% are greater
75% are less than the 75 percentile, 25% are greater

90% are less than the 90t percentile, 10% are greater

Percentiles (cont'd) 10

Lllustration of 20" and 95™ percentiles

100 —

Percent less than




11

Common percentile-based data summary
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Box-and-whisker plot
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Rule for plotting points separately 13

Investigate
for cause

Points plotted separately may or may not represent assignable causes

Notes

14




JMP distribution analysis 15
File — Open — LSSV2 data sets — lead time I — Open
E;l lead time 1 - IMP [2] —asCh S |
File Edit Tables Rows Cols DOE  Analyze Graph Tools View Window Help
= |lead time 1 3 El hd
= = Lead ti
Source = = ;“;1 Analyze
) 971
3 9,54 \L
4 9.67 . : :
= Columns (1/0) s - Distribution
4l Lead time :
6 9.49 i/
7 9.55
g 942 ¢ .
5 gsg | E Distribution - IMP [2] o | E ||
10 9.61 | [The distribution of values in each column
11 9.87 Select Columns Cast Selected Columns into Roles Action
= |Rows 12 9.93 * 1 Columns Lead ti
All rows 15 13 9,81 Leadtime ALezd time
Selected 0 14 9.89 1otnumene
E:(i;l;::d g 15 0,04 (] Histegrams Only -
Labelled 0
L
2 O~
Data validation 16
I d |
[E= lead time 1 - Distribution of Lead time - JMP [2] = | E [
4 = Distributions
4 =/ Lead time
? — 4 [* Summa isti
! g . - ry Statistics
(later) T o Mean  15.343333
Std Dev 21.815551
N 15
Minimum 949
Maximum 942
 —
0 y 20 40 a0 80 100
A Ow
\
\
* Outlier

Frequency histogram

* Not always visible in the histogram
* Click on it
* Look in the data table




Data validation (cont'd)

[3] lead time 1 - JMP [2]

5]

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
- |lead time 1 3 E -
TS - Lead time
1 9,61
2 a7
3 054
= 4 0.67 -
| Columns (1/0) 5 975 | B3 lead time 1- IMP 2] =[E [
Lead ti :
dlleadites 6 945 |[Ele Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
7 9.55 w|lead time 1 B E ot
s ez | [SiSeures - Lead time
3 9.58 1 9.61
10 9.61 2 8.7
11 9.97 3 2.3
4 9.67
= |Rows 12 9.93 = |Columns (1/0) 5 975
All rows 15 13 9.81 | [.d Lead time -
Selected 1 14 0.80 6 9.49
Excluded 0 7 9.5
Hidden 0 L 224 9.42
Labelled 0 9,58
10 9.61
/ 11 9.87
Rows _~ 12 9.3
All rows, 15 13 9.81
Sejpefed 1
v’ Data entry error U e 3 i 5.8
‘ 15 0.94
Hidden 0
v Enter the correct value Labelled 0
v" Go to next slide & O~

Redoing an analysis

[== lead time 1 - Distribution of Lead time - IMP [2]

= | B [ |

4 [=| Distributions
4 = Lead time

/ .
+ Click on this /| = ’
red triangle
* Gives context
specific
options —
0 20 40 60 80 100

* Select Script

4= Summary Statistics

Mean

Std Dew

M
Minimum
Maximum

15343333
21.815551
15

9.49

04.2

2 O

* Select Redo
Analysis

* See next slide




Redoing an analysis (cont'd) g

[== lead time 1 - Distribution of Lead time - IMP [2] [ (B -

£ =| Distr

a4

4 [»|Lead time

ibutions

4~ Summary Statistics

—] —— — Mean  9.6913333
StdDev  0.1671555
N 15
Minimum 042
Maximum 0.4
95 96 97 98 93 10

+8 O«

Note the change in the histogram and the summary statistics

Cleaning up the box plot (optional) g

* Right click in
here while
holding down
the Alt key

* Select
Customize —
OK — Box
Plot

» Uncheck
Confidence
Diamond and
Shortest Half
— OK

* What remains is the box and whisker plot

* JMP calls it Outlier Box Plot because its main purpose in this context is to show

outliers

T — b
BE Cycle time - Distnbution STCyEEEme - /M ‘E@ﬂ

4= Distributions
4= Cycle time

- e 4 ~ISummary Statistics

— == Mean 0691333 '

Std Dev 01671555
N 15
Minimum 9.42
Maxirnum 994

9.4 9.5 9.6 a7 9.8 9.9 10

aE O«




Distribution analysis options

4 [=|Distributions
4~ |Lead time

/, o

94 95

[== lead time 1 - Distribution of Lead time - IMP [2] = -
4 = Summary Statistics
[ e Mean  9.6913333
StdDev  0.1671555
N 15
Minimum 042
Maximum 9,94
96 97 9& 98 10
28 O

* Click on the red triangle next to Lead time while holding down the A/t key

* This will show the analysis options for the Distribution platform

» See next slide

Analysis options (cont'd)

r
By select Cptions and click QK

55)

Display Options
[ Quantiles

[7] Custom Quantiles

Summary Statistics

[T] Custornize Summary Statistics
Horizontal Layout

[7] Axes on Left

Histogram Options

Histogram

[C] Shadowgram

[ Vertical

[T Std Error Bars
[setBinWidth ]
[ Count Axis

[ Prob Axis

[T] Density Axis

Show Counts
[C] Set Quantile Incremen Mormal Quantile Plot

[C] Show Percents Continuous Fit [C] Remove
[] Normal
[C] LogMormal

Outlier Box Plot [C] Weibull

[ Weibull with threshold
[T Extrerne Value

[] Quantile Box Plot
[] Stem and Leaf

[] CDF Plot [*] Exponential
[] Test Mean [[] Gamma
[] Test Std Dev D Beta

[T] Confidence Interval [pgg = [C] Smoath Curve

. [ Johnsen Su
[] Prediction Interval [ Joh -
[7] Tolerance Interval ohnsen

7] Capability Analysis EEE;DH sl

ETAn

[7] save [ Level Numbers >
[Goncel |

Just for practice:

Uncheck Summary Statistics and Outlier Box Plot — Check CDF Plot — OK




Cumulative distribution function (CDF) 23
|
[ lead time 1 - Distribution of Lead time - JMP [2] SE)
4 = Distributions
4~ Lead time
< CDF Plot
1
08 g
2 06 I
94 95 96 97 98 99 10 J2
E
S o4 J_Ij
02 .
—
94 95 95 97 08 99
Lead time
2B O

* Plots the proportion of data points < each value in the data set
* The step size at each data value is usually 1/N, where N is the sample size

* If the same value occurs twice in the data set, the step size there is 2/N

Modifying JMP plots

;

CDF Plot

08

50,1

0z

96 97 98
Lead time

* Double click on a number on the Y axis — change
Increment to 0.1 — check Major Gridlines —
uncheck Minor Tickmark — OK

e Double click on a number on the X axis — check
Major Gridlines — uncheck Minor Tickmark —
OK

CDF Plot

09

08
0.7

06 —_—

05 =

04

03

02 ~

01

Cum Prob

94 95 96 9.7

Lead time

98 99




25

Calculating percentages
I |== lead time 1 - Distribution of Lead time - JMP [2] = | B [ |
4 = Distributions
/v Lead time
) 4 CDF Plot
/ :
08 I
08 A
07 [
94 95 0§ 97 98 99 10 g 0o
£ 05
s
S 04
03
0.2 -
01 f—
—
94 95 96 97 08 9.9
Lead time
28 O

» Suppose we want to know the percentage of data points exceeding 9.8

* Click the Lead time red triangle — select Capability Analysis — enter 9.8

for the Upper Spec Limit — click OK

Percentages (cont'd)

;

Capability Analysis

Specification Value Portion % Actual
Lower Spec Limit . Below LSL .
Spec Target . [Above USL 33.3333)
Upper Spec Limit 9.8 Total Outside 33.3333

(bell shaped) distribution curve

Klgnore the Long Term Sigma section of the output \

« It gives predicted percentages based on the Normal

&We will cover distribution fitting in the next section /




Plotting data in time sequence

27

-

Graph — Overlay Plot
¥ Overlay Plot - JMP [2] = | B |
The Plot of Y as X varies continuously
Select Columns Cast Selected Columns into Roles Action

* /1 Columns
Al ead time

Options

[ sort X

[[] X Log Scale

[T] Left ¥ Log Scale
[C] Right ¥ Log Scale

S o]
Left Scale/Right Scale | | [ Cancel |

Remove |
Recall |
Help |

-~

@& O

* You can have different left and right scales for plotting multiple Y variables

» A date, time, or other sequencing variable would go in the X slot

* Putting a variable in the Grouping or By slot will produce one plot for each

value of that variable (the output formats differ slightly)

—

Overlay plot (cont'd)

% lead time 1 - Overlay Plot of Lead time - JMP [2]

EE)

A= Overlay Plot
10

@
£
= 97 A g
5 / o
- ¢ / r

a6 -

\ .
9.5 o N
94 .
a 5 10

-

¥ lead time 1 - Overlay Plot of Lead time - IMP [2]

4 =/ Overlay Plot

* Modify the default plot
as shown

* Good way to look for
assignable cause patterns
other than outliers

e Same as a line chart in
Excel

10
99
08

97 ~

Lead time

o A
94
93
01 2 3 4 5 6 7 8

Time sequence

9 10 11 12 13 14 15 16

28 O




Saving your analyses and data table 29
—
= lead time 1 - Distribution of Lead time - JMP [2] SRR X
11 = Distributions
~ Lead time
4 CDF Plot 4 |~ Capability Analysis
] Specification % Actual
08 Lower Spec Limit -
: _I_ Spec Target 33.3333
08 Upper Spec Limit 332332
07 [ Long Term Sigma
2 06 T
94 85 96 97 88 95 10 2
t 05
S o4
03
02 =
01
—
04 95 96 97 98 99
Lead time
~B Ov

* Click on the thumbnail for your distribution analysis
* Click the red triangle next to Distributions

* Select Script — Save Script to Data Table

Saving things (cont'd)

Q

.
% lead time 1 - Overlay Plot of Lead time - JMP [2]

4 |~ Overlay Plot
10

a9 -
. o
98 :

97 A

Lead time

94
93
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time sequence

~8 O

* Click on the thumbnail for your overlay plot
* Click the red triangle next to Overlay Plot

* Select Script — Save Script to Data Table

* Go to your data table




. . ,
Saving things (cont'd) 31
File Edit Tables Rows Cols DOE  Analyze Graph Tocols  View Window Help
= Cyle times P[4 - .
Motes CADocuments and Stf| (= Lead time
w Distribution 1 9.61
| Overlay Plot 2 8.71 .

; ced * Two scripts have been added to

4 9,67 the left panel

5] 9.78

B 5449

; gjg * If you save the file (as JMP), the

E a5 scripts will be saved with it
w Columns (1/0) 10 9.81
A Lead time " 8.87 .

12 553 * The next time you open the file,

- = you can run the scripts to recreate

15 294 the analyses exactly as you left

them
* Close and save your data table
now”
» Rows
All rows 1®
Selected 0
Excluded 0 % .
Hidclen 0 Use Save As o make sure you can find
Labelled 0 the file next time you want to open it
32

Notes




Exercise 2.1 33

Open LSSV?2 data sets \ quotation process (in JMP). Perform the following data
analysis tasks for the variable 74T (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on
the outlier box plot. This pattern is common with asymmetric “ski slope”
distributions that pile up near zero. These points are not assignable causes, so
don’t exclude them. (If you exclude them and run the analysis again, a new set
will crop up. If there were points far to the right of the main group, they might be
assignable causes and, upon investigation, might need to be excluded.)

(b) Record the average, standard deviation, sample size, minimum, and maximum.

(c) Turn off the outlier box plot.

(d) Find the % of data points exceeding 3.

(e) Save your analysis script. Close and save the data table.

Exercise 2.2 34

Open LSSV?2 data sets \ DI water (in IMP). Perform the following data analysis tasks
for the variable Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch
the graph if necessary). Use your mouse to draw a box around the suspicious data
points. Right click in an uninhabited area of the plot, select Row Hide and
Exclude.

(b) Run a distribution analysis. Record the average, standard deviation, sample size,
minimum, and maximum.

(c) Turn off the outlier box plot.

(d) Find the % of data points falling below 1500.

(e) Save your analysis scripts. Close and save the data table.




3 Fitting and Using Distributions

35

* Distribution curves
* Checking goodness of fit

* JMP examples

« Fitting and using the Normal distribution

* Fitting and using the Lognormal distribution

* Finding the best fitting distribution(s)

* Using the best fitting distributions(s)

Frequency histogram

36

A description of the data

80 —

60 —

20 —

0_

Th

1200 1300 1400 1500 1600 1700

Continuous Y variable

1800

1900 2000




Distribution curves

37

Possible descriptions of the population

Continuous Y variable

Distribution curves (cont'd)

38

Area under the curve between y, and y,

= % of the population with y, <Y < y,

A

Y1

Continuous Y variable

Y2




Distribution curves (cont'd) 39

Area under the curve to the right of 'y,
= % of the population with Y >y,

Continuous Y variable

Fitting a distribution curve to the data 40

Continuous Y variable

* The Normal curve depends only on p and o (population mean and std. dev.)

* Plug the sample mean and std. dev. into the formula in place of p and &




Distribution curves allow us to extrapolate . . . 41

LSL

g

0.12%

(1165 ppm)

are predicted /| \\

to fall on or / \
below 1200

~L

|
1200 1300 1400 1500 1600 1700 1800 1900 2000

Minimum value in the data is 1267

.. but only if the distribution matches the data! 42

32-1012 3456 7 8 9101112 1314 15




Checking goodness of fit 43

Data CDF

100 e

60

40

Percent less than

1200 1400 1600 1800 2000

Checking goodness of fit (cont'd) 44

Best fitting population CDF (assuming Normal)

100 e —
] _—
80 yd

/
o /
/

Percent less than

/

— . . — : . . .
1200 1400 1600 1800 2000




Checking goodness of fit (cont'd)

45

Data and population CDF's should match

100 o

80

60

Percent less than

1200 1400 1600 1800

2000

Quantile plot (also known as probability plot)

46

CDF:s plotted on a Normal distribution scale

LSL
99.9 .
99 e
95
g Data /
E .
7 80 Population
2 50 :
[ P | .
3 20 opulation
) / 1
o 5 /
! y A
0.1 ; i
1200 1400 1600 1800 2000




JMP example: Normal data a7
—
Resistivity
 Data table DI water,jmp
Variable Resistivity I 233d
i 0.98
* Distribution — Resistivity - 6': 0.92
red triangle — Normal / 1086
Quantile Plot 0674
0.7
« Fit is good — the points fall 21 045
along the line and stay =
inside the hyperbolic band 0.2
-1284-0.1
* Leave the data table open J/ 14170.05
= 2334-0,01
0.002

1300 1400 1500 1600 1700 1800 1900 2000

* To create images like this, use Tools — Selection to grab the portion of the output that you

want, then copy and paste.

JMP example: non-Normal data

L

* Data table quotation process.jmp, variable TAT

* Distribution — TAT red TAT
triangle — Normal
Quantile Plot

« Fit is bad — the points !
do not fall along the i
line, and do not stay l !
inside the hyperbolic l
bands I

» Leave the data table
open

10 12 14

1055

0.99

0.95
0.9

0.8

0.3

0.14
0.07

0.02

0.004
0.0009




Is this data Normal?

2331 0.99

L 0.98
16441 0.95
1284£ 0.9

0.8
0.674

0.7

00{l 0.5

03
-0.67-

0.2
-1.2841 0.1
164{} 0.05

L 0.02
-2.334

T
15 50
Is this data Normal?
2.339+0.99
+0.98
1641} 0.95
1284F 0.9
0.8
0.674
0.7
0.6
0091 0.5
0.4
0.3
-0.674
0.2
1284} 0.1
164{£ 0.05
:0.02
233d} 0.01
15 25 30




Fitting and using the Normal distribution

4 |« Resistivity
Display Options 3
Histogram Options — »
* Data table: DI water.jmp Normal Gt Plot
CGutlier Box Flot
Quantile Box Flot
Stem and Leaf

CLCF Plot
. Analyze Test Mean
Test 5td Dev
. . . Confidence Interval  »
— Distribution Predction Interval 1700 1600 1800 2000

Tolerance Interval
Capability Analysis

— Resistivity
Continuous Fit Mormal
— N should be 464 Save v LogNormal

Welbul

Weibull with threshold
Exireme Value
Exponental

* Red triangle (no Alt key) Gamma

Beta

— Continuous Fit NormalMtres b
Smooth Curve
—> NOI‘mal Johnson Su
Johnson Sb
Johnson sl
Glog

Al

Normal distribution (cont'd)

Resistivity

Diagnostic Plot

/Fitted Normal

I’I o-:
\ 0.96

0.90
0.80 @
0.68
0.52
0.36
0.22
T L L B 0.12
1200 1400 1600 1800 2000 0.06
002{

Normal Probability

—— Normal(1632.52,142 067)

1200 1400 1600 1800 2000
Click on the Fitted Normal red triangle Resistivity
— Select Spec Limits
— Enter 1200 for Lower Spec Limit
— OK




Normal distribution (cont'd)

53

Resistivity

st

T LI L T
12001300 14001500 160017001800 19002000

— Normal(1632.52,142.067)

Fitted Normal
Capability Analysis

% Actual
0.0000

0.0000

/

Specification Value Portion
Lower Spec Limit 1200 Below LSL
Spec Target . Above USL
Upper Spec Limit . Total Outside
Quantile Sigma
-3s Melan +
[
LSL

Capability
CcP

CPK

CPM

CPL

CPU

T T T T T 1
1200 1400 1600 180%2000 220(

Portion

* None of the measurements in the data set are less

than 1200

* 0.12% (1165 ppm) are predicted to fall below 1200
in the population (future production)

* Save script, close and save data table

Below LSL
Above USL
Total Outside

Index

1.015

1.015
Percent
0.1165

0.1165

PPM
1165.3025

1165.3025

Notes

;




Fitting and using the Lognormal distribution 55
—
2337} 0.99
1.644£0.95
* Open number & size of defects (in 1.28F
JMP) 0.67- : 08
0041 0.5
* Analyze — Distribution — Max size 0.674[ 0.2
-1.284F '
* Max size is not Normal 14 0.05
23311 0.01
* The LogNormal distribution is the
most common alternative
* Red triangle — Continuous Fit —
LogNormal
‘ I I
0O 5 10 15 20 25 30
Lognormal distribution (cont'd) | 56
Max size
Fitted LogNormal
/ Diagnostic Plot
/ 0.95 1
= 090]
\\ 3 080 &)
i S 070]
1 T 055
T T T E 0-405 .-g.
0 5 10 15 20 27/ 30 2 0303 4
2 0.20]
-

—— LogNormal(1.67993,0.75938) 0.101
0.05 {

Click on the Fitted LogNormal red triangle

03 1 2 3567899 B W
— Select Spec Limits Max size
— Enter 30 for Upper Spec Limit

— OK




Lognormal distribution (cont'd) 57

Max size

Fitted LogNormal
Capability Analysis

Specification Value Portion % Actual
Lower SpecLimi BelowLSL .
SpecTarget . Above USL 0.0000
Upper SpecLimi 30 Total Qutside 0.0000
Quantile Sigma
Capability  Index
CP t
i CPK 0524
0 5 10 15 20 25 30 CPM
CPL "
—— LogNormal(1.67993,0.75938) Sk g524
Portion Percent PPM
BelowLSL :
AboveUSL 11705 11704633
/ Total Outside_31.1705 11704.633
* None of the measurements in the data set are

greater than 30

* 1.17% are predicted to exceed 30 in the
population (future production)

* Save script, close and save data table

Notes 58




Finding the best-fitting distribution(s)

A 40GCoksl>
=) 672/0 Rows Aligner  Xdev

1 1 -17

2 2 -7

3 3 -10

4 2 ]

5 2 -10

& 2 -7

T 3 =14

g8 2 -3

] 2 -8
10 2 7
11 1 11
12 2 -G
13 2 -7
14 3 -10
15 2 -3
16 2 -8
17 3 -16
18 3 -16
19 1 -14
20 2 -8
21 3 -23
22 3 -19
23 2 -7
24 2 -10
25 2 -9
26 1 -8
27 2 -8
28 3 -16
20 1 -13
30 3 -8

Y dev

4
&
21
-1
5

0
15
A7
a
3
&
0

5
5
1

4
12
15
k!
E
2
15
9

0
5
-1
3
0
21
4

R dev
17.464249197
9.2195444573
23.259406699

1
11.180339887
7
20518284529
17.262676502
8.5440037453
10.630145813
12.520964086
G
8.602325267
11.180339887
31622776602
§.94427191
20
21931712199
14317621063
11.313708499
23.086792761
24207436874
11.401754251
10
10295630141
13.601470509
8.5440037453
16
2469817807
8.94427191

Open alignment process.jmp

Analyze — Distribution — R dev

Remove:
v Summary Statistics
v Outlier Box Plot

Red triangle — Continuous Fit — All

See next slide

Best-fitting distributions (cont'd)

R dev

0 5 10 15

Distributions are ranked by AICc (“Akaike Information
Criterion corrected” — will call it AIC from now on)

20 25

30 35 40

Compare Distributions
Number of

Show Distribution

O000O0O0CO0O00O0O®

Weibull

Extreme Value
Johnson SI
Johnson Su
Normal 3 Mixtur
Normal 2 Mixtur
Gamma

Normal
LogNormal
Glog

Exponential

AIC measures lack of fit — smaller values are better

Parameters

-2"Loglikelihood AlCc
2 45393202 45433
2 45393202 45433
3 4541.07649 45471
4 4541.07649 45491
8 4539.81762 45560
5 4549.79406 45599
2 4567.15519 45712
2 458047707 45845
2 46727545 46768
3 46727545 46788
1 5053.88325 50559

/
K Doublf click /\

Column Numeric
Format

Fixed Decimal (1)
4

%




Best-fitting distributions (cont'd) ;

Rdev
Compare Distributions

] Number of
/=— Show Distribution Parameters -2"Loglikelihood AlCc
N\ @  Weibull 2 45393202 45433
f 5‘ a Extreme Value 2 45393202 45433
] Johnsen Sl 3 4541.07649 45471
‘K m} Johnson Su 4 4541.07649 45491
[m] Normal 3 Mixtur 8 4539.81762 45560
a Normal 2 Mixtur S 4549.78406 45599
a Gamma 2 4567.15519 45712
a Normal 2 4580.47707 45845
a LogNormal 2 4672.7545 46768
a Glog 3 46727545 46788
a Exponential 1 5053.88325 50559

0 5 10 15 20 25 30 35 40

* Distributions with the same AIC (rounded to the nearest tenth) have the same
lack of fit (equivalently, the same goodness of fit)

* In this example, the Weibull and Extreme value distributions are tied for best fit
* Distributions with equivalent goodness of fit may give different predictions

« If there are multiple best fitting distributions, give predictions for all of them

Best-fitting distribution (cont'd) g

Fitted 2 parameter Weibull Fitted Extreme Value
Diagnostic Plot Diagnostic Plot
5 s’
08 08

2 06 06
3 z
£ 03 = 03
$ 018 2 018
g r
E 008 p ot 2 008 .
= A = A
~ 0035 = g 003 i
3 ow ) g o ==
= 000 — 0.009

0.004 0.004

0.0016 " T —— 0.0016

1 1 2 i 2 56 ' 10 il N 20 1 1 ] 4 56 ' 10 0 @ 4 0

* The diagnostic plots for Weibull and Extreme value both look good
* Note that the plots are identical

* Fun fact: this always happens with these two distributions




Best-fitting distribution (cont'd)

Fitted Normal Fitted LogNormal
Diagnostic Plot Diagnostic Plot
¢ i
0.98 ¢ 098
- oos
= =
£ 088
£ 082 2 080
5 072 S 068
g o & 056
S 046 S 542
2 034 E -
E S 030
s 022 Z 020
Z 014 g 012
0.08 =3 o
0.04 I‘, 0.06 .!"
0.0217, 0.02 =
T T T T T T T T T T — , v T T T
0 5 10 15 20 25 30 35 40 45 08 4 2 3 56781 o

Examples of bad diagnostic plots (but by no means the worst)

Additional guidelines

» Regardless of AIC values, don’t use distributions with
bad diagnostic plots

 Regardless of AIC values, don’t use distributions that
predict 0 percent or PPM




Using the best-fitting distributions: (a) Weibull

What % of future parts will have R dev > 40?
Compare Distributions Fitted 2 parameter Weibull
. Number of - Diagnostic Plot
Show Distribution Parameters -2*LogLikelihood AlCc
B weibul 2 4539 454 g
O  ExiremeValue 2 4539 0.94
O  Johnson Si 3 4541 0.84
O  JohnsonSu 4 4541 = 0.68
O  Normal3Mixture 8 4540 556 & 050
O  Normal2 Mixture 5 4550 4560 S 036
O Gamma 2 4567 4571 & 024
O  Normal 2 4580 4584 £ 016
O  LogNormal 2 4673 4677 £ 0.10
O Glog 3 4673 4679 S 006
O Exponential 1 5054 5056 2 004 .".
3 002 -
2
* Click on the red triangle here
L. :e.; 2 3 ;;;:;..;0 » N O®
* Select Spec Limits
R dev
* Enter 40 for Upper Spec Limit - OK
. . ,
Weibull fit (cont'd)
Fitted 2 parameter Weibull
Capability Analysis
Specification Value Portion % Actual
Lower SpecLimit . BelowLSL .
SpecTarget . Above USL 0.1475
Upper SpecLimit 40 Total Outside 0.1475
Quantile Sigma
Capability Index
CP .
CPK 1.016
CPM
CPL =
CPU 1.016
1| Portion Percent PPM Quyal
60| BelowLSL . :
Above USL 0.1158 1158.3796

Total Outside 0.1158 1158.3796

* 0.15% of the data values exceed 40

* 0.12% are predicted to exceed 40 in the population
(future production)




Using the best-fitting distributions: (b) Extreme value 67

What % of future parts will have R dev > 40?

Compare Distributions Fitted Extreme Value
Number of Diagnostic Plot

Show Distribution Parameters -2"Loglikelihood AlCc
O Weibul 2 45393202 45433 !
@  Extreme Value 2 45393202 4543 09
O  Johnson Sl 3 454107649 4547
O Johnson Su 4 4541.07649 06
O  Normal 3 Mixtur 8 453981762 £
O  Normal 2 Mixtur 5 4549.79406 ! 2 03
O Gamma 2 4567.15519 712 S 018
O  Nomal 2 4580.47707 845 s
O  LogNormal 2 46727545 faer6s 5 OB f-"’
O Glog 3 46727545 46788 g 0035 e
O  Exponential 1 soszgeas [ 50559 8 o e

0.009

0.004
* Click on the red triangle here 0.0016

i 1 L ] 10 X n & X

* Select Spec Limits R dev

* Enter 40 for Upper Spec Limit - OK

Extreme value fit (cont'd) g

Fitted Extreme Value

Capability Analysis

Specification Value Portion % Actual
Lower Spec Limit . Below LSL 7
Spec Target . Above USL 0.1475
Upper Spec Limit 40 Total Outside 0.1475

Quantile Sigma
Capability Index

cp .
cPK 1.016
cPM
cpL .
cPu 1.016
0 20 40 Portion Percent PPM Q

Below LSL 4 .
AboveUSL  0.1158 1158.379%

* 0.15% of the data values exceed 40 Total Qutside_50.1158 1158.37%

* 0.12% are predicted to exceed 40 in the population (future production)

* The results for Weibull and Extreme Value are identical (always happens with
these two distributions)




Exercise 3.1

69

Answer both questions in each case below. For the second question, find the best

fitting distribution(s) and use it (them) to find answer(s). Save the analysis scripts,
close and save the data tables.

a) Data table quotation process, variable TAT. What % of RFQs in the data set have
TAT > 15?7 What % (or PPM) of future RFQs will have TAT > 15?

b) Data set solution properties, variable SG coded. What % of solution vials in the

data set have SG coded > 50?7 What % of future solution vials (or PPM) will have
SG coded > 50?

Exercise 3.1 (cont'd) 70

c¢) Data table number and size of defects, variable # Defects. What % of castings in the

data set have more than 50 defects? What % of future castings (or PPM) will have
more than 50 defects?

d) Data table casting dimensions, variable Length. What % of castings in the data set

have length outside the interval [598, 602]? What % of future castings (or PPM)
will have lengths outside this interval?




Exercise 3.1 (cont'd) 71

e) Data table casting dimensions, variable Diam. What % of castings in the data set
have diameters outside the interval [49, 51]? What % of future castings (or PPM)
will have diameters outside this interval?

Notes | 72




4 Introduction to Life Data

73

Life = elapsed time until the occurrence of some event
* Failure of an item on test
* Planned end of test
* Unplanned end of test
* Failure of an item in service

* Scheduled downtime

Definitions of “time”
* Seconds, minutes, hours
* Days, weeks, months

* Usage cycles, number of moves, distance

Life data (cont'd)

74

Usually there 1s one event of primary interest
* Usually, failure of an item

Other events may preempt the event of primary interest
* Planned end of test
* Unplanned end of test
* These are called "suspensions”

* We say that the time to failure is “censored”




Example: failures and suspensions.jmp 75
—
16 15 items were tested
15 >
14 o 12 failures (X)
13 x
12 X 3 suspensions ( [>---)
11 x
10 X This “event plot” distinguishes
T o > suspensions from failures and
g 8 X shows the event times
7 x
6 X If we don’t distinguish
> g suspensions from failures, the
4 a calculated failure probabilities
2 5 will be biased upwards
é X This will make our reliability
10 20 30 40 50 60 70 80 90 100 look worse than it really is
Time
Notes | e




Cumulative distribution function (CDF)

77

1.0

0.9

0.8+

0.7

0.2

0.1

Each step height =

1

o107
15

N

In this plot, all
events are treated
as failures

0.0
40

45

50

55

60 65 70 75

Time

80 8 90 95

CDF distinguishing suspensions from failures ;

Failing

1.0

0.94

0.8+

0.7+

0.2+

0.1+

Suspensions at times 58 and 71

l «0.086

* This is the correct plot

«0.067

«0.073

+ It steps up only at failure times

* The step size increases after

0.0
40

45

50

55

60

65 70 75
Time

each suspension, because the
number of items remaining on
test decreases




Overlay of CDFs

79

CDF treating all times as failures
-------------------- CDF distinguishing suspensions from failures

Suspensions at times 58 and 71

After the first

70 75 80 85 90 95
Time

suspension, the solid
line overstates the
failure probabilities

Can't we just ignore the suspensions?

Q

Failing

CDF ignoring the suspensions
-------------------- CDF distinguishing suspensions from failures

1.0

0.9+

0.8+

0.7+

0.3+

0.2

0.1+

Each step height = é = 0.083 —

e R This intuitive idea is
..... actually worse than

treating all times as
i failures

0.0
40

45 50 55 60 65 70 75 80 85 90 95
Time




5 Analyzing Life Data 81
* The Exponential distribution
* The Weibull distribution
* Fitting life distributions in JMP
* Finding and using the best fitting life distribution
82

Notes




Failure curves for the Exponential distribution 83

Failure probability

OO | T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45

Time to failure

Notes | 84

The Exponential distribution is the simplest life distribution. It has only one
parameter: the mean time between/before failure (MTBF). The Greek letter 0 (theta)
is often used to denote the population value of the MTBF.

Shown above are the failure functions F(¢) for three different Exponential
distributions. F(?) is the probability that an item will fail before time ¢.

The reliability function is defined as R(¢) = 1 — F(¢). R(¢) is the probability that an
item will survive beyond time 7. The Exponential reliability function is given by R(?)
= exp(-#/0).




Failure curves for the Weibull distribution 85

l.O- /-—
094 n=35pB=05

0.8+

n=5p=2

07 n=20,p=0.5

0.6+

0.5+
0.4- n=20,p=2
0.3+

F(e)=1-¢ M)

Failure probability

characteristic life

1"' =
B = shape
0.2+

0.1+

0.0

0 5 10 15 20 25 30 35 40 45

Time to failure

Notes | 86

The Weibull distribution was introduced to the reliability engineering community in
the 1950s by a man named Waloddi Weibull. (What were his parents thinking?) Prior
to that, most reliability work was based on the Exponential distribution. Due to its
greater flexibility, the Weibull has become one of the most widely-used life
distributions.

The Weibull distribution has two parameters: the characteristic life 1 (eta), and the
shape [ (beta). The characteristic life (1) has the same qualitative interpretation as the
MTBF (6). The shape parameter () determines which of two distinct failure modes
are represented. When 3 < 1, we have a burn-in or infant-mortality failure mode.
When B > 1, we have a wear-out failure mode. A Weibull distribution with § =1 is
identical to an Exponential distribution with 6 =n.

Shown above are failure functions F(¢) for four different Weibull distributions. F(?) is
the probability that an item will fail before time .

The Weibull reliability function (probability that an item will survive beyond time ¢)
is given by R(f) = exp[-(¢/m)P].




Fitting life distributions in JMP

Open data table failures and suspensions

£ failures and suspensions - JMP

Fle Edit Tablkes Rows Cols DOE  Analyze Graph  Tools

4  spocow

Time
42
49
24
55
a8

¥ 150 Rows Suspension

—_ o o0 oo

67
71 Select Colurnns
75 = ATirme

a1 Asyzpension
a7

a9 Censar Cude

[ N e T T ' T e S T NP N Y

AREREERE

3,1

o jwan v

93 Select Confidence Interval Method

Analyze
2

Reliability and Survival

\

Life Distribution

\

Set up as shown below

\
OK

Cast Selected Columns into Roles

¥, Time to Event ’
OERTOTIE! ALrmeri

optional

g

Censor
Faiure Cause

Freq opfional numeric

Label optional

By optional

b |

E; ~ Life Distribution - JMP

Fitting life distributions (cont'd)

Life Distribution
Compare Distributions

Distribution Scale 1
[ Nonparametric ®
O Lognormal
O weibull
O Loglogistic
[ Frechet
O Normal
0O sev
O Logistic
O LEV
[ Exponential
O LogGenGamma
O GenGamma

0.8

0.6

000000000

Probability

0.4+

* CDF that distinguishes/

0.2 '/7.-

suspensions from failures 0

» Shows the corners of the steps

60 70 80 920
Time

100;

but not the “staircase”




Fitting life distributions (cont'd) 89

Life Distribution

Compare Distributions

Distribution Scale 1 =
[ Nonparametric ®
O Lognormal e
O Weibull 0O
O Loglogistic e
[ Frechet O
O Normal e
0O sev 0O

O
O
O

0.8 —

O Logistic

O LEV

[ Exponential

O LogGenGamma
O GenGamma

0.6

Probability

0.4

0.2 A

1 95% confidence intervals 0 T r T . .
. g 40 50 60 70 80 90 109
for failure probabilities

1 These are “nonparametric”

Notes | 90

This analysis is referred to as nonparametric, meaning that it is not based on a
statistical model (such as the ones listed on the left.) This is a good thing, because
statistical models can be wrong. However, there are drawbacks:

a) The nonparametric CDF is discontinuous.

b) Large numbers of failures are required to get margins of error small enough
to be useful.

In practice, it is preferable to use a statistical model that fits the data well. This
provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the
menu produced by the red triangle next to Life Distribution.




Exponential fit — linear probability scale

g

Compare Distributions

Distribution  Scale 1 T
A Nonparametric @& —_— =t
O Legnormal o -
0O Weibull o = 1 ‘
gtfi!:ffm 8 _ 08 = A . 95% confidence
0 Normal O == - . interval for F(80)
O SEv o - = based on the
gt?vgssm 8 =, 06 = Exponential
@Exponential O — 2 . model
2 .
& 2
04 .
L e
02 —
. b —
. -
0 —
40 50 60 70 80 %0 100

Time

Bad fit — the Exponential failure curve doesn’t match the data

Exponential fit — Exponential probability scale

Compare Distributions
Distribution Scale

@ Nonparametric O  —
O Legnormal o -_— ol
0O Weibull 0O -
O Loglegistic 0 - 0.97
[ Frechet 0O =-— o
O Normal o =—- B
0O Sev o -
O Logistic o - 0.94
—_ —
(S . o = 091
Exponential @® - 2
e —_—
£ : 95% confidence
08 interval for F(80)
== .
= based on the
S ~ :
0.65 ——==8 . Exponential
. model
05 .
0.35 . 1
02 = - — —_—
0.001" ~
40 50 60 70 80 a0 100

Time

The Scale button modifies the vertical axis so that the failure curve for the chosen

distribution plots as a straight line




Weibull fit — linear probability scale 93

Compare Distributions
Distribution Scale 1

(4 Nonparametric

O Lognormal

= Weibull

O Leglegistic

O Frechet

0O Nermal

0O SEV

O Logistic

O LEvV

O Exponential

- 08 — A
— . 95% confidence

interval for F(80)
I . based on the

— " Weibull model

000000000 ®
|
L]

I
Probability
.

04

02 —k=

40 50 60 70 80 90 100
Time

A better fit

Weibull fit — Weibull probability scale 94

Compare Distributions
Distribution  Scale

@ Nonparametric O _— —
0O Lognormal (o] - —
@ Weibull @ - 0.85 — I 95% confidence
O Leglegistic o] — - :
i Fescites 5 - B —— L interval for F(80)
0O Normal o - . based on the
EIEEV_ _ o - i Y Weibull model
[0 Logistic o - i
oLV 0O =— 2 o= 2 -
— - s
[ Expenential O - 8 02
£ .
= 012 —
-
0.07
0.04
- -l
0.026
0.018
0.01
b & L, & B 100
Time

Better is good . . . but what about best?




Finding and using the best fitting distribution

Click the Life Distribution red triangle — Fit All Nonnegative

Compare Distributions
Distribution Scale

@ MNonparametric O _—
8 Lognormal ® —
0O Weibull o - 0.04
O Leglogistic (o] — 09
[ Frechet o - ’ —_—
0O Normal o - 0.82
0 Sev o - -
E t;\?nstnc g : g- 0.65 e
[0 Exponential (o] — :g 0.45 g *
+ JMP plots the best fitting model 03 . —
on the corresponding probability 0.14 5 —
scale 0.08 g =
0.04 o —
* In this case, Lognormal appears
to give the best fit 0.01 -
- “ 100
Time
*You can't have a negative time to failure!
Best fitting distribution (cont'd)
Statistics

Model Comparisons
Distribution AlCc -2loglikelihood BIC
Loegnormal 1126 107.57926 112.99536
Weibull 1128 107.81732 113.23342
Loglogistic 1133 108.33193 113.74804
Frechet 1138 108.75681 114.17291
Exponential 1334 131.06658 133.77463

T

* As before, models are ranked by AIC (smaller is better)
* As before, round the AIC values to the nearest tenth

» Lognormal gives the best fit




The distribution profiler o7

* Plots the probability F(¢) that Distribution Profiler
an item from this population 1 .
will fail at or before time ¢ = 08 <— Most
S 0449951 o] likely
* The solid curve is the most -g ?55?574325 g8
likely value of F(f) £ ) s
0 0
* For example, the most likely F(1)
value of F(68) is 0.45 (45%)
(shown in red on the left side 68
of the profiler) ¢ —Time

* The corresponding reliability R(f) is defined as 1 — F(7)

* R(?) is the probability that an item from this population will not fail until after
time ¢

* For example, R(68) = 0.55 (55%)

Distribution profiler (cont'd) | 98
Distribution Profiler
* The dashed curves give 95% 31 L -~ [¢ Worst
. = 0.8 e case
confidence intervals for F(¢) 20449951 4] |l Best
20025735, ' 1 : case
* The upper dashed curve gives £ 0.65542] 0:2_‘ P
the worst case value of F(¢)* A
* For example, the worst case
value of F(68) is 0.655
(65.5%)

* The lower dashed curve gives the best case value of F(£)™

* For example, the best case value of F(68) = 0.275 (27.5%)

*For Engineering. **For Sales.




Distribution profiler (cont'd)

* Suppose we are interested in F(80)

* Change the value 68 to 80 (click
and edit)

* The most likely value of F(80) is
68.4%

* The worst case value of F(¢) is 85.6%

* The best case value of F(80) is 45.7%

Distribution Profiler

17

g 0.8
= 0.683682 N
20457, o]
20.85634]
o 0.2

0

Notes

100




Exercise 5.1 101

Open LSSV2 data sets \ print life (in JMP). The “time” to failure is Pages.

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s)
to answer the following questions.

b) What is the most likely value of F(10,000)?

c) With 95% confidence, what is the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.

Exercise 5.2 102

Open LSSV?2 data sets \ probe reliability (in JMP). The “time” to failure is Hits.

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s)
to answer the following questions.

b) What is the most likely value of F(200)?

c) With 95% confidence, what is the worst-case value of £(200)?

d) Save the analysis script, close and save the data table.




Exercise 5.3 103

Open LSSV2 data sets \ field reliability (in IMP). The time to failure is Calendar
Days.

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s)
to answer the following questions.

b) What is the most likely value of F(365)?

c) With 95% confidence, what is the worst-case value of F(365)?

d) Save the analysis script, close and save the data table.

Notes 104




6 Categorical MSA Without Standards 105

It is preferable to base nominal MSA on a set of items whose
true status is known (standards)

» With standards, we can determine the probabilities of passing
bad items and failing good ones

* Creating standards can be difficult and time consuming

+ Lacking standards, “% agreement within and between
appraisers” can serve as a proxy for “% agreement with
standard”

Example 1 106

Open LSSV?2 data sets \ pass-fail no stds (in JMP)

~ msa pass-fail no stds ‘ =
Notes C:\Documents and Sej . Session| Part | InspA | InspB |InspC |
1 1 1P P P
2 2 1P P P
3 3 1P P P / \
4 1 2P PP R
5 2l _2p__ PP 50 parts
B 3 2|P P P .
7 1 3F_|[F__[F * Appraisers A, B, C
8 2 3F IF IF
1: ? ji i i * 3 inspections per part per
i1 2 aF  F F appraiser
= Columns (5/0) 12 3 4{F |F |F . .
4 Session 13 1 5 [F IF * Part is actually nominal,
b, Part 14 2 5F F F . S
k. Insp A 15 3 5|F e IF but it won’t affect the
. insp B 16 1 6P P P . ;
. insp C = N analysm if you leave it as
18 3 BF |F F continuous
19 1 7P P P
20 2 e P IF
21 3 1 I G
22 1 glp [P P
23 2 gp PP
24 3 gp PP
25 1 alF IF F
26 2 9F F F
ZRa0s 27 3 1 S
Jdl rows 150 28 1 m'p Ip p




Agreement within & between appraisers

Session| Part JIERE] ‘

nsp B [ Insp C

m[o[m|o|o[0[0|o[0/™|m|n w000 ™[0 " [o|n[m @@ [mm (oo o] o v o

* 100% agreement

* 36 opportunities for pairwise agreement
* 16 pairwise agreements
» Agreement = 16/36 = 0.444

* 36 opportunities for pairwise agreement
* 8 pairwise disagreements
* Agreement = 28/36 = 0.778

107

Analyzing a categorical MSA without standards

108

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns

ASession
AP art
thinsp A
thinsp B
thinsp C

Cast Selected mns into Roles Action

Freq

Enter Raters as separate columns




Agreement report 109

Gauge Attribute Chart

% Agreoment

1(2/3/4/5/6(7 8|9/(1011/12{13 14/15/16 1718|1920/ 21|22 23|24 25/26|27 28|29 3031|3233 34|35/ 3637|3839/ 40|41 42|43 |44 45/46|47 48 49 50

* Plot of the agreement percentages for
the items in the study

* It is helpful to rescale the vertical axis

* See next slide

Agreement report (cont'd) 110

Gauge Attribute Chart

100 »—a—a—n—un . = s a L] "+ s s = e . s a y & & L T e e
95

90—

85

80

75

70

65

60

- ) f N S| ! R | i
50 / i

45 I‘\l — i

40
1(2(3|4|5/6|7|8|9|10{11/12/13/14/15(16/17|18/19| 20 21|22\ 23| 24| 25/26 27 28| 29| 30/31|32/33| 34| 35/36|37| 38|39/ 40 41 42/ 43|44/ 45/46/ 47 48(49| 50

% Agreement

* The horizontal dotted line marks the “"agreement grand mean'
* In this example, the agreement grand mean is a little over 90
* Nowhere in the report is this number printed — bad JMP!

* If the agreement grand mean is too low, follow-up should focus on the items with
the lowest % agreement

* There are no recognized standards for the agreement grand mean. A lower bound
of 95% is fairly common. 99% is often used in applications involving safety.




Agreement report (cont'd)

111

96
94
72 E—
90
88
86
84
82

% Agreement

* These are the agreement percentages
for each appraiser

80

Insp A I Insp B [ﬁspc

Rater

/ * The appraiser with the lowest
percentage represents the greatest
opportunity for improvement

* Sometimes the smallest % agreement
among the appraisers is used as the
metric

——Agreement between & withyfi raters

Agreement Report

95%
Rater % Agreement 1 ower Cl

InspA 91.4286) 89.5082
Insp B 91.9048| 90.0502
InspC 89.8095) 87.6057

Number Number

Inspected Matched %(%
50 39 /

95%
Upper CI
93.0248
93.4388
91.6588

+ Percentage of items for which

g agreement was 100%
Lower Cl ) )
64.758 « This should not be used as a metric

Notes

112

Save the script, close and save the data table.




Example 2

113

Open LSSV?2 data sets \ application rating no stds (in JMP)

~ application rating no stds | ¢ =
Notes C\Documents and Sej - | Application | Session | Appraiser | Rating |
1 1 1!Simpson 5 \\
2 1 1 |Montgomery 5| / : : |
E T [Homes s ¢ 15 employment applications
4 1] 1|Duncan 4] .
5 1] 1 Hayes 5 | <35 appraisers
L 2| 1iSimpson | 2]
7 2 1Montgomery 2 |« 2 inspections per application ||
8 2 1|Holmes 2 . |
=1 2 1 |Duncan 1| per appraiser
10 2 1|Hayes 2|
11 3| 1|Simpson 4.1« Five point scale, higher is
= Columns (4/0) 12 3 1| Montgomery 3 b N
& Appicaton 13 3| 1| Holmes 3 etter ]
4 Session 14 : 3'[ 1/Duncan 3
. Appraiser 15 3 1 Hayes d1— « Change Rating to nominal
il. Rating <€— ] 4] 1|Simpson 1]
17 4 1 |Montgomery | 1 ..
8 4l ey 1 * This is the wrong data i
19 4] 1lDuncan | _..1.,\format for categorical Msy
20 4 1|Hayes 1)
21 5 1 |Simpsen 3l
= 22{ 5| 1|Montgomery 3
2 5 1 Holmes 3
24 5 1 |Duncan 2
% 5 1|Hayes 3
26 B 1|Simpson 4
~ Rows - .
ol raws 150 2 L TiMorgomery | 4l
Unstacking a data table 114
Tables — Split

Split - JMP

H;. Unstacks multiple rows for each "3plit Column' into multiple columns as
identified by a "3plit By' column.

Select Colurmns
> droplication
Asession
W 2ppraiser

‘Rating

Remaining columns
Okeep Al

OCrop Al
[select

[Keep dialog open

Sy

Split Columns @

sl

Application
Session

optional

Citput table name:

QK

Cancel

Rermove

Help




Example 2 in required format 115
= Untitied 12 1 =
~ Source =) Application | Session | Duncan HMS Holmes Mantgarnery Simpson
1 1 1 4 5 5 5 5
2 2 1 1 2 2 2 2
3 3 1 3 3 3 3 4
4 4 1 1 1 1 1 1
5 5 1 2 3 3 3 3
6 6 1 4 4 4 ] 4
7 7 1 4 5 5 5 5
8 8 1 3 3 3 3 3
g g 1 1 2 2 2 2
10 10 1 3 5 4 4 4
T e
4;29£§°n 13 13 1 5 5 5 5 5
Ducan 14 14 1 2 2 2 2 2
Hayes 15 15 1 4 4 4 4 4
Holmes 16 1 2 4 5 5 o 4
Simpson 18 3 g 3 3 4 ] 4
19 4 2 1 1 1 1 1
20 5 2 9 3 3 3 3
21 B 2 4 4 4 5 5
22 7 2 4 5 5 5 5
23 8 2 3 4 3 3 3
2 g 2 1 2 2 2 2
2 10 2 3 5 4 ] 4
% 1 2 1 2 1 1 1
SROWS 27 12 2 2 3 3 3 3
{at cows a0l 28 13 2 5 5 5 5 5
116

Example 2 (cont'd)

Select Columns
k. Application
ASession
hDuncan
thHayes
thHolmes
ik Montgomery
k. Simpson

Chart Type
Attribute v

Cast Selected Columns into Roles

Action

Y Response,

]

.;

o
IE

|

Duncan
Hayes

Holmes
Montgomery,
Simpson

Remove

3,

ik Application

daNaR

Enter Raters as separate columns

Analyze — Quality and Process — Variability / Attribute Gauge Chart




Example 2 (cont'd) 117

—
Gauge Attribute Chart
100 : == * The agreement grand mean is about 71
95 —_—
o _ way too low
85
_ 80 \ " . .
£ s L | * Follow-up: focus on application 10, and
4 ol i . i maybe 1 and 3 as well
£ 60
557 ¢ \
» \ * Greatest opportunity for improvement:
10 ! further training of Duncan, and maybe
BTzl 3 a5 6789 10/12]12/13/14]15 HC(YZSC(SWZ”
Application
Agreement Report
; 95% 95%
Rater % Agreement Lower CI Upper CI
{Duncan 49.8039] 27.2673  72.4205
Hayes 69.0196 ) 43.9053 86.3784
Holmes 79.2157 53.9935  92.5247
H 5| & g s Montgomery 77.2549 519716 91.4246
| *| 2| g| E Simpson 74.9020 49.5997  90.0500
£ Number Number 95% 95%

Rater Inspected Matched meer Cl Upper CI
15 4 267 10.897 51.950

‘Agreement between & within raters

Notes 118

Save the analysis script to the data table, close and save the data table as:

application rating no stds unstacked.jmp




Exercise 6.1 119

Open LSSV?2 data sets \ print samples 1 no stds. In this study 3 appraisers inspected 18
print samples 3 times each.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

¢) Which sample(s) would be most useful in follow-up?

d) Which appraiser has the lowest % agreement, and what is the % agreement?

e) Save the script, close and save the data table as print samples I no stds unstacked.

Exercise 6.2 120

Open LSSV?2 data sets \ print samples 2 no stds. This is the follow-up study after the
appraisers received additional training.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

¢) Which appraiser has the lowest % agreement, and what is the % agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.




7 Comparing Populations — Continuous Y 121

» Example of comparing populations

* Analysis of variance (ANOVA) for comparing
populations

* Interpreting P values

* Degrees of freedom for signal and noise

*« ANOVA in JMP

Notes 122

Y variables are characteristics of parts or transactions that determine customer
satisfaction, or lack thereof. The provide the data from which project metrics can be
computed.

Comparison of statistical populations is equivalent to Y = f(X) analysis where the X
variable is categorical. The distinct values of the X variable define the populations or
sub-populations to be compared.

JMP uses the term continuous for quantitative variables. Except in the DOE section,
JMP uses the term nominal for categorical variables.




Example of comparing populations 123
Group | Data | Avg.| SD
A 2.8
A 2.6
A 9 2.75 | 0.129 * We have two groups of data
A 2.7 .
5 31 * Could be a before/after comparison
B 2.9
B 33 * Could be a stratification analysis
3.05 | 0.187
B 2.8
B 3.2
B 3.0
* The sample means for the two groups are different
» Is this enough to conclude that the population means are different?
124

Example (cont'd)

3.4
33
3.2
3.1
3.0
Data
29
2.8
2.7
2.6

25 =

Group

* Plotting the data is helpful, but doesn’t give a definitive answer

* How far apart do the sample means have to be before we can say
the population means are different?

» How do we take the scatter around the means into account?




ANOVA for comparing populations (1 of 6) 125

LSSV2 other stuff \ ANOVA two groups

B c D E F G H I J K L M
Grand

Group Data mean Variance Group Error

A 2.8 2.93 -0.13 -0.18 0.05

A 26 2.93 -0.33 -0.18 -0.15

A 2.9 2.93 -0.03 -0.18 0.15

A 2.7 2.93 -0.23 -0.18 -0.05

B 3.1 - | 293 | = 0.17 = | 012 | + | 005

B 2.9 2.93 -0.03 0.12 -0.15

B = 1 2.93 0.37 0.12 0.25

B 2.8 2.93 -0.13 0.12 -0.25

B 3.2 2.93 0.27 0.12 0.15

B 3.0 2.93 0.07 0.12 -0.05
ANOVA (1 of 6, cont'd) 126

This worksheet shows all the calculations used to determine, based on the data,
whether or not the population means are different.

The first step is to calculate the Variance column by subtracting the grand mean from
the Data column. The Variance is then decomposed into Group (the ““signal”) plus
Error (the “noise™).

The Group column captures the portion of total variation caused by the difference
between the sample means. The Error column captures the rest of the variation,
variously called the residual, unexplained, or noise variation.




ANOVA (2 of 6) 127
LSSV2 other stuff \ ANOVA two groups
A B C D E F G H | J L M
Grand

Group Data mean Variance Group Error

A 28 293 -0.13 -0.18 0.05

A 26 293 -0.33 -0.18 -0.15

A 29 2.93 -0.03 -0.18 0.15

A 27 293 -0.23 -0.18 -0.05

B 3.1 — | 293 = 017 = 0.12 0.05

B 29 293 -0.03 012 -0.15

B 3.3 293 0.37 012 0.25

B 28 2.93 -0.13 0.12 -0.25

B 32 293 0.27 012 0.15

B 3.0 2.93 0.07 0.12 -0.05

Degrees of freedom (DF) 10 = 1 = 9 = 1 8

128

ANOVA (2 of 6, cont'd)

The Data column consists of 10 mathematically independent quantities. We describe
this by saying it has 10 degrees of freedom (DF).

The Grand mean column consists of 10 values, but they are all identical. This column

has 1 DF.

The Variance column contains 10 values, but they are mathematically constrained to

sum to 0. This column contains only 9 independent quantities, so it has 9 DF.

The Group column inherits the zero-sum constraint from the Variance column, and it

consists of only 2 distinct values. This column contains only one independent

quantity, so it has 1 DF.

The Error column has 8 DF, because DF have to add up.

The DF for Group and Error play a role in determining whether or not the population

means are different.




ANOVA (3 of 6) 129
LSSV2 other stuff \ ANOVA two groups
A B c D E F G H I J L M
Grand
Group Data mean Variance Group Error
A 2.8 2.93 -0.13 -0.18 0.05
A 26 2.93 -0.33 -0.18 -0.15
A 29 2.93 -0.03 -0.18 0.15
A 2.7 293 -0.23 -0.18 -0.05
B 3.1 - | 283 | = 0.17 = | 012 0.05
B 29 293 -0.03 0.12 -0.15
B 3.3 2.93 0.37 0.12 0.25
B 2.8 2.93 -0.13 0.12 -0.25
B 3.2 2.93 0.27 0.12 0.15
B 3.0 2.93 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 8

Sum of squares (SS)| 8629 - 8b8F = 0.441 = 0216 0.225
Mean square (MS)| (SS/DF) 0.049 0.2186 0.028

130

ANOVA (3 of 6, cont'd)

The sum of squares (SS) is a measure of the magnitude of each column. It is the sum
of the squares of the values in a column.

The sums of squares for the Variance, Group, and Error columns are usually much
smaller than those of the Data and Grand mean columns.

The mean square (MS) is the statistically normalized measure of the magnitude of

each column. It is the SS for a column divided by the DF for that column.

The mean squares for the Data and Grand mean columns play no role in determining
whether or not the population means are different, so the MS is usually calculated

only for the Variance, Group, and Error columns.




ANOVA (4 of 6) 131

LSSV2 other stuff \ ANOVA two groups

Grand
Group Data mean Variance Group Error
A 28 2.93 -0.13 -0.18 0.05
A 26 2.93 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 27 2.93 -0.23 -0.18 -0.05
B 31 — | 283 = 017 = | 012 | + | 005
B 29 2.93 -0.03 0.12 -0.15
B 33 293 0.37 012 025
B 28 2.93 -0.13 0.12 -0.25
B 32 293 0.27 012 0.15
B 3.0 2.93 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 + 8
Sum of squares (SS) 8629 - B8HBH = 0.441 = 0216 + 0225
Mean square (MS)| (SS/DF) 0.049 0216 0.028
Fratio| (Group MS / Error MS) 7.680
ANOVA (4 of 6, cont'd) 132

The Group MS measures the magnitude of the variation caused by the difference
between the sample means.

The Error MS measures the magnitude of the variation caused by everything except
the difference between the sample means.

The F ratio is the Group MS divided by Error MS. It is a signal-to-noise ratio. The
larger the F ratio, the stronger the evidence of a difference between the population
means.




ANOVA (5 of 6) 133

Grand

Group Data mean Variance Group Error

A 2.8 283 -0.13 -0.18 0.05

A 26 293 -0.33 -0.18 -0.15

A 29 293 -0.03 -0.18 0.15

A 27 293 -0.23 -0.18 -0.05

B 3.1 — | 293 = 017 = 012 | + | D05

B 29 293 -0.03 012 -0.15

B 33 283 0.37 012 0.25

B 2.8 293 -0.13 012 -0.25

B 3.2 293 027 012 0.15

B 3.0 293 0.07 012 -0.05

Degrees of freedom (DF) 10 - 1 = 9 = 1 + 8

Sum of squares (SS) B629 - 8585 = 0.441 = (0216 + 0225
Mean square (MS)| (SS/DF) 0.049 0216 0.028

F ratio| (Group MS / Error MS) 7.680
P value| (Probability of an F ratio this large by chance alone) 0.0242
ANOVA (5 of 6, cont'd) 134

The P value is a probability calculation based on the F ratio, the DF for the Group
column, and the DF for the Error column.

The P value should be interpreted as the probability of no difference between the
population means.

If there are 3 or more groups, it should be interpreted as the probability that the
population means are all the same.




Interpreting P values 135
Evidence that populations are different Confidence level
or variables are correlated (CL)
1.00
None None
0.15
Some 85% < CL < 95%
o 0.05
=
s Strong 95% < CL < 99%
A~ 0.01
Very strong CL > 99%
0.0001

P values (cont'd)

136

As shown above, the P value has fixed reference values for interpretation.

The P value is inversely related to the F ratio:

> The smaller the P value, the stronger the evidence of a difference in the

population means.

If there are 3 or more groups, the interpretation is:

> The smaller the P value, the stronger the evidence of one or more

differences among the population means.




ANOVA (6 of 6) 137
Grand
Group Data mean Variance Group Error
A 2.8 2.93 -0.13 -0.18 0.05
A 26 2.93 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 015
A 2.7 2.93 -0.23 -0.18 -0.05
B 3.1 — | 293 = 017 012 | + | 005
B 29 293 -0.03 012 -0.15
B 3.3 2.93 0.37 012 0.25
B 2.8 2.93 -0.13 0.12 -0.25
B 32 293 027 012 015
B 3.0 2.93 0.07 012 -0.05
Degrees of freedom (DF) 10 - 1 = 9 1 + 8
Sum of squares (SS) 8629 - B5BS = 0441 0216 + 0225
Mean square (MS)| (SS5/DF) 0.049 0.216 0.028
Fratio| (Group MS / Error MS) 7.680
P value| (Probability of an F ratio this large by chance alone) 0.0242
Root mean square (RMS)| (Sguare root of MS) 0.221 0.168
ANOVA (6 of 6, cont'd) 138

The Root Mean Square (RMS) for a column is the square root of the MS for that

column.

The RMS for the Variance column (0.221) is equal to the usual standard deviation of
the data (STDEV function in Excel).

The RMS for the Error column (0.168) is the standard deviation of the noise

variation (error, residual, unexplained, etc.).

JMP uses the term Root Mean Square Error (RMSE) for the RMS of the Error

*
column.

“Given that Statistics is a body of knowledge dedicated to quantifying and reducing
variation, the variation in statistical terminology is appalling.




Degrees of freedom for comparing populations 139

7N
G

6-1

~

number of groups being compared

= total sample size

DF for the group column

DF for the error column

Q—G

/

* The Error DF is more important than the Group DF
* It determines the accuracy of the predicted values

* Larger is better, 10 is OK, bare minimum is 5

* When DF is mentioned without a qualifier, it always means Error DF

Exercise 7.1 140
Open ANOVA three groups. Enter the appropriate numbers and formulas into the
white cells to produce an ANOVA for the data shown here.

A B C D E E G | dJ L. ] M

1 Grand

2 Group Data mean Variance Group Error

3 A 27

4 A 27

5 A 28

6 A 29

7 B 31

3 B 3.2 — = =

9 B 33

10 B 33

11 C 26

12 C 27

13 C 27

14 L 28

15 | Degrees of freedom (DF) oy = =
16 Sum of squares (55) £ =t =
17 Mean square (MS) (SS/DF)

18 F ratio (Group MS / Error MS)

19 P value (Probability of getting an F ratio this large by chance alone)
20| Root mean square (RMS) (Square root of MS) |




ANOVA in JMP

File > New — Data Table — Enter (or copy-paste) data as shown

{] Untitled 6 - JMP

Eile Edit Tables PRows Cols DOE Analyze Graph Tools View Window Help

Y

Data
27
27
28
29
31
3z
3.3
33
26
27
27
28

FRSd A5 | P M=% EH
[=/Untitled & B 4 =
(= Group
1 A
2 A
|| Columns (2/0) i :
th Group =5
4 Data
6 B
7B
8 B
9|C
= Rows 10 c
All rows 12 11c
Selected 0
Excluded 0 12/C
Hidden 0
Labelled 0

From Exercise 7.1

ANOVA in JMP (cont'd)

Analyze — Fit Y by X — Set up as shown — OK

5 a
Y5 FithyK—Cunteﬂual_ E=REERTS

Distribution of ¥ for each X. Modeling types determine analysis.

A

-Select Columns —————————— - Cast Selected Columns into Roles ~ Action
~ TR | (v, Response| [4Data ok ]
4pata optional
|Dnewa],r | X Factor | C‘C:BCrt:Ljp

- ¢¢U| Block || optional

Remove

Bivariate | Oneway Weight |c-,c-tfc-r.-a.' [——

: 7 1-r- Freq | optional numeric

Help

Logistic |Contingency By

4 ih

optional




Explanation of “mean diamonds” 143

Oneway Analysis of Data By Group

34
3-2- - -. 4 -~
3.1 )
a 34 Elying saucers!
m \
(&) 2.94 - .
-4 || — Upper cockpit
281 . et 11— Upper body
2.6 = Lower body
Lower cockpit
25 A . 5 T c P
Group

Saucers can fly horizontally

Population means are different )
( (it 9596 conficence) ) | P2 each othe with no contact

Mean diamonds (cont'd) 144

Oneway Analysis of Data By Group
34
3.3 B "Fly by" interval
3.2 > j I; for comparing
314 =X population means

8 3

m

O 291
2.8 __ . % 95% confidence
271 S interval for a single
2.6 population mean
25 = . 5

Group

Approx. formula for “fly by" interval: ~ Sample mean + \/E(RMSE/«/E)

Approx. formula for 95% confidence interval:  Sample mean * 2(RMSE/ JN )

N = sample size for each group




Analysis details

Oneway Anova

Summary of Fit

Rsquare

AdjRsquare

RootMean Square Error
Mean of Response

Observations (or Sum Wats)

Analysis of Variance

Sum of
Squares Mean Square

Source DF
2 064
9 0.07
C. Total 11 072

0.895833
0.872685
(0.091287 —{RMSE]
29

12

FRatio Prob>F

145

500000  0.322500 38.7000
500000  0.008333
000000

- Standard deviation of the noise variation

(error, residual, unexplained etc.)

+ Smaller is better

+ Has units of the Y variable

Analysis details (cont'd)

Oneway Anova
Summary of Fit

Rsquare 0.895833
AdjRsquare (0.872685 —>{Adjusted R?]
RootMean Square Error 0.091287
Mean of Response 29
Observations (or Sum Wats) 12
Analysis of Variance
Sum of
Source DF Squares Mean Square F[Ratio Prob>F
Group 2 0.64500000 0.322500 3§.7000 <.0001*
Error 9 0.07500000 0.008333
C. Total 11 0.72000000

v

* Proportion of the total variation in Y that is
caused by (“explained by") variation in X

* Larger is betfter
* Unitless




How adjusted R? is calculated 147

Distributions
Data

Summary Statistics
Mean 29

Std Dev
‘I N

B, . B T
2526272829 3 31323334

Total variation
in the data

a N

2 2
Proportion of Y variation NOT caused by X = ( RMSE j = (M) = 0.127315

STDEV 0.2558409

2
Proportion of Y variation CAUSED by X =1 - (wj = 0.872685 = Adjusted R*

& STDEV /

Notes 148




Exercise 7.2 149

Data table: number and size of defects. Max size is the area in square centimeters of
the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the
P value and interpret the result. (Ignore the t Test section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

¢) Give the value and the units of the RMSE in this example.

d) The RMSE is meaningful only if each group has roughly the same amount of
variation. Is this true in this case?

e) Save your analysis script to the data table, close and save the data table.

Exercise 7.3 150

Data table: quotation process. A supplier receives requests for quote (RFQs) from
customers, then develops and submits quotes. TAT is the turnaround around time in
days. BU is the business unit which prepares the quote.

a) Is the modeling type for BU correct? If not, change it to what it should be. Test
for differences among the business units. Give the P value and interpret the
result.

b) Which BU(s) represent best practice? What follow-up action should be taken?

c) Save your analysis script to the data table, close and save the data table.




Exercise 7.4

151
—

Data table: alignment process. This process attaches orifice plates to chips. Three

similar aligners (alignment tools) are used in this process. Y dev and X dev are the
vertical and horizontal deviations from target in mils.

85 Rdev- IMP [E=EEE=)
The alignment specification applies to (Table Columns.+) = [Functons grouped) +| | ok |
the radial deviation calculated from X Aligner (#[=a] [row N
. X dev iy Mumeric
and Y. Double click on the blank Y dev E}EI% Transcendental || [ Apply |
. x| 3% || = . . =
column header next to Y dev, click on Rdev = A o ngonometic
- & aracter
Column 4, rename as R dev. Comparison [ Clear_|
onditiona
Probability E'
. . Discrete Probability ™
Right click on R dev, select Formula. \
Squarin Square root

Use your mouse and the keypad fgncﬁog ?"uncﬁon

provided to create the formula for R

dev.

\ X dev ? +
@ Ov

Exercise 7.4 (cont'd) 152

a) Is the modeling type for Aligner correct? If not, change it to what it should be.
Test for differences among the three aligners with respect to R dev. Give the P

value and interpret the result.

b) Which aligner represents best practice? (Smaller R dev is better.) What follow-up

action should be taken?

¢) Save your analysis script to the data table, close and save the data table.




Exercise 7.5 153

Data table: casting dimensions. We want to reduce variation in the length of roughly
cylindrical castings. The specification for Length is 600 + 1.5. The wax patterns for
these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Length. Give
the P value and interpret the result.

b) Which machine represents best practice? (It is helpful to draw a reference line at
the nominal value. Right click on one of the numbers on the vertical axis, select
Axis Settings, use the Reference Lines tool. ) What follow-up action should be
taken?

c¢) Save your analysis script to the data table, but don’t close the data table.

Exercise 7.5 (cont'd) 154

We also want to reduce variation in the diameter of the castings. The specification for
Diam is 50 + 0.75.

d) Test for differences between the molding machines with respect to Diam. Give
the P value and interpret the result.

e) Which machine represents best practice? (It is helpful to draw a reference line at
the nominal value.) What follow-up action should be taken?

f) For each of the variables Length and Diam, a certain proportion of the total
variation is caused by the difference between the machines. For which variable is
this proportion highest?

g) Save your analysis script to the data table, close and save the data table.




8 Comparing Populations — Pass/fail Y 155

Raw data | One part or transaction per row

Tabulated | Multiple parts or transactions
data | per row

Raw data example 156

Data table: quotation process.jmp
Want to compare the account managers in terms of % late
Analyze — Fit Y by X — set up as shown — OK

| guotation process B4 > Finance
Motes Ci\Users\Russell Be| = Quote Num | AcctMgr | BU | Initial RFQ = Month RFQCycles review  TAT |TAT<=3 PO
1, 6250012 19 6 08/02/2003 2003.06 1 Yes 2 Pass  Yes
2| 72500233, ity by X - Contextual - JMP 1 - (oo |
3 7250022 —
4 5250039 Distribution of ¥ for each X. Modeling types determine analysis.
5 5250040/ |- Select Columns Cast Selected Columns into Roles Action
Nominal! 6 7250011 | | dauote Num ¥, Response| | TAT<=3 ok |
7 7250025 hAcctigr optiona @|
8| 6250014] hBU
g 5250015 Ainitial RFQ
= Columhs (10/0) 10| 5250044 :’"‘Omh X, Factor | |t Acctligr Remove |
.4 Quoteddum 11, 3250033 ‘R_FQCYC""S_ optiona o
eca
12| 7250024 ‘E:‘Tance review | Recll |
13| 3250025 ' Help |
hTAT==3
15| 8250000 .
16|  8250010f{|Contingency @| S e
17| easo0r1|fl Ml | ﬁgﬁl Freq | [optional numeric
18| 8250012 |4
By optiona
19 3250024 Bivariate | Oneway :|
20| 5250045 ik
21| 7250026 | m bl.ls
22| 8250013 Logistic |Contingency
23| 2250037 4 ha




Raw data (cont'd)

Mosaic Plot

1.00

0.757

=3

0.501

TAT<

0.25

0.00
AccthMgr .
Horizontal
dimension is
Tests proportional
N DF  -LogLike RSquare (U) to sample
837 21 32411285 0.0687 Size

Test ChiSquare Prob>ChiSq
Likelihood Ratio 64.823
Pearson 62.018 <.0001*

* Very strong evidence of differences among account managers

* Who represents best practice?

Raw data (cont'd) 158

* Red triangle — Analysis of Means for Proportions

Analysis of Means for Proportions Upper
0.7 Detection
e g . Limit
05 ! I L_J ;
s |_ ‘ L— — . L uD Vertical
£ 044 _—UDL . o g
s ] dimension is
2 034 inversel
o » f » — 9 y
o 024 ® | 1 [*9=%% proportional
¥ e Al 2 to sample
< i — - — S— - L LDL N
= oo | l Sl e  m T T size
-0.1 — T T 1
RIS IiJ 5'6'7'8'9'10'11'12"13"14'15'16'17"' 18" 19'20'21' 22 Lower
Detection
Accti
o Limit

* Not as useful as “flying saucers” (not available for pass/fail Y)

* Points above (below) the shaded region are significantly higher (lower) than points
inside the shaded region

* Account manager 4 represents best practice — find out what that is, make it the standard

+ Save your analysis script to the data table, but don’t close the data table.




Exercise 8.1 159

a) Test for differences among the business units in terms of % late. Give the P value
and interpret the result. Is there best practice? If so, where is it (based on this
analysis only)?

b) Right click in the PO header, select Column Properties — Value Ordering, then
reverse the default ordering. (This will make it easier to see differences in the PO
hit rate.) Test for differences among the account managers with respect to PO hit

rate. Give the P value and interpret the result. s there best practice? If so, where is
it?

c¢) Test for differences among the business units with respect to PO hit rate. Give the
P value and interpret the result. Is there best practice? If so, where is it?

d) Save your scripts, close and save the data table.

Exercise 8.2 160

Open ATE Mar & Apr (in JMP). If necessary, change the modeling types for Model
Number and Test Station.

a) Test for a difference between the model numbers with respect to failure rate. Give
the P value and interpret the result.

b) Test for differences among the test stations with respect to failure rate. Give the P
value and interpret the result. If significant differences exist, describe them and
suggest possible causes.

¢) Save your scripts, close and save the data table.




Tabulated pass/fail data

161

Pass/fail data often comes in tabulated form

Each row may represent a
v Production lot
v' Work order

v' Time period

v" Machine

v" Work center

v" Part number . ..

» This format is perfect for plotting % defective

* However, it is the wrong format for comparing
populations in JMP

Example

162

* Open LSSV2 data sets \ out-of-box failures (in JMP)

* See next slide




Plotting % defective

lures - JM

File Edit Tables Rows

Cols DOE  Analyze

Graph  Tools

View Window Help

163

1.Createanewcolumn |[[B8EEH ¥ 2/@A0 ke Ri=aln® 2 HE S
- = outofboxfailures || 4 = Units =
called % Failed Notes GUsers\Russell B =) Process Month | Produced Failed
1/A 01/2003 3920 108 278
2|a 0202003 2667 70 262
2_ Deﬁne it by the 3|A 0312003 2511 81 243
4|A 04/2003 2556 79
formula 5| A 05/2003 1730 49
6|A 06/2003 2196 71
. = Columns (51) 7\ 072003 2190 88
Failed 100 ik Process 8 A 08/2003 2342 56
Units Produced :E:;;hmduced ala 0912003 3261 98
e 10 A 1002003 2971 97
1B 1152003 2803 15
4 DR+ 128 1202003 444 76
138 01/2004 4547 75
148 02/2004 4160 58
156 03/2004 3393 29
3. Use Graph - Overlay 16 B 042004 2263 17
Plot to create the plOt i~ IRows 17 B 05/2004 2230 26
. All rows 24 188 06/2004 2799 27
on the next slide Selected 0 19/B 07/2004 1800 5
Excluded o 20 B 0812004 2083 29
ATGEET D 21c 0012004 4111 40
HE 2 2/c 102004 3372 30
2c 1102004 4096 18
2c 1202004 5245 36
4 ne
. . )
Plotting % defective (cont'd) 164
Out-of-box failure rate by month
4.0
3.5
.- -
3.0 ) N ".._ . \
. - \
~e, y \
o 257 ~ V
2
5 201 "
= ——o—n \
154 a \
. - I.' r o
1.0 o e — \
-
0.5
UU 1 T 1 T 1 1 I Ll 1 Ll Ll 1 T T 1 T Ll T T 1 T I 1 I Ll
g 888 8888888883833 333333383 8
o 2 o 0 6 86 O O o o O o O O O O O O o o O O o o o (=1
N N NS g N N N NN NN N NN NN NN NN NN
o™~ -— o (o] -r W @0 ~ «© (=] o -— o~ -— o () - wy [£=] |l @© L= o -— o~ -—
-— o [ =] o o o o o o o -— -— -— o o o o o o o o o -— -— -— o

=
=3
=
=




Reformatting for comparing populations

1. Create a new
column called
Passed defined by
the formula

Units Produced - Failed

2. Go to Tables —»
Stack

3. Use Failed and
Passed as the Stack
Columns

4. See next slide

165
FZ) out-of-box failures - JMP = | Lol
Eile Edit Tables Rows (Cols DOE Analyze Graph Tools Niew MWindow Help
HREH %508 fo | = pE =i gm %, F B4 E R
 put-of-box failures |> q x Units J
Notes CrlUsers\Russell Be| = Process Month | Produced Failed % Failed
1(A 01/2003 3920 108 278 381
2|A 02/2003 2667 70 282 2597
3 /A 0342003 2511 61 243 2450
4|A 04/2003 2556 79 300 2477
5|A 05/2003 1730 49 283 1681
6 A 06/2003 2196 71 323 2125
= Columns (6/1) 7|A 07/2003 2190 68 a1 2122
th Process 5 |A 08/2003 2342 56 239 2286
A Month ala 09/2003 3261 98 301 3163
4 Units Produced 10 A 10/2003 2971 97 326 2874
A Filed 18 112003 2803 45 161 2758
o % Faled 12/B 1212003 4644 76 154 1568
P lPasseded
13B 0172004 4547 75 165 4472
14B 02/2004 4160 58 139 4102
15 B 03/2004 3393 20 085 3364
16 B 04/2004 2283 17 074 2266
=IRows 17 B 05/2004 2230 26 117 2204
AllTows 24 18 B 06/2004 2799 27 096 2772
Selected 0 9B 07/2004 1800 3 200 1764
Excluded 0 20 B 08/2004 2983 29 097 2954
Hidden 0 21|C 09/2004 4111 40 0.97 4071
Labelled 0 22|C 10/2004 3372 30 089 3342
23|C 1172004 4096 48 117 4048
24|C 12/2004 5245 36 089 5200

Reformatting (cont'd)

6. Change the name of
the Data column to
Freq and the Label
column to Result

. There are now two
rows for each
month. The Units
Produced and %
Failed columns are
no longer relevant,
and may be deleted.

. Save the new data
table as out of box
failures stacked

[¥] Untitled 12 - JMP

| File Edit Tables
HaEd

= Untitled 12
*|Source

*|Columns (6/0)
th Process

A Month

A Units Produced
A % Failed

th Result

4 Freg

Bows Cols DOE Analyze Graph Tools View Window Help

EERr Q=] e | Pe BE =B Be % I BB (D EH B

Pl < >

- Process | Month Result Freq

1A 01/2003 Failed 109
2|A 01/2003 Passed s
3 A 02/2003 Failed T0
4 A 02/2003 Passed 2597
5 A 03/2003 Failed 61
6 A 03/2003 Passed 2450
TA 04/2003 Failed 79
8 A 04/2003 Passed 2477
9 A 05/2003 Failed 49
10 A 05/2003 Passed 1681
11 A 06/2003 Failed 71
12 A 06/2003 Passed 2125
13 A 07/2003 Failed 68
14 A 07/2003 Passed 2122
15 A 08/2003 Failed 56
16 A 08/2003 Passed 2286
17 A 09/2003 Failed 93
18 A 09/2003 Passed 3163
19 A 10/2003 Failed 97
20 A 10/2003 Passed 2874
21|B 11/2003 Failed 45
22|B 11/2003 Passed 2758
23B 12/2003 Failed 76
24 B 12/2003 Passed 4568




Analyzing the data 167
Analyze — Fit Y by X — set up as shown — OK
Fit Y by X - Contextual - JMP ol e |
r “—
Distribution of Y for each X. Modeling types determine analysis. |
-Select Columns ———— - Cast Selected Columns inte Roles -Action
=flerocess . Response(ResuD Cox )
dlionth optional
hResult
Freg
Contingency %, Factor :: TrO‘i‘?SS) Remove
oLonal
bt {mBecsied
ivariate | Oneway
" Block | optional -
- m Weight |c-,c-t-=c-r.-a-' numeric
Logistic |Contingency Fre Fre
a th
By optional
Data analysis (cont'd) 168

Mosaic Plot

1.00

0.75

Result

* Very strong evidence that processes
A, B, and C do not all have the same
failure rate

* The mosaic plot does not help us
determine where the differences are

Process
Contingency Table
Result
Count Failed |Passed
Row % | |
A 758 25586 26344
f* | 288 9712
2B 418 31224 31642
= | 132 9868
L 1) 154 16670 16824
092 9908
1330 73480 74810
T
N DF  -LogLike RSquare (U)
74810 2 141.17363 0.0211

Test ChiSquare Prob>ChiSg
LikelihoodRatio 282347  C=.0001D
Pearson 291.850 <.0001*

Click on the red triangle at the top of
the analysis window

Select Analysis of Means for
Proportions

See next slide




Data analysis (cont'd) 169
—
Analysis of Means for Proportions
0.030
3
= 0.025-
‘g J
€ 0.0204 UDL
‘;é‘_ ; Avg=0.01778
-~ 0.015 I LDL
=
2 J
% 0.010
- A : B
Process

a=0.05

* This plot shows that Processes B and C are significant improvements

over Process A
* It does not tell us whether or not C is a significant improvement over B
* Save your script, but don’t close the data table.
Exercise 8.3 170

a) Exclude the rows for process A.

b) Test for a difference between C and B. Give the P value and interpret the result.

c) Close and save the data table. (No need to save the script again.)




Exercise 8.4 171

Open molding process - stratification (in JMP).

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables — Summary — use PN as the Group variable — use Machine as
the Subgroup variable — OK.

| 10/0 PN NRows | N(1) | N(10) N{11) N(13) N(14)  N(15) N(2) N(3) N(9)
1 GV009s 43 0 0 ] 0 11 3z 0 0 0
2 Gv0101 31 ] 0 ] 0 ] 1 0 0 30
3 Gv0119 42 3 0 0 0 0 ] 0 39
4 GvV0129 &9 0 0 ] 0 &3 1 0 0 0
5 Gw0132 64 0 0 0 0 0 ] 64 0 0
6 GY0251 37 0 0 17 20 ] 0 0 0 0
7 GY0298 31 0 7 0 0 0 ] 0 0 24
& GY0306 53 0 0 27 26 ] 0 0 0 0
0 GY0325 36 1 0 4 1 0 ] 0 0 0

10| KU0041 84 83 0 ] 0 ] 0 1 0 0

c) Note that each part number runs on only one or two of the machines. A
comparison of the part numbers could be biased by differences among the
machines. A comparison of the machines could be biased by differences among
the part numbers. Because of this, we should use the concatenated variable PN-
Machine as the X variable in the analysis.

Exercise 8.4 (cont'd) 172

¢) Reformat the data for comparing populations (follow steps 1 — 7 in the worked
example).

f) Test for significant differences among the combinations of part number and
machine with respect to fraction defective. Give the P value and interpret the
results.

g) Based on fraction defective, which three combinations of part number and
machine would be the best focus for an improvement project?

h) Save your script, save the data table as molding process - stratification, then
close it.




9 Simple Regression 173

 Terminology

* Purposes of regression analysis

* “Simple” regression

e The line of best fit

* Regression in JMP

* Regression through the origin

Terminology 174

» The term correlation is often used any time we speak of relating one variable
to another

* Technically, correlation should be used only if both variables are quantitative

* An input/output relationship between the two variables is not required (for
example, two variables measured at the same point in a process)

 Regression is a special case of correlation where there is an input-output
relationship Y = f (X), so X is a possible cause of variation in Y

* In regression we want to test for correlation, but beyond that we want to
quantify the relationship and use it for some purpose




Purposes of regression analysis 175

e Predict Y from X

* Determine best setting for X (optimization)

* Reduce variation in Y by controlling X

“Simple” regression 176

Intercept Slope
{ {

Y =0.8387 +0.4891 X + “Error”

50
45
40
35
30
25
20
15
10

0 20 40 60 80 100




The line of best fit 177

* There are many ways to the measure the distance from an (X, Y)
data point to a line in the XY plane

* For example, the shortest distance is along a path perpendicular to
the line

¢ The only distance relevant in regression is the “error” — the
difference between a Y data value and its predicted value based on
the line

* The line of best fit is the one that minimizes the sum of the squared
errors

« This is an example of least-squares model fitting

The line of best fit (cont'd) 178

The best fitting line is the one that minimizes
the sum of the squared “errors”

50
45
40
35
30
25
20
15
10

0 20 40 60 80 100




Finding the line of best fit 179

Open LSSV2 other stuff \ ANOVA linear fit
Worksheet Prediction & error 1

A, B C D E F G | KL td M 0] F
1
2 X data Y data Prediction Error Y :+}(
3 8 6.16 2790 2174
4 22 9.88 2790 -18.02
5 35 14.35 27.90 -13.55
B 40 24.06 2790 -3.84
7 a7 30.34| = 2790 244
g 3 3217 2790 427
] 78 4218 2790 14.28
10 87 4323 2790 15.33
11 93 48.76 27.90 20.86
12 Sum of squares (SS) 89013 = 70074 + 18939
13 Degrees of freedom (DF) 9 = 1 + 8
14 | Root mean square error (RMSE) 15.39
15
16 AverageY 2790
17 STDEV of Y 15.39
Finding the line of best fit (cont'd) 180

In this worksheet we ignore the X variable completely, and use the average
value of Y as the prediction. This is just the calculation of the mean and
standard deviation of the Y variable. (The values in cells [14 and E17 are the

same.)
50

45
40

35

30 .
v
25 -
20
15 .
10 .
5 .
0 20 40 60 80 100

The sum of the squared errors (cell I12) can be dramatically reduced by using
the X variable to “explain” more of the variation in the Y variable.




Finding the line of best fit (cont'd) 181

—
Worksheet Prediction & error 2

A E_|c|D E F G H J kL] M N o [P
1
2 X data Y data Prediction Error Y =(0.8387 |+|0.4891|X
3 8 6.16 475 141
4 22 9.68 11.60 -1.72
5 35 14.35 17.96 -361
3 40 2406 2040 366
7 57 30.34| - 2872 * 1.62
8 73 3217 36.54 437
g 78 4218 38.99 319
10 87 4323 4339 016
11 98 48.76 4877 -0.01
12 Sum of squares (SS) 89013 = 88380 + 63.3
13 Degrees of freedom (DF) 9 = 2 + 7
14 Root mean square error (RMSE) 3.007
15
16 AverageY 2790 Pro . L

portion of total Y variation caused by

17 . SLEL mie /[ ("explained by") X variation
18 Adjusted R square  0.962
19
Finding the line of best fit (cont'd) 182

In this worksheet we used the Excel Solver tool to find the line of best fit, using the
setup shown below. The Error column now contains the deviations from that line.
The sum of the squared errors has been reduced from 1893.9 to 63.3 (cell 112).

Set Target Cell: $I512 E3 Solve |
Equal To: (" Max (@]  valeof: [0 Close
By Changing Cells:
52,5052 H e |
Subiject to the Constraints: Options
Change
Reset All
Delete
=l Help

The distribution of degrees of freedom has also changed. The Prediction column is
now completely determined by the intercept and slope in cells M2 and O2, so it has
only 2 degrees of freedom. The Error column has 7 degrees of freedom because
DFs have to add up.




Degrees of freedom for regression 183

~

4 N = fotal sample size
G = number of parameters in the equation
= DF for the prediction column
N -G = DF for th column
U or the error co )

* The Error DF is more important than the Prediction DF
* It determines the accuracy of the predicted values
* Larger is better, 10 is OK, bare minimum is 5

* When DF is mentioned without a qualifier, it always means Error DF

Notes 184




Regression in JMP 185
Open LSSV2 data sets \ simple regression - generic
:Eﬂ-simple regression —gene_lg‘ﬂu
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
[=|simple regression - generic JE =)
(=l X Y
1 8 6.16
(= Columns (2/0) 2 22 9.88
4 3 35 14.35
v 4 40 24.06
5 57 30.34
(=] Rows 6 73 3217
All rows g 7 78 4218
Selected 0 & &7 43.23
Excluded 0 ] a8 48.76
Hidden 0
Labelled 0
evaluations done | @O~
Regression in JMP (cont'd) 186

Analyze — Fit Model — Set up as shown — Run

4=Model Specification
-Select Columns
=1 2 Columns

‘Ax
v

-Pick Role Variables

Vs Ay

optional

Personality: [Stand.ald Least Squares ']

Ermphasis: [Minimall Report ']

Weight | optional numeric

[ Help ]

[Rnn]

Freq | optional numeric

By | optional

Remaove

- Construct Model Effects

Recall | 7] Keep dialog open

X

Macros =

Attributes =)
Transform =)

[C] No Intercept




Analysis details 187
ResponseY
Regression Plot ﬁoot Mean Square Error\
50 ’ (RMSE)
45 y
40 » Standard deviation of Y
i; i variation caused by factors
” 35 X other than X
20
15 .  “Error” standard deviation
10 .
7 IR S A e . * Also called “residual”
- . =% = standard deviation
Summary of Fit &Smaller is better /
RSquare 0.966581
RSquare Adj 0.961807
[ Root Mean Square Error 3.006984
Mean of Response 27.90333
Observations (or Sum Wgts) 9 P value
Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1830.6557 183066 202.4624
Error 7 j 63.2937 9.04| Prob> F
C. Total 8 1893.94%4
. . ,
Analysis details (cont'd) 188

Regression Plot

* Proportion of Y variation
caused by (“explained by”)
X variation

 Larger is better

STDEV

|_[3:007 Y
15.386

50
45 a
40 3
35
. L
5 30
25 .
20
15 .
10 .
5 L]
= =
o~ -
Summary of Fit
RSquare 0.966581
(RSquare Adj 0.961807 |
Root Mean Square Error 3.006984
Mean of Response 27.90333
Observations (or Sum Wagts) 9
Analysis of Variance
Sum of
Source DF Squares Mean Square
Model 1 1830.6557
Error 7 63.2937
C. Total § 1893.9494

(STDEV of Y is 15.386)

F Ratio

183066 202.4624
9.04 Prob>F




The Parameter Estimates option

189

Red triangle next to Response Y — Regression Reports — Parameter Estimates

Parameter Estimates
Term Estimate Std Error tRatio Prob>|t]

Intercept 2150023  0.39
0.4891205) 0.034375 14.23

X
[' Estimates of the slope and intercept J

e Line of best fitis Y = 0.8387 + 0.4891 X

K P values for the slope and intercept
* In simple regression, the Analysis of Variance P value is the P value for the slope

* In this example, the slope of the line is significantly different from 0, very strong
evidence of a correlation between Y and X.

\the model equation.

* The intercept is not significantly different from 0. This term should be removed from

~

J

Notes

190




Removing the intercept from the model equation 191

Red triangle next to Response Y — Model Dialog — check No Intercept — Run

4[~IModel Specification

Select Columns Pick Role Variables Personality: [Standard Least Squares =
=1 2 Cal ( |
oumns ¥ Ay Emphasis: | Minimal Report -
Ay optional
v
Weight |'Jo‘-'ﬂ-| 2! numeric Help Run

Freq |'Jo
By |'Jo.:.- a

Construct Model Effects
X

numeric Recall | [] Keep dialog open

Degree

Attributes (™)

2 Ov

This is called “regression through the origin” 192

ResponseY

Regression Plot
50 »
* Now the line of best fitis Y = 0.5010X p o«
30 o
*When X=0,Y=0 " :
20

* This makes physical sense in some 10 ¢
situations 042

=1

20
10
60
80
100

Summary of Fit

RSquare

RSquare Adj .
Root Mean Square Error 2.843182
Mean of Response 27.90333
Observations (or Sum Wagts) 9

Parameter Estimates

Term  Estimate Std Error tRatio Prob>|t|
X 0.500982 0.015152 3306 001"




The prediction profiler 193
Prediction Profiler
50
40
Lfl.l & ;Ib:-‘ 30
> [25.78746, 20
29.65432]
10
0
= 8 F 2 & =
[ |
X
* Calculates predicted mean Y as a function of X
* Calculates confidence intervals for predicted means
Simple example of prediction 194

» Suppose we are interested in the predicted mean Y for X = 60

* Click on the 55.333, change it to 60

Prediction Profiler

50

40

;".'...‘5.:):-"& 30
> [27.96248,

32.15548) 20

10

0

20
a0
60
80
100

* Predicted mean Y (based on the data) is 30.06
» With 95% confidence, the population mean lies between 27.96 and 32.16




Simple example of optimization 195

* Suppose we want to find the X value that predicts a mean Y value of 25
* Red triangle next to Prediction Profiler — Desirability Functions

Prediction Profiler

i - Double click in here (don't touch the line plot)

40
>—[2796248 ;g * Modify the Response Goal dialog as shown below
e - Click OK
0
- rE-L;- Response Goal ﬁ-‘
: g
- Z A Values Desirability
High: | 30| 0.0183 |
Middle: | 25| 1]
X Desirability
Low: [ 20] | 00183
Importance:
| OK |[ Cancel ][ Help ]
Optimization (cont'd) 196

* Red triangle next to Prediction Profiler — Maximize Desirability

Prediction Profiler

50
40

}[23‘25635 srssssasspliifeesssras

26.74366]

015 1o 858 8

Desirability
-

0025

vy
=

X Desirability

* Predicted mean Y of 25 is achieved at X =49.9

» With 95% confidence, this population mean lies between 23.3 and 26.7




Exercise 9.1 197

a) Find the X value that predicts a mean Y value of 35. Give the confidence limits for
the predicted mean.

b) The overall standard deviation of Y is 15.4. The RMSE from the regression is

2.84. Which of these would be the standard deviation of Y if we controlled X to a
constant value?

¢) Save your script, close and save the data table.

Exercise 9.2 108

Open LSSV2 data sets \ production vs capacity (in JMP).

(a) Fitaregression for Production qty as a function of Capacity utilized (%). Is there
a correlation? Give the appropriate P value and strength of evidence.

(b) Decide whether or not to remove the intercept from the model equation. Support
your decision with the appropriate P value.

(c) Use your model from (b) to find the capacity utilization level that predicts a mean
daily production quantity of 3500. Give the confidence limits.

(d) The overall standard deviation of Production gty is 733.5. The RMSE from the

analysis in (¢) is 406.06. Which of these would be the standard deviation if
capacity utilization never changed?

(e) Save your scripts, close and save the data table.




10 Using the RMSE 199
LSL Target USL
!\
0 10 20 30 40 50 60 70
Y
Suppose we are not happy with our current process capability
Mean = 27.9, Stddev=15.4
Defective in the data: 33.3%
Predicted from distribution curve: 35.8%

RMSE (cont'd) 200

Suppose Y is correlated with a controllable X variable

55

50 .
45

40

35

30

25 .
20

15 .
10 -

0 .
0 10 20 30 40 50 60 70 80 90 100110
X

How can we use the regression to improve the Y capability?




RMSE (cont'd) 201

If we control X at 80, the mean will change from 27.9 to 40

70

60 USL

50 B

> 40-< x Target

Current 30 b

mean . i
20 : LSL

10 A

0 20 40 60 80 100 120 140 160

RMSE (cont'd) 202

LSL Target UsL

/ \ Mean = 40.0
Stddev=154
Defective in the data: 22.2%

Distribution curve: 15.9%

* Moving mean Y to the center of the spec range does reduce % defective

* But is the mean the only thing that changes when we control X at 80?




RMSE (cont'd) 203

By definition, RMSE is the standard deviation of Y
that would result from eliminating the variation in X

55
50
45

T b 6 = RMSE

35 = 2.84
30 .

25 .

20

15 .

10 -

0 10 20 30 40 S0 60 70 80 90 100110
X

RMSE (cont'd) 204

When we control X at 80, we don't just move the mean from 27.9 to 40
— we also reduce the standard deviation from 15.4 to0 2.84 |

60 USL

50

> 40 b > Target

30 .

20 : LSL

10 . Hmm . .. how
do we calculate

' the improved %
0 20 40 60 80 100 120 140 160 .
X defective?




Open LSSV2 other stuff \ t distribution calculator 205
A B C D E F G H
1 1. Enter the quantities in the YELLOW cells.
2 2. The other values are calculated for you.
3
4 LSL 20 LSL USL Total
5 USL 60 Population % out of spec 0.005 0.005 0.011
; Mean 40 Population PPM out of spec 544 54 4 108.8
7 Standard deviation| 2.843182 /
B | Dopressof freedom e PPM defective = 109
; /
These calculations can be fensitive to round-off error. Don’t round off the mean
10 and standard defiation when you enter them into the calculator.
i1 / Analysis of Variance
12 Sum of
Error DF from the  Source  DF  Squares MeanSquare F Ratio
13 Analysis of Variance = Model 1 8836640 883664 1003.146
64.6695 8.08 Prob> F
14 C Total 9 89013135 :
15 Tested against reduced model: Y=0
206

Notes




Exercise 10.1 207

Open LSSV2 data sets \ production vs capacity.jmp.
a) Find the best fitting distribution for Production qty.

b) What is the predicted % of days on which production quantity will fall below
3000?

¢) What is the % of data values that fall below 30007

d) We found earlier that capacity utilization 52.8% gives a mean daily production
quantity of 3500. The RMSE was 406.06, the error degrees of freedom was 35.

Assuming 52.8% capacity utilization, what is the predicted % of days on which
production quantity will be less than 3000?

e) Save your scripts, close and save the data table.

Exercise 10.2 208

Open LSSV2 data sets \ outgassing process (in JMP). Current (the Y variable) is the
current required to heat a filament to a target temperature. Resist (the X variable) is
the electrical resistance of the filament. Machine is the processing unit. This example
shows how to reduce % defective by separate optimization of each machine.

a) Find the % of Current data values that fall outside the interval (1.9, 2.1).

b) Fit a regression for Current as a function of Resist, using Machine as the By
variable. For each machine, give the RMSE, the error degrees of freedom, and
the resistance that predicts a mean current of 2.

Machine RMSE DF Resistance | % Outside
A

B
C

¢) Assuming we use the indicated resistance values, find for each machine the % of
Current values predicted to fall outside the interval (1.9, 2.1).

d) Save your scripts, close and save the data table.




11 Multiple Regression 209
* Multiple regression model
» Examples
* Fitting regression models
* Interactive effects
* Predicted values and uncertainty
* Modeling and optimization
Multiple regression model 210
[[ Y=b,+bX, +b,X;,+...+b X, + “error”}
Y Xy Xogy oo vy Xy b, b, b, ..., b “Error”
Dependent Independent Intercept Regression Mean =0
variable variables coefficients
Response | Explanatory variables | Parameter Parameters Standard deviation = ¢
variable (RMSE)
Output Inputs Distribution = Normal
Predictors
Regressors

Factors (in DOE)




Model and error components, one X

211

130

120

10

100

a0

B0

70

B0

20

N
/

[[ Y = b, +b,X + “error” J

&
<

When X is .
— [ fixed, predicted - .
o of Y =RMSE
- [
— L] .. L]

e

~ Predicted mean Y (X = 146)

I I I I I I I I
70 80 40 100 110 120 130 140

X

150

160 170

Model and error components, two Xs

212

When X, and
X, are fixed,

=]

180 479 oo 0

Qdictedcof
Y =RMSE
L
< = 7~ Predicted mean Y (X, = 150, X, =1.2)
~ =
L




Multiple regression examples 213
—
Y Xq X, X3 Xy Xs Xs
Life of RPM Tool type Material Feed rate
cutting tool P
Displace- .
MPG Horsepower Weight
ment
Salary Education | Experience | Performance | Seniority | Gender
Vending | Amount of | Distance
machine product | from truck to
service time | stocked machine
Fill in examples of interest to you
Regression model equations 214
Y Xy X, X3 X4 Xs
MPG Displacement | Horsepower Weight
(D) (H) (W)
MPG = b,+ b,D + b,H + bW+ error
Y X, X, Xs X, Xs
Bond Temperature | Dwell time ) 5
strength (T) (D) TxD T D

Bond = b, + b,T + b,D + b,TD + b,T*> + b,D* + error

T

Response surface model (RSM) with two continuous Xs




Linearizing nonlinear models

215

Nonlinear model

Equivalent linear model

Y =b,(X,)"(X,)” | log(Y)=log(b,)+b,log(X,)+b, log(X,)

Y =by(b, ' (b, | log(¥)=1log(b,)+log(b, )X, +log(b, )X,

Notes

216




Fitting regression models

teenage growth

w50 Cols'™

Opel’l LSSV2 data SetS \ teenage 4010 Rows name age gender | height | weight
. 1 |ALFRED 14 M 64 93

grOWth (11’1 JMP) 2 |aLicE 13F B 107

3| AMY 15 F B4 112

4| BARBARA 13F A0 112

Y X X 5| CAROL 14 F 63 a4
1 2 5| CHRIS 14 M 64 93

7|cLayY 15 M 66 105

helght age gender 8 | DANMY 15 M 515} 108
3| DAYID 13 M 53 79

. 10 | EDWARD 14 M 68 112
weight age gender 11| ELIZABETH 1 I
12|FREDERICK 14 M 63 a3

13 |HENRY 14 M B5 119

14 [JACLYN 12 F 66 145

15 | JAMES 12 M 61 128

16 | JANE 12 F 55 74

17 | JEFFREY 14 M 69 113

18 |JOE 13 M 63 105

19 | JOHN 13 M £5 %

20(JUDY 14 F B1 a1

21| KATIE 12 F 59 9%

22 |KIRK 17 M 63 134

77| LAWRENCE 17 M 70 172

24 | LESLIE 14F 65 142

25 |LEWIS 14 M 64 a2

26 | LILLIE 12 F 52 fid

27 |LINDA 17 F 62 116

oliner PN o1 e
218

Fitting models (cont'd)

Say we want to
model height as
a function of
age and gender

Analyze

d
Fit Model

Fit Model

¥~ Model Specification

Select Columng Pick Role Wariables
@ narme height
age ot
[ gender

Degree |2
Attributes ™
[ Mo Intercept

Fersonality: | Standard Least Squares ¥

Ernphasis:

height - ; - |Hel
e Weight | | optional Numer
Freq ||optional Mumeri SO

optional

Construet Model Effects

Minimal Report

W




Categorical X variables 219

Regression Plot

—
70- M—
Alt click red triangle | 657
next to Response -%60_
. ey
Height ]
\L 55-
Parameter Estimates 50 —
— N [a0] < n [{e] N~ [o0]
— — — — — — — —
age
Analysis of Variance
Du variable Source DF Sum of Squares Mean Square  F Ratio
mmy v Model 2 317.25956 158.630 15.2592
representing the Error 37 384.64044 10.396 Prob > F
effect of gender C. Total 39 701.90000 <.0001*
in the equation Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|

Intercept 39.416521 4.945343 7.97 <.0001*
1.6466542 0.352418 4.67 <.0001*

-1.214868 0.516246 -2.35 0.0240*

Numeric coding for two-level categorical X 220

+1 if gender is F
gender[F] = , _
—1 if gender is M

height = b, +Db, age+b, gender[F]

(b, +b,)+bage if genderisF

height = ] ]
(b, —b,)+b,age if genderis M




Constructing the model equation 221

Regression Plot

F—
70'_ M—
— 657
< |
2 .
260+ height
554 o+ ° 3821 + l65age if gender = F
sl 4063 + l65age if gender = M
o & & ¥ b b ~ ®
- — — — — — —
age
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 317.25956 158.630 15.2592
Error 37 384.64044 10.396 Prob>F
C. Total 39 701.90000 <.0001* height
Parameter Estimates —30.42 +165age
Term Estimate Std Error t Ratio d [ ]
Intercept  39.416521 4.945343  7.97 —1.21 gender|F
age 1.6466542 | 0.3524 ; <.0001*
gender[F] (.1.214868) 0.516246 -2.35 0.0240*

Notes 222




The need for interaction effects 223

Regression Plot

* With this model, the growth

F— curves are parallel
70_ M—
+— 654 . .
S * That is an assumption of the
2 607 model, not a result of the
55- analysis
S/ P A A
A I * How do we test for parallel
age 9
curves'’
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept  39.416521 4.945343 7.97 <.0001*
age 1.6466542 0.352418  4.67 <.0001*
gender[F] -1.214868 0.516246 -2.35 0.0240*

Interaction effects (cont'd)

224

height =

This product term allows different slopes for M and F

b, + b, age + b, gender[F]

+b, age*gender[F]




Adding an interactive effect 225

A =/ Model Specification

Select Columns Pick Role Variables Personality | Standard Least Squares

hhiarme AHeight Emphasis: |Minimal Report v
ogtional

optional numeric [ Help ] [ Run ]
optional numeric [lkeep dialog open

optional

Construct Model Effects
pax
Age"Gender

@ Interactive effect added to model

Degree

Attributes =
Transform =
[(IMNo Intercept

hGender
AHeight
Anjeight

1. Highlight

Non-parallel growth curves 226
Regression Plot height

70 : . ;: _ 46.62 + 1.04age if gender = F
 65. : 3230 + 224age if gender = M
5]
T 60-

55

50‘_—|_<i|_o'o_<'r_ height = 39.46 + 1.64 age + 7.16 gender[F]| - 0.60(age )(gender[F])

L B B B |
age

Parameter Estimates

Term imate Std Error t Ratio
Intercept 4.812681
age 0.343014
gender[F] 0.502444

(age-13.975)*ge 0.343014

height = 39.46 + 1.64age — 1.23 gender[F]| - 0.60(age —13.98) gender[F]




Testing the interaction effect

227

Response height
Parameter Estimates

Term Estimate
Intercept 39.457057
age 1.6360307
gender[F] -1.227546
gender[F]*(age-13.975) -0.600896

Effect Tests

Std Error tRatio Prob>|t|
4812681  8.20 <.0001
0.343014  4.77 <.0001
0.502444 -2.44 0.0196
0.343014 -1.75

Some evidence that
growth curves for
girls and boys
have different
slopes

Source Nparm DF Sum of Squares F Ratio Prob>F

age 1 1 223.96652 22.7488  <.0001 T ——_—

gender 1 1 58.76589 5.9690 0.0196 ¢ f t

genderrage 11 30.21331  3.0688  0.0883 more compact forma
Summary of Fit without Interaction Summary of Fit with Interaction
RSquare 0.452001 RSquare 0.495046
RSquare Adj 0.42238 v’ Adjusted R2 went up RSquare Adj 0.452967
Root Mean Square Error 3.224234 v RMSE went down Root Mean Square Error 3.137706
Mean of Response 62.55 Mean of Response 62.55
Observations (or Sum Wgts) 40 Observations (or Sum Wgts) 40

228

Notes




Predicted values and associated uncertainty 229

Prediction Profiler

704
£61.11892 657
$[59.6029, o]
T 62.635] 1
554
50
14 F
Age Gender
Predicted avg. height in the population of 14 year old girls 61.12

[59.60, 62.64]

o . . hei 1 .
95% confidence interval for avg. height of 14 year old girls 6L12 4 150

Notes 230

The model without interaction gave 61.25 + 1.55 (slightly larger margin of error).




Exercise 11.1 231

a) In the table below, record the Adjusted R? and RMSE from the analysis of height in
this section. Also, record the P values from Effects Tests. Run the same analysis for
weight and record the corresponding results.

P values
Response Adj. R? RMSE Age Gender | Age*Gender
Height
Weight

b) Which variable (height or weight) has the greater proportion of variation explained
by age and gender?

¢) Explain why it wouldn’t make sense to compare the two models in terms of RMSE.

Exercise 11.1 (cont'd) 232

d) Both age and gender were statistically significant for predicting height. Ts this true
for weight?

e) For height we found evidence that the growth curves for girls and boys have
different slopes. Is this true for weight as well? Give the P value that is relevant to
this question, and explain what it means.

f) Give the predicted average weight in the population of 15-year-old boys. Give a
95% confidence interval for this average.

g) Save your scripts, close and save the data table.




Exercise 11.2 233

Prediction Profiler

Open LSSV2 data sets \ lead time 2 (in IMP).

a) Fit a model for Lead time including the terms
Process Step, Operator, and their interactive bl
effect. Wi I LLLLLLLL

A -
18 17.5
[18.14853 15 ,

Lead time

b) If you got the upper right profiler, you did
something wrong. (What is the correct modeling proces 1520
type for Operator?) The lower right profiler is o

the correct one.
Prediction Profiler

¢) Select Model Dialog on the Response red triangle
menu. Remove terms under Effects Tests with P
values exceeding 0.15 (use the Remove button). Ha Re
Run the model again. Which terms are left? 75 : .

25 = :
20 |5 L
17.5 N M‘\-,_
(1872054 15 R

Lead time

Assembly
ATE

d) Based on the profiler, which factor has the larger effect on rv— ;
lead time? Does this correlate with the P values? Please - SR
explain.

e) Save your script, close and save the data table.

Exercise 11.3 234

Open LSSV2 data sets \ number and size of defects.jmp.

a) Fit a model for Max size including the terms Welder, # Defects, their interactive
effect, and the quadratic effect for # Defects (cross it with itself). This is the
response surface model for one categorical factor and one continuous factor.

b) Select Model Dialog on the Response red triangle menu. Remove terms under

Effects Tests with P value exceeding 0.15 (use the Remove button). Run the
model again. Which terms are left in the model?

¢) Based on the profiler, which factor has the larger effect on Max size? Does this
correlate with the P values? Please explain.

d) Save your script, close and save the data table.




Exercise 11.4 235

In this example you will analyze data from an optimization experiment concerning the
removal of excess metal from castings by belt grinding.

The belt supplier had been recommending that belts be discarded when they are “50%
used up.” This rule was based on tests conducted by the supplier to define the usage
point at which the total of labor and belt costs will be minimized. One of the grinders
thought the supplier’s rule caused grinders to discard belts too soon. Aside from being
suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s
tests did not take into account the time lost to belt changes.

This grinder developed a new standard under which belts would be discarded only
after they were “75% used up.” He wanted to do a comparative study to show that his
method was cheaper overall. After he explains the study with his fellow grinders, 3
additional factors are added to the experiment.

Each casting in the experiment was weighed before and after the grinding operation. A
technician kept track of how many belts were used and how long it took the grinder to
complete each casting. From this information the total cost per unit of metal removed
was calculated for each casting.

Exercise 11.4 (cont'd) 236

* Y variable: cost per unit of metal removed

* X variables: > Contact wheel land-groove ratio (LGR): Low or High
> Contact wheel material (MATL): Steel or Rubber
> Belt usage limit (USAGE): "50%" or “75%"
> Belt grit size (GRIT): 30 or 50

* Open LSSV2 data sets \ belt grinding

* Run the Fit Model script provided in the left panel, run the model. This is the
response surface model for 4 categorical Xs. Remove insignificant terms (P > 0.15)
then re-run the model. Which terms are left?

* Use the Prediction Profiler to find the minimum cost factor settings.

» What do you expect the mean and standard deviation of Cost to be after
implementing the optimal factor settings?

* Save your script, close and save the data table.




Exercise 11.5 237

In this example you will analyze data from an optimization experiment concerning the
bond strength of potato chip bags.

Chips ‘R’ Us was receiving customer complaints about stale chips, especially from
customers on airplanes. They traced the problem to the bag sealing process. The
current process involved a temperature of 150°C, a pressure of 100 psi and a dwell
time of 1.1 secs. The current average bond strength was about 85 psi.

Process Engineer Chip Kettle ran an experiment to increase the bond strength.
Production Manager Justin Thyme reminded Chip that he would very much like to
avoid an increase in the dwell time.

Justin is able to free up a bag sealer for only so much time each shift. Chip realizes he
will need two shifts to complete the experiment. He decides to include Shift as an
additional variable in the analysis just in case there is an operator and/or equipment
effect.

Exercise 11.5 (cont'd) 238
* Y variable: bond strength
+ X variables and feasible ranges: > Temperature (TEMP): 120 to 180

> Pressure (PRESS): 50 to 150

> Dwell time (DWELL): 0.2 to 20

> Shift: 1 or2

» Open LSSV2 data sets \ heat sealing 1

* Run the Fit Model script provided in the left panel, run the model. This is the
response model for 3 continuous Xs. Remove insignificant terms from the model (P
> (.15), then re-run it. Which terms are left?

* Use the Prediction Profiler to maximize the average bond strength. If your solution
requires a long dwell time, find another solution with a short dwell time.

» What do you expect the mean and standard deviation of bond to be after
implementing the optimal factor settings?

* Save your script, close and save the data table.




Exercise 11.6 239

Open LSSV2 data sets \ outgassing process.jmp. Current (the Y variable) is the
electrical current required to heat a filament to a specified temperature. Resist (one of
the X variables) is the electrical resistance of the filament. Machine (the other X
variable) identifies which of three processing units was used. We want to develop a
model for Current as a function of Resist and Machine.

a) Fit a response surface model for Current. (The terms will be Resist, Machine, the
interaction term Resist*Machine, and the quadratic term Resist*Resist. To get the
quadratic term, cross Resist with itself.)

b) Select Model Dialog on the Response red triangle menu. Remove any terms under
Effects Tests with P value exceeding 0.15. (Use the Remove button.) Run the
model again. Record the RMSE.

c¢) Use the Prediction Profiler to find the predicted average Current for each
machine if we always use filaments with resistance 52.

Exercise 11.6 (cont'd) 240

d) The target value for Current is 2. For each machine, we want to find the resistance
for which the average current is 2. On the Prediction Profiler red triangle, select
Desirability Functions. It should look like this:

Prediction Profiler

215 -

e) Double click in the upper right hand 21 H

panel of the profiler. (Try to avoid the s lgs o T T
plotted line.) You should get the T 1 /’/ \

dialog shown below.

By Response Goal [ | "\\‘“‘"“‘Hﬁ P
Maximize vl z
Current  Values Desirability SERGRAER < r R -
Ligke Resist Machine Desirability
| o . o Resporce o)
| Importance: @l
[El[El I Current Values Desirability
f) Modify the dialog as shown to the | o .
right, then select OK. Proceed to the | mportance
next slide. Cancel |[_Hep | |




Exercise 11.6 (cont'd) 241

—
g) On the Prediction Profiler red triangle, | B Factor Setiings i)
select Reset Factor Grid. We want to : . .
. A actor Resist Machine
lock the factor setting for Machine, so Current Value:
check the Lock Factor Setting box as Minimum Setting:
Shown here Maximum Setting:
’ Mumber of Plotted Points: ’/
Show
Lock Factor Setting: 0 | i il
Cancel |

h) The vertical line for Machine should Prediction Profiler

now be solid instead of dotted. This lef
will allow you to optimize Resist €1 07803 55 \ ficic g >

separately for each machine. On the
Prediction Profiler red triangle, select
Maximize Desirability. Proceed to the
next slide.

£0.851006

Dasirability
0025 [N
|

Resist Machine Desirability

Exercise 11.6 (cont'd)

i) The optimal resistance value for Prediction Profiler

o
Rt

£[1.989713

optimal resistance value. Do the Samuen 92
same for machine C.

242
machine A is 51.5. Move the solid s l\n
vertical line to machine B, find the § .- \ _— r_//

Dasirability

0025 0rs
>
7

j) What will the average current be if fananss < 2 O S h b~
we always use the optimal resistance et Machine Desiraity
values?

k) What will the standard deviation of current be if we always use the optimal
resistance values?

1) Save your scripts, close and save the data table.




12 Transforming the Y variable 243

[{ Predicted Y = b, + le}

A
Residual (+) |

Predicted value j«----------mmmmmmmmommon oo

Predicted value fe--------------mmmemmeeeeeeo .

Notes 244

A fitted model gives the predicted mean value of the response variable as a function of
the predictor variables. These predicted mean values are also called predicted values,
or just predicted for short. The residual value is the data value minus the predicted
value. Residual values are called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value is the fitted line evaluated at some X value. A residual is the difference
between a measured Y value and the predicted value at the corresponding X.

Residuals contain information about the magnitude and direction of variability in the
data relative to the fitted model. An unusually large residual might signal a
measurement error, data entry error or some other type of outlier. A systematic trend or
pattern in the residuals might signal an inadequacy in the fitted model.




Plot of residuals by predicted values 245

[[ Predicted Y = b, + b, X ”

50 —
| ]
40 — \
?
30 —
E
< 20 —
3 e
| ] [ ]
~ 10 — L]
[ ] [ ]
0 a® . s * .
s * 9 .
10 ¢ . .
]
| T T T T T T I
50 60 70 80 a0 100 110 120
Predicted Y values
Notes e

Here the residuals from the preceding slide are plotted against the predicted values.
This is a good all-around diagnostic plot. “Healthy” residuals look like random scatter
around 0—Ilike a control chart with no assignable causes. Here, it looks like there
might be a suspicious data point. If it turns out to be just a data entry error, we simply
enter the correct value, then all is well. Most of the time it’s not that simple. When you
have an outlier of unknown origin, it helps to run the analysis with and without the
questionable data point. If you’re lucky, the results will be pretty much the same both
ways, hence no worries.

If excluding the outlier does make a significant difference in the results, then you have
a hard decision to make. The official rule is: leave the data point in unless you can
identify the cause. The idea is to throw it out only if you can demonstrate to an
impartial jury that it does not come from the population you want to study. This is the
“pure” approach. This should be tempered with the following practical consideration:
you don’t want your results to be determined completely by one extreme outlier, even
if you can’t explain it.




Same thing for any number of X's 247
[[ Predicted Y = by + b, X, +b,X, ﬂ
Y
Predicted value
2
X
1200 430 449 2
150 0
X, 160 470 o0
248

Same thing (cont'd)

Plot of residuals by predicted for any number of Xs

40 —
.
30 — .

—_
L]
|
o®

<
]

10 — '

Residuals

| \ | | | |
60 70 80 80 100 110

Lower left-hand  Predicted Y values  upper right-hand
quadrant of the quadrant of the
(X1, X3) plane (X4, X,) plane




Basic model assumption

249

oy constant (does not depend on the Xs)

Most common violation of the basic assumption

250

Gy proportional to mean Y




Plot of residuals by predicted values 251
Gy proportional to mean Y — “sideways V”
40 —
L]
30 — . ¢
L ]
20 — .
% 10 — .. .. e
j=1
R
(o]
M40 N
[ ]
20 - *° o’
[ ]
30 —
L]
40 T \ T T \
60 70 80 80 100 110
Predicted Y values
Notes =

The standard assumption in all comparison and correlation analyses involving a
quantitative Y variable is that the noise (unexplained/error/residual) variation follows a
Normal distribution with mean 0 and a standard deviation that does not depend on the

X variables.

This simple model has served us well. However, when Normality or constant G is
grossly violated, something must be done. The most common remedy is to use log(Y)
as the dependent variable instead of Y. This “trick of the trade” is simple and, in most
cases, effective.




Transforming the Y variable 253

Open LSSV2 data sets \ actual vs estimated (in JMP)

I Fit Model

We want to see ¥ ~ Model Specification

how accurately Select Columns Pick Role Varighles Personality: | Standard Least Squares v
we can estimate thTask @ Emphasis | Minimal Repart =
he ti it tak. hResource T
the time 1t takes hFinish Date
to do certain AEstimated Hrs - - - Help Run Modsl
Arctual Hrs opfional numeric ’ ] ’

taSkS opfional numeric
optional Remove

Construct Maodel Effe
(Estimated Hrg

Analyze

‘L Cross
Fit Model Plest

Macros

Aftributes =
Transfarm =

[] Mo Intercept

0
@
[t}
=
i
i}

Transforming Y (cont'd) 254

Response Actual Hrs Residual by Predicted Plot

Regression Plot 80

100
90
o -
60
50
40
30
20
10 : g~
G HE |

60

20

Actual Hrs

N

Actual Hrs
Residual

-20+

-40

i
T T T T T T T

o O O O O O o O o o
- N ™ 0 © ~ 0o O

Estimated Hrs -60 T T T T T
0 10 20 30 40 50 60

Actual Hrs Predicted

Summary of Fit

RSquare 0.307347
RSquare Adj 0.296176

Root Mean Square Error 16.95281
Mean of Response 12.23828 Y=0.835+0.632X

Observations (or Sum Wgts) 64
Parameter Estimates

Variation
increases

as average
Term Estimate Std Error t Ratio ob>|t| Actual Hrs

Intercept 0.8352064] 3.035964 0.28 0.7842 X
Estimated Hrs  \0.6321871) 0.120529 525 <.0001* 1mncreases




Transforming Y (cont'd)
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¥ ~'Model Specification
Pick Role Variables

Select Columns

thTask -Y .
mphasis:
hResource { optional I <
hFinish Date
AEstimated Hrs - : : Help
Arctual Hrs apifional numeric [—]

Recal

optiona! numerc
aptional

Construct Model Effects
ndd Estimated Hrs

Cross

Mest

Macros

Aftributes =
Transform =

[ Mo Intercept

Degree

Gy proportional to mean Y <:> OpLog(y) CONStant

Personality: Standard Least Sguares v

Minimal Report v

~ » Click on Actual Hrs

L« Click on Transform
red triangle

» Select Log

* Run the model

Effects of log transformation
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Response Log(Actual Hrs)
Regression Plot

100
90
80
70
60
50
40
30
20
10 : ¢

0

Actual Hrs

T T T T T T T
O O O O O O O O o o
—- N ™ n © ~ ©o O

Estimated Hrs

Summary of Fit

0.233276
0.22091

RSquare

RSquare Adj
Root Mean Square Error 1.217933
Mean of Response 1.576584
Observations (or Sum Wgts) 64

Parameter Estimates

0.8982207] 0.218111
0.0376085) 0.008659

Log(Y)=10.898+0.038X

Term Estimate Std Error tRatio Prob>|t|
Intercept 412 0.0001*
Estimated Hrs 4.34 <.0001*

—> Y =exp(0.898+0.038X ) = " (" J* = 2.45(1.04)

Residual by Predicted Plot

Log(Actual
Hrs) Residual

3 456781Q 20 304050 70100

Actual Hrs Predicted

Nonlinear model for Y




Effect of not using Log(Y) when you should 257

Response Actual Hrs
Prediction Profiler

Response Actual Hrs
Prediction Profiler

] : g 100
o Uncertainty 1s 00
understated 80
. 70
2283 at the highend /' ¢ 25 eo
RS ER SIS
§22 : : g9 40
D Uncertainty is a0
overstated 21
at the low end o4
Estimated Estimated
Hrs /ﬁ Hrs
Response Log(Actual Hrs) ¢ Y data shows & Response Log(Actual Hrs)
Prediction Profiler proportional to Prediction Profiler
100 - mean 100 )
90 ! 90 3
: ! s
804 h 80 l
704 / 70| 9]
o ; * Log(Y) model ol i

incorporates this
behavior

50
40+
30
204
10

01

50-
40+
30
20
104

Actual Hrs
3.317093
Actual Hrs
27.25304
[11.6274, 63.8774]

[2.33651, 4.7092]

* Uncertainty is

o

correctly stated

64

Estimated \ everYWhere / Estimated
Hrs Hrs

Summary 258

* In this example, the model for Y was questionable because it
assumed constant G.

» Using Log(Y) as the response is better because it models an
important aspect of the data: o proportional to mean.

* Answers to frequently asked questions:

v' Satisfying model assumptions always takes precedence over
Adjusted R2.

v P values always take precedence over Adjusted R2.

v" Adjusted R? should be used only when there are no other
ways to distinguish one model from another.




Exercise 12.1 259

Open LSSV2 data sets \ number and size of
defects Jmp Residual by Predicted Plot

a) Fit a model for Max size including the terms
Welder, # Defects, their interactive effect, and

the quadratic effect for # Defects (response B I .
surface model for one continuous factor and R e
one categorical factor). You should see a 5 g
distinct sideways V. s 0 1
Max size Predicted

b) Select Model Dialog on the Response red
triangle menu, apply a Log transformation to Residual by Predicted Plot
Max size, re-run the model. The sideways V ¢

isn’t completely gone, but close enough.

¢) Select Model Dialog on the Response red
triangle menu, remove terms with P> 0.15, run
the model again (and again, if necessary).

Max size Predicted

d) Which terms are left in the model equation?

Exercise 12.1 (cont'd) 260

e) Now we have a log-linear simple regression.

Regression Plot

" . o
. L] g - ’
. 10, - . o
?{ g «* .
S e sy *
= gt L] .~ b ’
- . . I- . - %
When you use a Log or square 2 L.
root transformationonV, it is 4
helpful to use log scale for the 07 -
= = =~ - = a

Y axes of the plots

f) Save your script, close and save the data table.




Exercise 12.2 261

An aerospace manufacturer uses integral castings as structural components of jet
engines. Integral castings give design engineers more flexibility and simplify the
assembly process. Defect-free castings are known to have long cycle fatigue life, but
defects often arise in the casting process and must be weld repaired. The engine
manufacturer’s metallurgical team has proposed a finishing process of the following
type to ensure adequate cycle fatigue life of weld-repaired castings:

Heat Treat |—| Polish Peen

The team wants to optimize the first two steps in this process to achieve maximum
cycle fatigue life. Also, though other applications of similar processes have included
peening, they would like to see if it can be omitted to reduce processing time and cost.

Due to project time constraints and limited availability of test fixtures, the team can
perform at most 12 cycle fatigue tests for their experiment.

Exercise 12.2 (cont'd) 262

* Y variable: Cycles (to failure)

» X variables:

> Heat treat: Anneal or Solution/age
> Polish: Chemical or Mechanical
> Peen: Yes or No

* Open LSSV2 data sets \ weldment fatigue.jmp
* Run the Model script provided in the left panel, run the model.
* Notice the extreme sideways V on the Residual by Predicted Plot.

* Rerun the model using a Log transformation on Cycles. Remove insignificant terms
from the model (P > 0.15), then run the model again.

* Use the Prediction Profiler to maximize the cycle fatigue life.




Exercise 12.3 263

A Black Belt wants to minimize the leak rate in plastic containers ultrasonically
welded together. The X variables and ranges are:

» Force: 70 to 150
> Energy: 275 to 325
> Amplitude: 70 to 90

* Open LSSV2 data sets \ ultrasonic welding 1.jmp
* Run the Model script provided in the left panel, run the model.
* Use the Prediction Profiler to minimize the leak rate.

* Notice anything odd about your minimized leak rate?

Exercise 12.3 (cont'd) 264

* Confirm that the Residual by Predicted Plot shows a sideways V.

* Re-run the script provided in the data table, apply a Log transformation to leak rate,
run the model again.

* Remove insignificant terms from the model (P > 0.15), then run the model again.

» Use the Prediction Profiler to minimize the leak rate.
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Exercise 12.4

Open LSSV2 data sets \ electron microscope.jmp

a) Run the Fit Model script using D-Width (a 36 measure of non-repeatability) as the
response. You should see a distinct sideways V.

b) Select Model Dialog on the Response red triangle menu, apply a Log
transformation to D-Width, re-run the model. The sideways V isn’t completely
gone, but close enough.

¢) Select Model Dialog on the Response red triangle menu, remove terms with P >
0.15. (Have Effects Tests and model dialog open at the same time to avoid errors.)
You will have to repeat this cycle, then run the model a third time.

X rE—%v— Response Goal ﬁ1
d) We want to minimize D-Width. Set up
the response goal as shown here. Minimize - |
D-Width Values Desirability
High: | 2| 0.066 |
Middle | 1]] 05]
Low: | 0] 0.9819
Importance:
[ OK ][ Cancel |[ Help |

266

Exercise 12.4 (cont'd)

e) Itis quite likely that the optimal factor settings will be different for each tool. On
the Prediction Profiler red triangle, select Reset Factor Grid. We want to lock the
factor setting for Tool, so check the Lock Factor Setting box as shown here.

B Factor Settings @1
Factor Total Dose Integrations W Area W Time  Polish Time Bias Teol
Current Value: [ 9 [ ][ e0][ 125]] 0]
Minimum Setting: | 4|| 3[]“ 5|| -1[]‘
Maximum Setting: [ 16| a0 | 20| 10
Number of Plotted Points: [ e[ 4] a)[ a1 Vg
Shon i
Lock Factor Setting: |:| |:| |:| D D D .i

Cancel |
f) Maximize the desirability for each tool. Verify the table below.

Tool | Total Dose | W Area | W Time | Polish Time | Bias | D-Width
A 11.8 4 30 5 -10 0.74
B 9.6 4 90 5 -10 0.72
C 9.6 4 90 5 10 1.13

g) Save your script, close and save the data table.




13 DOE vs “File Cabinet” Data
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All experiments are experiences, but not all experiences

are experiments.—R A Fisher

File cabinet data

DOE

Data sets

Data collection

Information provided

Interactive effects?

Time period covered

Larger, “messy”

Routine operation

Correlations

Maybe

Longer

Smaller, “clean”

Controlled conditions

Cause and effect

Definitely

Shorter

Notes

268

Ronald Fisher was an English geneticist and mathematician trying to increase crop
yields in the 1920s. There were limited numbers of plots available for field trials,
gradients in the soil, variable proximity to water sources, differing amounts of sunlight,
and long lead times. To solve these problems, Fisher developed a body of statistical
methods known as Design of Experiments (DOE).

During World War II, Fisher’s techniques were extended and applied to military
optimization problems. After the war, they were further extended and applied to
industrial problems like improving the quality and reliability of manufactured
products. For his lifelong contributions to science and statistics, Dr Ronald Fisher
eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between
observational studies (analysis of “file cabinet” data) and designed experiments. This
distinction is as important today in Six Sigma as it was a century ago in agriculture.
After all, both are concerning with increasing yields!




Case study: structural jet engine components 269

Typical
jet engine

Typical structural component of jet engine 270

* Back in the day: many small
pieces welded together

* Now: one piece casting

* 3 to 6 feet in diameter

» Stainless steel, nickel alloys,
titanium alloys




Case study (cont'd) 271

* Value stream: investment casting of nickel alloy structural
components

* Process boundaries: shell making through backend processing

* Experiencing “orange peel” surface condition violating
customer smoothness requirements

* 12% scrap rate (big parts — big $$)

* Y =1f(X): analyze existing production data

Investment casting process 272

> ——
Alumiaem Die Wax Pakern




A big signal 273

% of
castings
with
“orange
peel’

Furnace the shells were baked in

Notes 2

The strongest correlation in the database involved one of the pre-heat furnaces used to
bake the ceramic shells before transfer to the casting furnace. Furnace 2 was new and
had come on line just about the same time orange peel started occurring. Almost
everyone agreed the new furnace was the problem.

The casting area manager refused to take Furnace #2 off line. He needed all six pre-
heats to keep the casting furnace running nonstop so he could meet his production
quotas.

Process Engineer Dave (shown above) was skeptical that Furnace 2 was causing the
problem. For one thing, the other pre-heats were also producing scrap castings. Also,
he had spent the better part of the past three months evaluating and qualifying the new
furnace.




Another big signal 275

60 —
Bake 40 —
time
(hrs)
20—
0 I I I I I I
1 2 3 4 5 6
Furnace the shells were baked in
Notes Ea

Dave pointed out that the shell bake times were much longer for Furnace 2 than for the
other furnaces. There was a minimum required bake time, but no upper limit. Dave’s
theory was that orange peel was caused by long bake times.

Why did shells stay longer in Furnace 2?

It turned out there wasn’t room to put the new furnace next to the original five, so it
had to be located further away from the casting furnace. The fork-lift operators
wouldn’t drive over there unless they had no shells ready from the closer furnaces, so
shells tended to sit in Furnace 2 for a long time.




Autopsy n

* The file cabinet data suggested some plausible hypotheses

* It could not establish the cause of the defect

» The quantity of data was

not the problem o @ Short
‘ bake

* The data lacked the
structure required to
determine cause and

effect Long
@ ? bake

Furnace #2 Others

Notes T

There was lots of data in the upper right-hand and lower left-hand cells in the table
above, but virtually nothing in the other two cells. Making sure that data tables like the
one above are completely filled out is one of the basic principles of experimental
design.

Subsequently, engineers ran enough parts in the upper left-hand corner of the table to
determine that long bakes were indeed causing the problem. An upper limit on the bake
time was developed and put in place. Shells that exceeded this limit were scrapped.
This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange
peel problem go away.




14 The Role of DOE in LSS Projects 279
* Data collection in the Measure phase may have
Y =£(X) produced little or no useful information
analysis| DOE is an effective way to collect useful current
state data in a relatively short period of time
_ * May have multiple potential improvement ideas on
Developing| the table
the future
state| © DOE is an effective way to evaluate these ideas
prior to defining the future state
280

Notes
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* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

* Engineers developed a list of factors

for a DOE
Example (cont'd) 282
Current state | Possible future
Factor Levels X variable | state solution
Slurry for shell Batch 1 vs Batch 2 v
Shell thickness 14 dips vs 18 dips v
Shell bake time 6 hrs vs 48 hrs v
Shell bake temp 1950° vs 2050° v
Alloy grade Low$ vs High$ 4
Alloy status New vs Revert v
Heat shield steel Mild vs SS 4
2400 vs 3200 v

Cooling fan speed




15 One Factor at a Time? 283

* In this approach, each factor is varied with all others held constant.
This way, it 1s felt, we can see the “pure effect” of each factor.

* This is one way to apply the scientific method, but it is not the only
way.

* For any proposed one at a time experiment, there is usually a
multifactor experiment providing:
v'More information
v Better results
v'Same (or possibly smaller) total sample size

* One at a time trials are useful for determining feasible ranges for
factor in a DOE

Example: potato chip bags 284

* The current average bond strength of our potato chip bags is 86 psi

* Based on customer complaints, we need to increase the bond strength

* The most important control factors in the bag sealing operation are
temperature and dwell time (see below)

* Secondary objective: decrease the dwell time if possible

Factor Current level | Feasible range
Temperature 150° 120 to 180
Dwell time 1.0 secs 0.2t02.0




One-at-a-time experiment #1 285
Vary dwell time over its feasible range while holding temperature at 150
100 —
88 Cemmmmmmmmmmmmmmmemme o :
Bond 86 < :
strength ] ! \ N=9
60— i
| | I |
0.2 1.0 1.4 2.0
Dwell time
Notes 286

Our process engineer Chip Kettle first studies the effect of dwell time while holding
temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to
2.0. Chip finds he can increase the bond strength by 2 psi by increasing the dwell time
to 1.4.

Our production manager Justin Thyme is not pleased with the prospect of a 40%
increase in dwell time.




One-at-a-time experiment #2 287

Vary temperature over its feasible range while holding dwell time at 1.0

100 —

Bond 8
strength 86 <

60 —

1
120 150 161 180

Temperature

288

Notes

Chip now studies the effect of temperature while holding dwell time constant. He seals
and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can
increase the bond strength by 2 psi by increasing the temperature to 161.

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will
increase the average bond strength by 4 psi (2 + 2). However, it is highly likely that
Justin will oppose the increase in dwell time, in which case the increase in average
bond strength will be only 2 psi.




The multi-factor approach 289

209 ’ ')
v 9 design points (e)
v’ 2 bags sealed at
each point
v Total N =18
Dwell ) ;g S — °
time
02 ¢ * *
120 150 180
Temperature
Contour plot of predicted average bond strength 290
209 * Chip's prediction of 90
\J psi at 161" and 1.4 secs
was way of f
L
Dwell
time 1.0 4
Bond strength
exceeding 90 psi at
180" and 0.2 secs
90{4 /
02 @ 4 ¢
120 150 180

Temperature




Why one-at-a-time doesn’t work 291

The 3D perspective

Bond

170 480

Temp

Notes 292

When we experiment with all factors but one held constant, we optimize sequentially
over one-dimensional profiles. The sequence of solutions generated by this process is
highly dependent on the starting point. It has very little chance of finding a global
optimum, and often fails to move a significant distance from the starting point.




16 DOE Terminology 293

Experimental unit
The outcome of a single application of the
process being studied

U

Sample size

The total number of experimental units
(“number of runs”)

Response variable
AY variable measured or inspected on each
experimental unit

Notes g4

The experimental unit is often a part, lot, batch or single transaction of some kind. It
may also be a test specimen or sample of material. It is important to identify the
experimental unit—it provides the basis for counting sample size, and sample size is
critical in determining the statistical significance of the results.

The experimental unit is determined by the process on which we are experimenting,
not the measurement plan used to evaluate the results. For example, suppose we test
100 devices for product life. Suppose we measure a degradation parameter on each
device every 10 hours until the end of the test at 100 hours. The sample size for the
study is the number of units (100), not the number of measurements (1000).




Example

295

* 11 silicon wafers were subjected to vapor deposition at various temperatures,

pressures, and Argon flow rates

* The thickness of the resulting layer was measured at 8 locations on each wafer

* What is the sample size?

Temp Press = Flow Thickness
180 0.3 30
180 0.3 30
180 0.3 30
160 04 10
160 0.4 50
160 0.2 50
160 0.2 10
200 0.4 10
200 0.2 10
200 0.2 50
200 0.4 50

Example (cont'd)

296

* The sample size is the number of experimental units, not the total number of
measurements taken

* The response variables of interest may be statistical summaries of multiple
measurements on each unit

Temp = Press = Flow Avg. Std. dev.
180 0.3 30
180 0.3 30 \ L/
180 0.3 30
160 0.4 10
160 0.4 50
160 0.2 50
160 0.2 10
200 0.4 10
200 0.2 10
200 0.2 50
200 0.4 50




DOE terminology (cont'd)
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Factor

An X variable controlled in an experiment,

varied on purpose to determine its effect
on the responses

L
e

EH
Level l

A particular value or setting of a factor to be Temperature
used in the experiment ° 1En° o

Requirements

All levels of each factor must be logically

and physically compatible with all levels of
the other factors

Notes B

Variables used as factors in a designed experiment may or may not be controlled in the

routine process. What matters is that they can be controlled for the purpose of
experimentation.




DOE terminology
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Examples of continuous factors

Time
Temperature
Pressure
Energy
Voltage
Resistance
Concentration

Flow

Volume
Weight
Length
Width
Density
Rate
RPM

Intensity . . .

Notes

* A factor is continuous if it can be varied within some range on a scale of

measurement

* It is generally preferable to use 3 equally-spaced levels (low, medium, and high)

for continuous factors

300




DOE terminology )

Examples of categorical factors

Method | Old or New
Toolset | 1,2 0r3
Material | A, B, CorD
Supplier | X,Y orZ
Operator | Bob, Carol, Ted or Alice
Color | Cyan, Magenta or Yellow

Size | Small, Medium or Large

Notes

* A factor is categorical if it represents a set of discrete choices

* It is easier to design and analyze experiments with categorical factors because the
levels are given, the models are simpler, and we don’t need to interpolate.

 Treating a factor as quantitative implies that any value in the range can be used in
the process

* If the levels used in the experiment are the only values that can be used in the
process, the factor should be treated as categorical

» For example, one of the controls parameters for certain electron microscopes has to
be a power of 2.

* If you treat this as a continuous factor, the optimal value from the DOE will most
likely not be a power of 2

302




Distinctions relative to design and analysis

303

Categorical factors

Continuous factors

Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 3 levels

Region in factor space

Response surface modeling

Interpolate between design points

DOE terminology (cont'd)

304

Control factors

Can be controlled in the
routine process

\

Type of material
Temperature
Pressure
Method
Time

When possible, it is good
practice to include selected
noise factors in experiments.
Why?

Noise factors
Cannot be controlled in the
routine process

J
Ambient conditions
Raw materials
Operators
Suppliers
Batches
Setups
Shifts
Lots




DOE terminology
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Design point Temo  Press
A particular combination of levels Zoll
p 120 50 ﬁgg -
of the factors. . 150 [ S
=
Design matrix 180 50 jfﬂﬁ :
- =
The set and sequence of design ; 5
. . _ 180 150 [ ¢
points to be used in the experiment. S
v' Full factorial
Full factorial v 4 design points
The set of all possible design points ¥ No fepeafs
for a given set of factors and levels. v’ Sample size = 4
DOE terminology 306
Repeat run Temp Press
An experimental unit created independently 120 50 ﬁ%
of other units at the same design point =
120 150 ﬁ%
False repeat 180 50 %
* Repeated measurement of one unit @ 8
180 150 % :
* Units in the same batch, when 120 50 [if &
optimizing a batch process for which ﬁ g
there is very little variation within 120 150 ﬁ% @
batches 180 50 %
. =
Replicate 180 150 [
v" Full factorial

A set of repeat runs, one for each unitin a
given set

v" 4 design points
v 1 replicate
v’ Sample size = 8




Exercise 16.1 307

—
A bank wants to increase the yield of its credit card offers. It plans to collect VOC data
by means of a DOE involving the factors in the table below. The bank plans to send out
1000 offers for each combination of the factor levels. Based on the data, they will
determine the combination with the greatest % yield.

(a) How many design points are in the full factorial?

(b) What is the experimental unit?

(c) What is the sample size?

(d) What is the Y variable?

e) For each lactor, decide whether you would treat it as quantitative or categorical (give
your anSwers and reasons in the table below).

Exercise 16.1 (cont'd) 308
Factor Levels Continuous or categorical?
Introductory APR 0, 2.5, or 5%

Introductory time

period 3, 6, or 9 months

None, iPhone, iPad, or

Gift .
espresso machine




17 Creating a Full Factorial Design
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DOE — Full Factorial Design

1. Define responses, factors, numerical ranges for quantitative factors, and levels for

categorical factors.

¥ ™ Full Factorial Design

¥ Responses

[ Add Response VI [ Remaove ] [ Mumber of Responses... ]

Response Mame Goal Lower Limit  Upper Limit  Importance
| % Yes I [|Ma><imize |] |
aphional ferm
¥ Factors
ContnuoLis VI [Categorical V] [ Remove]
" Mame Rale Yalues
h Irtro APR Categorical i 2.5 5 )
= Intro Time Categorical 3 A
= (5ift Categorical I-phone Jl-pad |Micr0wave |Espressu

. Specify Factors

Add a Continuous or Categorical factor by clicking its button.
Double click an a factor name or level to edit it.

. . )
Creating a full factorial (cont'd) 310
- ﬁfq Cols =
DOE % Fu” Factorlal DeS|gn = 3600 1 g‘;ttem \Entrn APR \Eﬂtm Time ESP?;ZSD % Yes
. 2114 0 3 Espresso
2. Add extra “center” points, request one or more lziz_ 25 |3 Toaster
. . . . 41132 0 q Toaster
replicates, and/or pre-sort the matrix if desired. sl 25 |3 Hone
. 6314 8 E| Espresso
Use the Back button to modify Step 1. R T — T
8(134 0 q Espresso
w»| H H ann 0 3 Mone
Full Factorial Design TE : —
[ 3 11112 0 3 Toaster
Responses 12323 8 3] Micravave
» 13[334 5 ] Espresso
FaCtOI'S 141313 £ 3 Microwave
N 16224 28 3] Espresso
Ix3x4 Factarial 18222 |25 B Toaster
Output Options 17]232 25 9 Toaster
16332 il 9 Toaster
Run QOrder: Randomize v > mli2z |0 B Toaster
) 200322 £ i} Toaster
Nurnber of Runs: 36 2213 |25 3 Micrawave
MNumber of Center Points: 0 22234 |25 ] Espresso
0 23123 0 i} Microwave
24]331 |5 9 None
25(233 25 q Microwave
26333 £ 9 Microwave
27312 5 il Toaster
8311 |5 a None
121 [0 [ Mone
E TG [ None
31214 25 3 Espresso
. . . . 32|23 |25 ] Mone
+ Each "center” point = one additional row in the matrix e o 5 R
" . " L. 34113 0 il Microwave
* Each "replicate” = one additional set of 36 rows sl o 8 Espresso
36|22 [25 [ None




Simulating response data 31t
~-{/0Cols™
w3gm | Pattern |Intra APR | Intro Time Gift Y Tes Sent Returned
3. Create two new columns as il 6 B Esgresss L J
2(114 1] ] Espresso 1000
shown here. 3|21z |25 3 Toaster 1000 .
4(132 a q Toaster 1000 .
5[211 |25 E] MNone 1000
B{314 ] il Espresso 1000 .
4. Define Sent with a formula 220 M 00 :
L. g[134 1] q Espresso 1000
consisting of the constant value sl [o 3 None 1000 0
wf1a1 o a None 1000 .
1000. 1z o 3 Toaster 1000 o
12323 Bl [ Microwvave 1000
13[334 Ll ] Espresso 1000 .
. 141313 ] 3 Microwave 1000 .
5. The Returned column is where we 15724 35 6 Espresso 1000
18222 |25 [ Toaster 1000 .
would enter the number of offers 17z |25 s Toaster 1000 0
18(332 b} 9 Toaster 1000
accepted and returned for each of iz [0 8 Toaster 1000 :
20322 ] i} Toaster 1000 .
the 36 offer types. |2z |25 3 Microwave 1000
223234 25 q Espresso 1000 .
23[123 a 5] Microwave 1000 .
. . #4331 |5 a MNone 1000
6. For this exercise, define Returned (283 |25 g Microwave 1000 .
. 26333 ] 9 Microwave 1000 .
with the formula defined on the mls2 s 3 Tz 1000
t slid B3 |5 a None 1000
next shide. 28)121 o [ None 1000 .
El ERE [ MNone 1000 .
31(214 248 il Espresso 1000
320231 |25 a None 1000 .
33[133 1] 9 Microwave 1000 .
34]113 0 3 Microwave 1000
35(124 o B Espresso 1000 .
221 |25 [ Mone 1000 .
Simulating response data (cont'd) 312
w|3x3x4 Factorial | -
FllIlCtiOIlS (grouped) Design 3x3x4 Factoriz| = Intro APR  Intre Time Gift % Yes Sent Returned
w Wodel 1.0 3 Microwawe 38 1000 34
20 9 Mone 37 1000 a7
Random 30 a Toaster 43 1000 49
\L 40 3 Espresso 0.1 1000 1
55 9 Microwave 4.4 1000 44
Random Integer[n1] B D B Micrawave 26 1000 2
725 9 Mone 0.6 1000 [
88 G Espresso 4.2 1000 42
Random Integer[50] gl2s g Micrawave 16 1000 18
1000 3 Nane 08 1000 o
» Columns (B/0) 110 G E§presso 3 1000 30
i Intro APR 3k 1228 G Microwawe 14 1000 14
7. Define % Yes i Intro Time 3 13|5 B Toaster 38 1000 38
. . Gitt 3k 140 g Espresso 24 1000 24
with the formula | 4 vesa% 150 g Micrawave 03 1000 E
A sentdp 1625 i Mone 4.1 1000 41
Returned 100 A Returneddp 17 25 B Toaster 25 1000 25
Sent 18 5 3 Espresso 1.1 1000 1
190 3 Toaster 3.1 1000 31
20 5 3 Microwave 4.6 1000 46
2115 3 Mone 35 1000 35
225 3 Toaster 48 1000 4g
2325 3 Toaster 06 1000 A
8. Run the Model 24|25 3 Microwave aB 1000 36
. . 250 i Toaster 35 1000 35
scrlpt pr0V1ded Q) [REE 2625 a Toaster 04 1000 4
in the left panel.  Alrows 36 27 25 B Espresso 15 1000 15
EE'EIC;Ei 8 28 5 g Toaster 15 1000 18
xClude
e 0 2925 9 Espresso 01 1000 1
L abelled i 305 9 Espresso 38 1000 38




Analyzing the data 313
4 |=|Model Specification
Select Colurnns Fick Role Variables Personality: |Standard Least Squares w |
thintro APR A% es Emphasis: ||\f|inimal Report v |
hintro Time opfional
i Gitt
A ves , [ Hel ] [
Weight i i elp Run
Asent opfional numeric
Areturned onfional numeric [lkeep dialog op
optional
Construct Model Effects
Intro Time
Intro APR*Intro Time
Intro APRTGift
Intro Tirme*Gift
Degree
Attributes =
Transform =
[IMo Intercept
Maximizing % Yes 314

* Point and click to find the combination with the highest % Yes

* Your profiler won’t look like this one

* Your best combination may not make sense

Response % Yes
Prediction Profiler

8_
?_
6_
oy Y / A PR R R HPETER] FROCRR
©5.208333
= 251489, 4]
®7.90177) / P |
3— —
o 5
" :
0 T T T T T T T T T
= v w o = @ o @ &
) s 8 & §
2 8 § g
i w
5 Microwave
Intro APR Intro Time Gift




18 Statistical Assumptions 315
Average Y as a function of X has no jumps or corners
(assumption of smoothness)

Quantitative
Y
Quantitative X
Notes s

A hypothetical smooth response function.

We never know the true response function, but often we have information about its

general properties. For quantitative X and Y, smoothness of the Y = f(X) relationship is

one such property. It means the function can be well approximated over sufficiently
short intervals by a polynomial, usually linear or quadratic. This is necessary in
optimization experiments where we want to interpolate between the experimental

design points.




Non-smooth response function 317

Average Y as a function of X has jumps and/or corners

Quantitative
Y

Quantitative X

Notes 318

A hypothetical non-smooth response function.

A function with jumps or sharp corners will not be well approximated by low-order
polynomials in neighborhoods of the associated X values. This is a problem in
optimization experiments because we want to interpolate.

It is not a problem in screening experiments, because there we are merely trying to
identify factors with large first-order effects. Accurate approximation throughout the X
range is not required.

Jumps and sharp corners often occur outside the feasible operating range of the
process. In fact, such discontinuities often define the feasible operating range. A
smooth response function is usually a safe assumption as long as we are not operating
too close to a “cliff.”




Occam’s razor 319

—
““One should not increase, beyond what is
necessary, the number of entities
required to explain something.”
—William of Occam, medieval philosopher
° [
= ’ <
Exact “French curve” Linear plus noise
320

Notes

Occam’s razor represents a preference for simple explanations over complex ones. This
reflects a belief that simple hypotheses are more likely to be true than complex ones.
This belief is not always justified, but it is efficient in that it leads to models with just
enough complexity to explain a given set of observations.

We can always find a sufficiently complex curve passing exactly through any given set
of data points. The predictive ability of this “over-fitting” method is notoriously poor.
The more successful “Occam” strategy is illustrated by random variation superimposed
on a simple linear model.




Standard assumptions on the response function

321

v Y = (X, X, X5, ...) + noise

v Can’t assume f(X) explains everything (hence noise term)

v Can’t assume f(X) is linear, but quadratic is sufficient

v Don’t need cubic or higher order models

v f(X) must include all second order interactive effects

v Don’t need higher order interactive effects

Notes

322




Standard assumption on the noise 323
Normal distribution with 6y, constant
(does not depend on the X5s)
Y
X
324

Most common violation of the noise assumption

Gy proportional to mean Y

Standard fix

-  If that doesn't work, try SQRT(Y)

» Use LOG(Y) as the response variable




Least squares model fitting

325

For each of 18 potato chip bags, we have data on

T = bonding temperature

D = bonding time (duration)

Y = bond strength

The best fitting response surface model (RSM) is the one whose

parameters

minimize the sum of squared residuals:

by, by, by, b, by, be

Y — (b, +bT+b,D+b,TD+b,T* + b.D*)|’
)3

{18 bags}

Least squares RSM model

326

Avg.Y =87.2+8.3(T)+7.7(D)-31.8(TD)-16.1(1%)-13.2(D?)

A B (o} D E F G

1 TEMP DWELL BOND Prediction Noise
2 -1 -1 11.0 10.08 0.92
3 -1 -1 89 10.08 -1.18
4 -1 0 63.9 62.80 1.10
5 -1 0 60.4 62.80 -2.40
6 -1 1 932 89.07 413
7 -1 1 86.5 89.07 -2.57
8 0 -1 65.7 66.30 -0.60
9 0 -1 67.7 66.30 1.40
10 0 0 88.4 87.20 1.20
11 0 0 88.0 87.20 0.80
12 0 1 82.0 81.65 0.35
13 0 1 78.5 81.65 -3.15
14 1 -1 88.1 90.37 -2.27
15 1 -1 92.1 90.37 1.73
16 1 0 772 79.45 -2.25
17 1 0 81.0 79.45 1.55
18 1 1 395 42.08 -2.58
19 1 1 459 42.08 3.82
20 Sum of squares (SS)| 93876.58 = 9379235 + 84.18
21 Degrees of freedom (DF) 18 = 6 + 12

22 RMSE| Square root of noise (SS/DF) 2.65

Wl
-~

least squares
modeling.xls




19 Statistical Models 307

Linear in the Xs

Average Bond = 67.2 + 8.3(TEMP) + 8.3(DWELL)

BOND &5

TEMP 170 180

Notes 328

Response surface: tilted plane.

Simple linear models like the one shown above are used in screening designs. In many
cases, simple linear models fit the data poorly, and do not give accurate predictions.
They should not be used for optimization experiments.




Linear interaction model 329

Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMP x DWELL)

BOND

Notes 330

Response surface: saddle.

Linear interaction models like the one shown above usually fit the data much better
than simple linear models. They are good for optimization experiments where all

factors are categorical, but they should not be used for optimization experiments
involving quantitative factors.




Response surface model (RSM) 331

Avg. BOND = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMPx DWELL)
- 15.5(TEMPx TEMP) - 12.9(DWELLx DWELL)

BOND

TEMP 170 4g0

Notes 332

Response surface: ridge.

The response surface model (RSM) shown above is the standard model for
optimization experiments. It differs from the linear interaction model in that it includes
quadratic (squared) terms for all quantitative factors. In most experiments involving
quantitative factors, the RSM fits the data much better than the linear interaction
model.




RSM for a different data set 333

Avg. TENSILE = 22.5 - 3.3(RATE) + 3.4(RPM) - 3.6(RATExRPM)
- 4.8(RATE x RATE) - 5.6(RPM x RPM)

TENSILE

Notes 334

Response surface: hilltop.
Other RSM shapes include inverted saddles, inverted ridges, and bowls.

You can’t tell from the plot, but in this example the RSM model does not fit the data
very well.




RSM plus quadratic interactions 335

Avg. TENSILE = 22.4 - 8.5(RATE) + 8.6(RPM) - 3.2(RATE x RPM)
- 6.1(RATE?) - 4.8(RPM?) - 7.0(RATE2 x RPM)
+ 8.1(RATE x RPM?)

TENSILE

Notes 336

The shows a more complicated quadratic model fit to the same data as on the previous
page. This model turns out to fit the data well.

Model terms like
RATE x RATE x RPM
RATE x RPM x RPM
RATE x RATE x RPM x RPM

are called quadratic interactions. Adding one or more quadratic interactions is a good
thing to try when an RSM model does not fit.




Higher-order polynomial models? 337

31 order polynomial (cubic)
Avg. Y = by+ b, X +b,X? + by X3

Y

X
4t order polynomial (quartic)
Avg. Y = by+ b, X+ b,X? + by X3+ b, X*
Y
X
Notes 338

Even though third- or higher-order models may fit the data better than quadratic
(second-order) models, they are rarely used in DOE. Why? They require much larger
samples sizes for any given set of factors.

It is much more common to use quadratic models in an iterative fashion. A quadratic
model may not fit the data well over a large initial factor space, but it almost always
tells us which subset of the initial factor space is most likely to give the results we are
looking for. The next step is to run another quadratric experiment in the smaller
region. The smaller the factor space, the better the quadratic model will fit the data.

This concept is illustrated on the next page.




lterated quadratic experiments 339

First experiment, wide ranges — ““big picture”
//
/
/
Y . //
(response to be /
minimized) First quadratic
approximation
True
response
. function
[}
* <~— Dam points
I I [
Low X Medium X High X
lterated quadratic experiments (cont'd) 340

Second experiment, narrow ranges — accurate modeling

Second quadratic ,
approximation /
\

[ I I
LowX MediumX  High X




Models for categorical factors 341

Two-level categorical factor
MATL = Steel or Rubber

u, 1if MATL = Steel

Average COST =
u, if MATL = Rubber

Equation form of model 342

Categorical factors are represented by indicator variables
(also known as dummy variables)

Average COST = b, + b, MATL[Steel]

1 if MATL = Steel

MATL|[Steel] =
—1 1if MATL = Rubber




Simple linear model with all factors categorical

343

Avg. COST = b,

+ b, LGR[Low]

+ b, MATL[Steel]

+ by, USAGE[50%]

+ b, GRIT[30]

4 868125

"High" = -0 616875
Match| LGR|| "Low" =0 616875

=

¥

else

"Rubber"=1.145625 |

else >

Match| MATL| "Steel’  =-1.145625

"50%" = 1.054375 |

* Base price + extra for power windows
+ extra for air conditioning
+ extra for cruise control
etc.

L

/°Analogy: blue book pricing of used cars\

else =

Match[ USAGE | "75%" = -1.054375 |

"30"=-0.048125
Match| GRIT || 50" = 0.048125 |

alse =

*

J

Categorical interaction model

344

Avg. COST = b,

+ b, LGR[Low]
+ b, MATL[Steel]
+ b; USAGE[50%]
+ b, GRIT[30]

+ bs LGR[Low] x MATL[Steel]

+ b, LGR[Low] x USAGE[50%]

- N
# Factors | 4 5 6
Full factorial (FF)| 16 32 64
Min. sample size| 11 16 22
%of FF| 69 50 34

N Y

+ b, LGR[Low] x GRIT[30]

+ by MATL([Steel] x USAGE[50%]

+ by, MATL[Steel] x GRIT[30]
+ b,y USAGE[50%] x GRIT[30]




20 Design Principles 345

Bold strategy

Control group

Replication

Randomization

“Blocking”

Notes 346




Bold strategy 347

Use the entire feasible operating range in a first experiment

Linear approximation

Y
True response function
e «—— (X,Y) data points
[ I
Low o High
Quantitative X
Not bold enough 348

* Low and high levels of X are too close together

* We mistakenly conclude that X has no effect on Y

Quantitative X




Control group 349

For each factor,
one of the levels
should match the Temp Press Dwell Matl

120 50 02 |A
current value 120 .
120 150 20 C
150| 50 C
150 [100] 2.0
150) 150 02 B
180 50 20 B
180 |100f 02 C

180 150 (A]

)

Notes H

The units involved in a DOE may turn out to be uniformly different from those in
current production — either better or worse. This can be due to the effects of noise
variables on production units, or to special circumstances surrounding the creation
and handling of experimental units.

For each factor, one of the DOE levels should match the current state value of that
factor. This allows valid comparisons between current state and experimental process
settings. This is especially important when non-routine measurements, tests or
inspections are applied to experimental units.




Replication 351

Temp Press

120 50 [k

Use repeat runs to =

guantify the noise 120 50 ﬁ 2.
in the experiment 120 150 |3 o
and increase the 120 150 [z é
- Q
signal-to-noise ratios 180 50 ﬁ; %
180 50 g =

180 150 wag

180 150 f:

352

Notes

Replication forces redundancy into the experiment. This is necessary for two reasons:

* To quantify the magnitude of noise in the experimental data— differences
between units at the same design point are, by definition, due to noise variables.

* To reduce the influence of noise variables on the experimental results by
averaging multiple units at the same design point. In other words, to increase the
signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the
validity of the results. Is there anything about the run order shown above that makes
you nervous? Please explain.




Randomization 353

Temp Press
Use a random number :
120 150 L
ﬁﬁa

generator determine

180 50 %
180 50 F

the sequence in which

experimental units are 2 o
]

created and/or evaluated 120 150 f;‘ %
180 50 '

K

120 150 @
180 150 gg
120 50 @%

Randomization 354

Benefits
* Reduces the chance of biased results due to noise variables

* Results are more convincing to skeptics
+ Doesn't require control of noise variables

Drawbacks
* Impractical when some of the factors are hard to change

+ Does not quantify the effects of noise variables

What happens if you don’t randomize?
+ Same thing as driving without car insurance

* Nothing happens, unless you have bad luck
» Warning: strong temptation to do false repeats




“Blocking”

355

Include noise variables
as additional factors
in the experiment

+ Noise variables are used to
divide the experiment into
homogeneous “blocks”

« Effects of control factors
are determined within
each block

Temp  Press
120 50 ﬁff
=
120 150 2 Block 1
_ - Operator: Bob
180 150 ﬁff Raw material: Lot 1
180 50 ﬁfj
180 150  iBE
=)
180 50 [i6" Block 2
== Operator: Carol
120 50 gy@ Raw material: Lot 2
=
120 150 ﬁfj

Agricultural origin of “blocking”

356

* Want to increase crop yields

* Compare varieties, fertilizers, etc.

» Experimental units are plots of land in a field

* Need 50 plots, not 25

— More plots

Block 2

» Have to use a second field

* Differences in the soil will
cause differences in yields




Benefits of blocking

357

» Temporarily converts noise variables into signal variables

* Increases signal to noise ratios without increasing sample size

Makes the experiment more representative of the real process

Makes predictions more reliable

Quantifies the effects of noise variables

Usually protects against general time trends

Notes

358




21 The Custom Design Process 359

1. Specify the response variables and general goals (maximize, minimize, or
match target).

2. Specify the factors. For continuous factors, give the desired numerical ranges
(high and low). For categorical factors, give the levels.

3. Calculate and enter the required sample size (see section 22).

4. Specify the blocking variable(s).

5. Specify the statistical model (usually RSM).

6. Create the design matrix.

7. Back up to make changes, or create the data table.

8. Sort the data table if necessary, save for later.

1. Responses and general goals 360

DOE — Custom Design

4 (=/Custom Design

1 Responses

[Add Response 'J_[ Remove ] [Number of Responses. .. ]

Response Nm Goal Lower Limit Upper Limit Importance

bond Match Target
print A Maximize
4 Factors

Add Factor '] [ Remowve ] Add N Factors 1

MNarme Role Changes  Values

Specify Factors

Add a factar by clicking the Add Factor button. Double click on a factor
name or level to edit it.




3. Calculate and enter the sample size

2. Factors, ranges for continuous, levels for categorical 361
A = Custom Design
1 Responses
Add Response '] [ Remove ] [Number of Responses. .. ]
Response Mame Goal Lower Limit Upper Limit Importance
bond Match Target
print Maximize
4 Factors - -
Do not use this option!
[Add Factor 'i [ Femaove ] Add M Factors 1
MNarme Role Changes  Values
Continuous Easy 120 160 )
Continuous Easy a0 150
Continuous Easy 02 2
Specify Fa
Add a factar by cli
name or level to edit it.
362

4 Factors

[Add Factor '] [Remove] Add M Factars 1

MName Role Changes  Values
‘temp Continuous Easy 120 180
‘press Continuous Easy 50 150
Adwell Continuous Easy 02 2

Define Factor Constraints

[Main Effects} [Interacu’ons '] [ REM } [ Cross ] [Powers '] [Remove TermJ
MName Estimability /

Intercept MNecessary
termp Necessary
press Necessary

dwell Mecessary
. Alias Terms
1 Design Generation
[(Group runs into randem blocks of size: 2
Enter value from
sample size

Number of Runs: !
calculation

OMirirum
ODefaul
OUser Specified

o ot use this aption >




4. Specify the blocking variable(s) 363

4 Factors

[Add Factar 'J [ Remowve ] Add M Factors 1

MName Raole Changes  Values
‘temp Continuous Easy 120 180
‘press Continuous Easy a0 150

Adur Continuous Easy 0.2 2

A B ]
Defipe Factor Constraints
4 Modl
[Main é(fects] [Imteractions '] [ RSM ] [ Cross ] [Powers '] [RemOVNerm}
] Na\ne Estimahility
Intercept MNecessary
jtemp MNecessary
| press Mecessary
ddur Mecessary
i Shift Mecessary
Alias Terms \L
/4 Design Generation . .
- « DOE will take 2 shifts — 2 blocks
[Group runs into random blocks of size: 2
* Calculated N = 32
Number of Runs: « Ask for 16 block
OMinimum 18 SK Tor runs per bloc
O Default

18
GUser Specified I 32'

5. Specify the statistical model 364

Factors
Define Factor Constraints

A Model

[Main Effects] [Interacu'ons '] [ REM ] [ Cross ] [Powers '] [Remove Term

Name Estimability

Intercept MNecessary
termp MNecessary
press MNecessary
dur MNecessary
Shift MNecessary
tempTtemp
ternp*press
pressTpress MNecessary
termnpFdur MNecessary
press*dur MNecessary
durtdur MNecessary
» Alias Terms
A Design Generation
[CIGroup runs into random blocks of size: 2 [ Response Surface Model ]
Number of Runs: g i
on't label your blocks until
OMinirnum 18 b Y

Obefaut - after you have done this!

(OUser Specified 32




6. Create the design matrix 365
4 Model 4 Design

Run tem ress dur Shift

[Main Effects] [Interactions '] [ RSM ] [ Cross ] 1 1SE P 100 11 5

P 2 120 150 2 A

Name Estimahility q 180 100 5 A

Intercept MNecessary 4 150 50 2 B

temp Mecessary 5 180 50 B

press Mecessary B 2T el z a

7 150 150 2 A

dur Necessary 8 120 150 02 A

Shift MNecessary ] 150 100 1.1 A

tempttemp Mecessary 10 150 100 A

+ 11 120 50 2 B

ternp*press MNecessary 1@ o= e =

press*oress Mecessary 13 180 100 11 A

temp™dur MNecessary 14 150 100 1.1 A

presstdur Mecessary 1 I g 2 B

durtdur Mecessary 18 150 100 11 A

17 120 150 11 B

18 150 100 2 B

. Alias Terms 19 120 100 0.2 B

' 20 150 100 1.1 B

4 Design Generation 21 120 50 0z A

- 22 150 50 0z B

[CGroup runs into random blocks of size: 23 150 150 02 A

24 120 50 11 B

Mumber of Runs: @ 180 100 02 B

OMirimum 18 26 120 150 1A

27 150 150 11 B

ODefault a2 28 180 150 02 B

OUser Specified az 29 150 50 11 A

- an 120 100 2 A

Make Design a1 120 100 11 &

32 180 50 0.2 A

7. Back up to make changes, or create data table

366

4 Design

Run temp
1 180
2 120
3 180
4 150
5 180
] 120
7 150
8 120
] 150
10 150
1" 180
12 150
13 180
14 150
18 180
16 150
17 120
18 150
19 120
20 150
21 120
22 150
23 150
24 120
25 180
26 180
a7 150
28 180
29 180
30 120
N 120

32 180

T Mo MO0 MO0 0mmoeemor>rxmOOD>o>i>=:r>>00::@::@>D

4 = Custom Design

P Responses

P Factors

I Define Factor Constraints

¥ Model Rarely need to
P Alias Terms change this
I Design

P Design Evaluation
Output Options

Run Order IRandnmize within Blocks |" |
Ceace )

Use this if you Use this to create
want to make an editable data
changes table




1] n M H
8. Sort “hard-to-change” factors within blocks, save 367
-1
3210 Rows temp | press  dur Shift
1 120 1480 11 A
Tables — Sort 2 ;e 2
4 120 100 02 A
r 5/ 120 150 11 A
T = JAL 8 150 50 2 A
7 150 100 11 A
Sort rows by specified columns. 8 150 a0 11 A
|ﬁ 9 150 150 02 A
Select Columns Action 1? 1:3 133 gi 2
= 12 180 180 A
13 180 100 2 A
Cancel
14 180 150 11 A
15 180 a0 0z A
16 180 100 11 A
17 120 150 02 B
. 18 120 100 2B
19 120 150 2B
e e o o m % o2
‘ 22 150 100 11 B
K 23 150 100 11 B
[Double-chck here . . . then here 24 150 100 14 B
25 150 150 2B
26 140 1480 2B
Click here . . . then OK] 3; 1:3 133 1 } g
29 180 a0 2B
30 180 100 11 B
1| 180 a0 02 B
42 1580 150 oz B

Notes

368




Exercises 369

Use the Custom Design process to create RSM design matrices for the exercises on
the following pages. In addition to special instructions given in each case, follow
these general instructions:

* If a numerical range is given, the factor is continuous.
« If levels are given, the factor is categorical.

* Use the given sample size when creating the design.

* Always sort the data table by the blocking factor.

» Some factors are “hard to change” (temperature, for example). Sort by hard-to-
change factors secondary to the blocking factor. Leave other factors randomized.

* For each exercise, have the instructor review your matrix when you are finished.

For these exercises, you don't have to specify the Y variables

Exercise 21.1 370
Control factors Levels
Heat treat Anneal Solution/age
Polish Chemical Mechanical
Peen Yes No

* Hard to change factors: none

Blocking factor: none
» Experimental unit: one small test piece

» Sample size: 12 (constraint on available test fixtures, not
from a calculation)




Exercise 21.2 B71
Control factors Levels
Contact wheel land-groove ratio (LGR) Low High
Contact wheel material (MATL) Steel Rubber
Belt usage limit (USAGE) “50%”  “T5%”
Belt grit size (GRIT) 30 50
» Hard to change factors: LGR and MATL (have to replace
one wheel with another)
* Blocking factor: Time of day (morning vs. afternoon)
(Why?)
» Experimental unit: one large casting
* Calculated sample size: 18
Exercise 21.3 ;s

Control factors

Ranges

Force

Energy

Amplitude

* Hard to change factors: none

70 to 150
275 to 325
70 to 90

* Blocking factor: Cavity (parts are molded from 4 tool

cavities)

» Experimental unit: one welded plastic container

Calculated sample size: 68




22 Sample Size Calculation

373
» Sample size (N) is the total number of experimental units
* Also known as “number of runs”
User inputs
(Other than factor info) Abbreviations
Expected standard deviation of RMSE
noise/error/residual/unexplained variation in ¥ > Onoise
Acceptable margin of error for predicting
. . MOE
average Y in the population
Smallest change in average Y worth detecting DTD
(difference to detect)
Notes R

RMSE (o) can sometimes be estimated from historical data or trial runs before the
experiment. It could also be the RMSE from a previous experiment with the same Y

variable. As a last resort, data on a similar process or product could be used.

MOE and DTD are expressed in the units of the Y variable, not as percentages or

proportions. The values assigned to MOE and DTD are judgments that must be made

by the project team.




Interpreting MOE and DTD 375
Y variable Population parameter to which MOE and DTD apply
Dimension Average dimension

Strength Average strength
Cycle time Average cycle time
Variability in Y Standard deviation
Pass/fail Fraction or % defective
, , Failure probability at a given mission time, or
Time to failure ] T o
Time with given reliability
MOE and DTD will vary over the factor space 376
Prediction Profiler 1
100-
2 3 %] I
8¢ & 707
60
5O_I T T T T T TT T T T T T T T T T T T
R 1;0 - 1‘30 - - | F2I|:.l - " 1
TEMP PRESS DUR SHIFT

* Profiler for an RSM model with 4 factors, N = 32

* MOE is 2.55 at the settings shown above, but it
varies from 2.08 to 2.86

* The most we can get from a sample size calculation
is an average MOE or DTD




Average variance of prediction (AVP) 877

* AVP is a function of the design matrix, including N

* Average MOE is related to AVP

Average (MOE) ~ 2(RMSE WAVP

* Solve this to find the required AVP for your expected
RMSE and desired MOE

2
Required AVP =~ i( MOE j

RMSE

AVP (cont'd) 378

* It is most common to specify DTD rather than MOE

» Often DTD is expressed in terms of a project metric:

(Current state value) minus (Goal value)

* There is a relationship: MOE =~ DTD/ V2

* From this we get

2
Required AVP = l( bib j

8 RMSE




Steps for DOE sample size calculation 379

1. Determine your expected RMSE and desired DTD.
2. Calculate the required AVP.

3. In JMP, select DOE — Custom Design — red triangle — Optimality
Criterion — Make 1-Optimal Design.

4. Enter your factors into Custom Design. (For categorical factors, you must
give the number of levels. Except for this, everything can be left generic.)

5. Select the statistical model (usually RSM).
6. Use Make Design to calculate AVP for each N you want to try.

7. Use Back to increase N until AVP is just below the value in step 2.

Example 380

* For the bond strength experiment, the design team chose:

DTD =3 psi

* Based on the standard deviation of bond strength under
stable process conditions in the past, they chose:

RMSE = 2.1 psi

* Plug into the formula:

2 2
AVP = 1fDID y 173 ) 0.255102
8\ RMSE 8\ 2.1




Notes

)
Example (cont'd) 381
:0“5t°’“ Design Design Diagnostics
RESPONSES | Optimal Design
Factors D Efficiency 43.55102
[Remove | Add N Factors |1 G Efficiency 9356364
MName Raole Changes Yalues A Efficiency 30.24629
A Continuous ~ Easy |1 1 - . -
Ao Cortinuous  Easy -1 T /—P[ Average Variance of Prediction  0.635172
4a Continuous ~ Easy -1 1 Design Creation Time (seconds) 0.066667
v Categorical  Easy L1 ,lzZ/
* Define Factor Constraints
" Model
IMain Effects ] [Interactions V] [ RSM ] [ Cross I I PO)érs V] [Remove Term ] DESign DiagnOStiCS
Name Estimafity | Optimal Design
Intercept ary D Efficiency 49.61847
1 MNecgssary -
%2 Nefessary G Efficiency 80.47364
*3 cessary A Efficiency 36.99781
X4 ecessary X L
WY Necessary [ Average Variance of Prediction = 0.254282
RITKZ Mecessary Design Creation Time (seconds) 0.133333
HIHD Mecessany
" Design Generation
[[] Group runs inta random blocks of size Design Diagnostics
Number of Runs: I Optl'mlal Design
& i 14 D Efficiency 49.45745
(&) Defalt 1 G Effici 76.53297
) User Specified 16 @ @ _|c_|ency
A Efficiency 38.47656
Average Variance of Prediction  0.148381
Design Creation Time (seconds) 0.216667
382

Shown on the left is the Custom Design “mock up” for an RSM experiment with 3
quantitative factors and 1 categorical factor with 2 levels. Shown on the right are the
calculated AVPs for sample sizes 16, 32, and 54. For each sample size, click on Make
Design. The AVP is given in the Design Diagnostics element. To do another
calculation, click on Back and repeat this process.

The AVP for N = 32 is just under our require AVP (0.255). This is the sample size that
was chosen for this experiment.

A disturbing feature of the AVP calculation is that it may vary when you hit Make
Design multiple times with the same sample size. This happens because JMP may not
select the same design every time. Fortunately, the variation in AVP isn’t large enough
to make a significant difference the sample size.




Exercise 22.1 383

We are planning an experiment to optimize a monofilament extrusion process with 4
continuous factors. A key response variable is tensile strength. We want to do a
sample size calculation based on the following information:

* The standard deviation of tensile in recent production during stable periods is
2314.4 psi.

* The difference to detect (DTD) in mean tensile is 3000 psi.

Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (cont Y).

Enter the information given above to get the required AVP. Use this to determine the
required sample size.

Exercise 22.2 384

We are planning an experiment to optimize an ultrasonic welding process with 3
continuous factors and a 4-level categorical factor. A key response variable is

the weld depth. We want to do a sample size calculation based on the following
information:

* The standard deviation of weld depth in recent production during stable periods is
0.0236 mm.

* The difference to detect (DTD) in mean weld depth is 0.03 mm.

Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (cont Y).

Enter the information given above to get the required AVP. Use this to determine the
required sample size.




Exercise 22.3

385

Calculate the sample size for this automotive paint experiment. The experimental units
are 8% x 117 panels. The Y variable is % gloss. The standard deviation of Y is about
2.5. In the company’s experience, customers cannot perceive a difference in gloss of
less than 5 percentage points. Based on this, 5 was chosen as the DTD.

Factor

Range Level 1 Level 2 Level 3 Level 4
Resin amount 25-75
Catalyst amount 0-1
Pigment amount 1-5
Resin type Acrylic Polymer Urethane
Catalyst type Tin Zinc
Pigment type Ch FeO, TiO,
Exercise 22.4 386

Calculate the sample size for this second automotive paint experiment. The
experimental units are 84 x 11" panels. The Y variable is % gloss. The standard
deviation of Y is about 2.5. In the company’s experience, customers cannot perceive a
difference in gloss of less than 5 percentage points. Based on this, 5 was chosen as the

DTD.
Factor Range Level 1 Level 2 Level 3 Level 4
Addition amount 1-5
Addition type Acrylic Qil Polymer Urethane
Addition point Grind Let-down Post
Addition method Cow Lift Shaker







23 Workshop: Paper Helicopters

387

Notes

388




Helicopter DOE

We want to maximize the flight time of paper helicopters dropped from a fixed height. Here
are the factors and levels:

10.
11.

Factor Type Level 1 Level 2 Level 3

Paper Categorical Light Heavy

For continuous
Blade length | Continuous 3.25" 4.5" 5.75" factors you enter
Stem length Continuous 3.5" 4.0" 45" only.The low and

high levels

Midriff taper Categorical No Yes
Paper clip Categorical Small Large

Do a sample size calculation.

The instructor will tell you how many blocks will be needed. Create a design matrix
with the calculated sample size and the indicated number of blocks.

Paper will be treated as a hard-to-change factor. Sort the matrix accordingly.
Save the data table as Helicopter DOE.

We will be dividing into teams to run this experiment. The instructor will show each
team how to build the helicopters.

Build the helicopters called for in Block 1 of the design matrix in the data table saved
by one of the team members. (The matrix produced by Custom Design will be different
for each person.)

Double-check the helicopters against the matrix.
Fly the helicopters, enter the flight times into the data table.

For Block 2, everyone changes manufacturing jobs. Block 1 people will provide cross-
training as needed before starting Block 2. The new teams will then build the
helicopters called for in Block 2.

Double-check the helicopters against the matrix.

Fly the helicopters. The metrology teams should be the same as in Block 1. Enter the
flight times into the data table.



12.

13.

14.
15.

16.

When the data entry is complete, the data table should be saved and shared with all
team members. Each team member is to independently run the analysis. Find the best
factor settings, the resulting predicted average flight time, and the RMSE.

If different team members get different results, find the reasons for these differences
and make the necessary corrections.

Build a confirmation helicopter using the best factor settings.

Fly and time the confirmation helicopter. The confirmation flight time should fall
within 2 RMSEs of your predicted average flight time.

Save your script and data table.
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24 Multiple Response Optimization 389

« Experiments may have more than one response
variable

* You can optimize each response separately . . .

* ... but you will get different answers for each
response!

Notes 390

In real experiments there are always multiple response variables. If you think you have
just one, you haven’t finished planning your experiment. For example, any change you
make to a process could affect multiple Y variables. All of these should be considered
as possible response variables for your experiment.

If there are only two factors, we can jointly optimize multiple responses by overlaying
their contour plots. The more factors there are, the more difficult this becomes. In this
section we introduce and illustrate the most widely used general technique for jointly
optimizing multiple responses when there are three or more factors.




Example 1 391

Response BOND
Effect Tests

Source Nparm DF Sum of Squares  F Ratio Prob>F
TEMP(120,180) 1 1 1540.835 366.0070 <.0001*
PRESS(50,150) 1 1 8.439 2.0046 0.1715
DUR(0.2,2) 1 1 1606.813 381.6793 <.0001*
TEMP*TEMP 1 1 1363.630 323.9142 <.0001*
TEMP*PRESS 1 1 14.607 3.4697 0.0766
PRESS*PRESS 1 1 1.385 0.3290 0.5724
TEMP*DUR 1 1 20235.249 4806.642 <.0001*
PRESS*DUR 1 1 0.759 0.1804 0.6754
DUR*DUR 1 1 715.715 170.0096 <.0001*
SHIFT 1 1 3.578 0.8499 0.3671

Response PRI NT
Effect Tests

Source Nparm  DF Sum of Squares F Ratio Prob>F
TEMP(120,180) 1 1 6.821113 85.3929  <.0001*
PRESS(50,150) 1 1 25.625986 320.8095  <.0001*
DUR(0.2,2) 1 1 2.121674 26.5611  <.0001*
TEMP*TEMP 1 1 2.148242  26.8937  <.0001*
TEMP*PRESS 1 1 0.300304 3.7595  0.0661

PRESS*PRESS 1 1 0.257674 3.2258  0.0869

TEMP*DUR 1 1 1.613751  20.2024 0.0002*
PRESS*DUR 1 1 1.065140 13.3344 0.0015*
DUR*DUR 1 1 1.372401 17.1810 0.0005*
SHIFT 1 1 0.137813 1.7253 0.2032

Notes B

The data table heat sealing 2.jmp contains the data from an experiment to optimize
the sealing of potato chip bags. In addition to bond strength (BOND) we now have a
second Y variable PRINT, a rating of cosmetic quality based on visual inspection.
PRINT is defined so that higher is better.

TEMP and DWELL have significant linear and quadratic effects on BOND. PRESS
has very little effect on BOND, but a big effect on PRINT. This is good news: it means
we can use PRESS to bring PRINT up as high as possible, then use TEMP and/or
DWELL to get the BOND we want.

SHIFT, a blocking factor, came up insignificant for both responses. Is this good or bad?




Example 1 (cont'd) 393

-1
We want BOND = 80 and PRINT as large as possible.
Here 1s a solution:
Prediction Profiler
93.21 i .
a T
Z  80.12406
Q 22485
8.9
5.062091 . I .
- — F 1
Z 4349722
X +0.3159
0.4 -
o o o o o ~
S 156 8 B 150 2 3 05
TEMP PRESS DUR
Notes =

In this example is it easy to find solutions using the Prediction Profiler. Obviously,
PRESS should be 150, because this increases PRINT without significantly affecting
BOND. Once we have done that, there are many combinations of TEMP and DWELL
that predict 80 psi for BOND. One such combination is shown above.




Example 2 395
(VISC, TEMP, RATE, RPM) = (76, 321, 140, 297)
DUCTILITY = 11%
Prediction Profiler
= 30000 — b— { f
@ B 3119516 -
7
10000 —
- 30 - .
@ 5 11.39233 -
2
.
10 — - 1 1
é 75.5 = o 320.6 o =3 140 é 2 297 é
VISC TEMP RATE RPM
Notes pog

The data table extrusion 2.jmp contains data from an experiment to optimize the
mechanical properties of an extruded plastic material We want STRENGTH as high as
possible while maintaining a lower bound of 20 for DUCTILITY.

As shown above, it is easy to find a great solution for STRENGTH just by visually
exploring the Prediction Profiler, but the resulting DUCTILITY is too low.




Example 2 (cont'd) 307

(VISC, TEMP, RATE, RPM) ~ (67, 260, 202, 255)

STRENGTH ~ 3281
Prediction Profiler
£ 30000 -
0)
g |
Ll
@ @ 3280.752 -
LI S I S _FJJP”/I |
0+ 1 T I T
>-
[ 40 —
5 ] ]
'_
S 3495601 1 r 1\1 I
D 7 -
20 -
T T T T T T
3 66.7 8 3 2598 S 8 202 8 3 255 3
N ™ — N — (3]
VISC TEMP RATE RPM
Notes 398

As shown above, it is easy to find a great solution for DUCTILITY just by visually
exploring the Prediction Profiler, but the resulting STRENGTH is very low.




Joint optimization of responses 399

Each response has a goal (minimize, maximize or target)

Define a “desirability function” for each response

Combine the individual desirabilities into a single overall
desirability function

Maximize the overall desirability to jointly optimize all
responses

Notes 400

Desirability is a unitless quantity between 0 and 1, defined so that higher is better. ]IMP
supplies default desirability functions based on the experimental data for your response
variables. You must redefine the desirability functions so that they represent your
objectives for each response variable.

You start by setting the general goal for each response: Maximize, Minimize or Match
Target. Then you specify low, middle, and high data values to fine tune the shape of the
desirability functions.




Default desirability functions 401

—
} / i \
0.5 Maximize 0.5+ Minimize
0 | 1 0 | T |
Low Mid High Low Mid High
; /\
_ Match Target
0.5
0 | | |
Low Mid High
Notes 402

The desirability function is increasing for Maximize responses and decreasing for
Minimize responses. It is bell-shaped for Match Target responses.

For Minimize responses with a lower bound of 0, it is a good idea to make the Low
value equal to 0. Examples are number of defects, fraction defective, cycle time,
standard deviation, cost of waste, etc.

The low and high values for a Match Target response are used to define the allowable
deviation from the target value.




Overall desirability 403

The default overall desirability for Y, and Y, is

\/ (Y, desirability) x (Y, desirability)

This can be customized to
(Y, desirability )" (Y, desirability)"

w, = weight = relative importance of Y,
= weight = relative importance of Y,

3
|

Notes 404

The overall desirability function is calculated as a geometric mean of the desirability
functions for individual response variables. It is important to use a geometric mean
instead of an arithmetic mean. With the geometric mean, the overall desirability will be
zero whenever any individual response desirability is zero. This prevents the
optimization algorithm from finding solutions that are excellent for some responses but
completely unacceptable for others.

A weighted geometric mean can be used. The weights (called importance in JMP)
allow users to specify relative priorities for the responses. The higher the importance,
the greater the influence the response has in determining the overall solution found by
the optimization algorithm.

You can enter any positive numbers for the importance. The program automatically
normalizes them to add up to 1.




Example 2 (cont'd) 405

Desirability
Functions

Prediction Profiler

T 35000
Q3 " 250001 L —
wee g ]
x & 5150004~ | =
PR -
5000
Jo 2
5 & § 20 —— | =
< i
33§ 10
0_
2o =7
= O —
Qo % 0
g 3 S - Overall
2 s - desirability
o_
r~1r~1r 111 1 1 1T 1 17T 1717 T T T T TT ™17 ™ T ™17 T T T T"T
o n O 1 oo o o O O O O O OO o o OO W W wn
N N (30] M o —d —d — Nd N N ™ o o
70 290 150 225
VISC TEMP RATE RPM Desirability
Notes 406

Here is the default Prediction Profiler for the four-factor extrusion experiment. The
individual desirability functions are shown in the right-most column. In this case
they are both increasing functions because our general objective for both responses is
Maximize.

The overall desirability is a function of the experimental factors, and is shown in the
bottom row. By default, it is the unweighted geometric mean of the individual
desirability functions.
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= |
Red Maximize
— - triangle Desirability
Prediction Profiler
T 35000
588 25000 — — /
[e0) —~
z8s N | = -
@ 5 = 15000
= N ‘_?{ _ E/
[%p)
5000
= 2 8 20
SENEY 10- /
=) + -
0_
2% 7 /}
R 7
© N |
§ £ O_ P
o
[a)] o4
r~ 17T 17T 17 117 7T 1T 17T 1T T TT1T T T T T TT ™71 T T T 1T T 1T T
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N N (40] M d 1 d d Nd N N (30] o o
70.84169 287.5895 161.1639 300
VISC TEMP RATE RPM Desirability
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Notes

Here is the Prediction Profiler after selecting Maximize Desirability from the red
triangle menu. We have increased STRENGTH from 21262 to 25761. DUCTILITY
has dropped from 24.2 to 22.1, but it is still greater than 20.

In presenting these results to a group of stakeholders, including some engineers, the
project team is challenged to increase the STRENGTH even further. Based on
knowledge of the extruded material, it is known that this would require a further drop
in DUCTILITY. This is confirmed by examination of the Prediction Profiler (please
convince yourself this is true). With DUCTILITY currently at 22.1, there is a good
possibility we can increase STRENGTH without driving DUCTILITY below 20.
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Prediction Profiler

35000
I e [ R /
O Yo - —
022 25000 —=— =
@~ S 15000
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71.6514 293.1966 158.9811 300
VISC TEMP RATE RPM Desirability
Notes A

To obtain the results shown above, double-click in the individual Desirability pane for
DUCTILITY (on the right), change the specifications as shown below, then run
Maximize Desirability again.

JMP: Response Goal

CUCTILITY
High:

Middle :

Lo

Importance:

Match Target

Yalues Desirability
21 0.0183
205 1
Z20 0.0183
1

We have increased STRENGTH to 27209 by allowing DUCTILITY to fall to 20.5.

From the output shown above, are sure that average DUCTILITY will exceed 20?




Exercise 24.1 411

(a) Open or go to heat sealing 2. Run the model script. Use the Effects Tests elements
for Bond and Print to prune out any model terms with P > 0.15 for both responses.
Re-run the model as needed.

(b) Go to the Prediction Profiler for your final model. Our target for mean Bond is 80,
with a tolerance of +5. The highest (best) possible value for mean Print is 5. We
require mean Print to be greater than 4. Modify the desirability functions for Bond
and Print accordingly. On the red triangle menu for the Prediction Profiler, select
Save Desirabilities.

(¢) Use Maximize Desirability to find the optimal factor settings. Have we achieved
our objectives?

Exercise 24.1 (cont'd) 412

d) The Production Manager is unhappy with our solution. It achieves excellent Bond
and Print, but the proposed increase in Dwell would reduce throughput from 300 to
50 bags per minute!

To look for a compromise, select Reset Factor Grid on the Prediction Profiler red
triangle. Click OK for Temp and Press. We want to lock the value of Dwell at a low
value, say 0.5. Type 0.5 for Current Value, check the Lock Factor Setting box, then
click OK. The vertical line on the Dwell profile should now be solid.

e) Use Maximize Desirability to find the constrained optimal factor settings. Is
everybody happy now?

f) Save your script, close and save the data table.




Exercise 24.2 413

a) Assembly of inkjet print cartridges includes an ultrasonic welding operation with
control parameters Force, Energy and Amplitude. The Y variables are Weld Depth
and Leak Rate. The noise factor Cavity is the tool cavity the plastic cartridge
bodies were molded in.

Open ultrasonic welding 2. Run the model script, using a Log transformation for
Leak Rate. Prune the model as needed, run again.

b) Go to the Prediction Profiler. The target for mean Depth is 0.20, with a tolerance
of £ 0.05. The lowest (best) possible value for mean Leak Rate is 0. We require
mean Leak Rate to be no larger than 0.10. Modify the desirability functions for
Depth and Leak Rate accordingly. Save the desirabilities (red triangle on
Prediction Profiler).

c¢) Use Maximize Desirability to find the optimal factor settings. Have we achieved
our objectives?

Exercise 24.2 (cont'd) 414

d) Save your script, close and save the data table.




Exercise 24.3 415

—

a) Open electron microscope. Run the Fit Model script, but this time go to the Model
Dialog. Include all 4 response variables, apply Log transformations to all of them,
then run the model again. In reality, you should remove all terms that have P >

0.15 for all responses. Consider that a homework assignment. For now, just let it
be.

b) Go to the Prediction Profiler. We want to minimize all 4 responses. Use the same
desirability functions for all 4 responses: High =2, Middle = 1, Low = 0. Save the
desirabilities (red triangle on Prediction Profiler).

¢) Run Maximize Desirability to find the optimal factor settings. Give the predicted
mean values for all responses. Have we achieved all of our objectives?

d) Save your script, close and save the data table.

Notes 416




25 Screening Experiments

417

Optimization

Screening

Smaller number of factors

Single and interactive effects

Quantitative factors have 3 levels

Identify the best factor levels

Larger number of factors

Single effects only

All factors have 2 levels (usually)

Identify the best factors

Notes

418

Screening experiments involve a relatively large number of factors, usually all at two
levels. The objective of a screening experiment is to identify a smaller set of influential
factors for further experimentation. We don’t need a screening experiment if we
already know what the key factors are from past experience or knowledge of the

process.

Screening experiments usually employ linear models with no interaction or quadratic
terms. This is done to allow relatively small sample sizes. We don’t expect such models
to give us good characterizations, but they are usually adequate for identifying the “big

hitters.”




Bold strategy 419

Use the entire feasible operating range in a first experiment

Linear approximation

Y
True response function
e «—— (X,Y) data points
[ I
Low o High
Quantitative X
Not bold enough 420

* Low and high levels of X are too close together

* We don’t get a true picture of the X-Y relationship

Quantitative X




Guidelines for screening experiments

421

Number of factors (including blocking factors)

<8 <11 <19 <23 <27
A, Y A,
Fractional Plackett- Plackett- Plackett- Plackett-
Factorial Burman Burman Burman Burman
with 16 runs with 12 runs with 20 runs with 24 runs with 28 runs
Notes 422

The general strategy for factor screening is to use the smallest design possible, subject
to the guidelines given above. To this end, we use main effects models, even though
there are significant interaction and quadratic effects in most processes. We use the
main effect estimates from a screening experiment to rank the factors in importance.
These estimates are biased, because interaction and quadratic terms are (deliberately)
left out of the model.

The designs recommended above work well in practice because the biases are
distributed evenly among the factors. This makes it relatively safe to rank the factors
by comparing the estimates. These remarkable designs were discovered by British
statisticians Plackett and Burman during World War I1.

The next four slides show how to create screening design matrices in JMP, using the
guidelines given above. The path is DOE — Screening Design.




Guidelines for screening (cont'd)

Up to 11 factors in 12 runs
EJEJ8| DOE- Screening Design

Up to 8 factors in 16 runs

DOE- Screening Design

Y|~ Secreening Design
* Responses

¥ * Screening Design
' Responses

4 Factors b Factors
Screening Design Screening Design
2 Factors 11 Factors
Choose a Design Choose a Design
Murmher Block Resolution Number Block Resolution
Of Runs Size  Design Type - what is estimahle —Wf Runs Size Design Type - what is estirable
12 Plackett-Eurran 3 - Main Effects Cnly 12 d 2 - Main Effects Only
16 Fr g - Same 2-factar interactions 16 Fractional Factorial 3- Main Effects Only
16 8 Fractional Factorial 4 - Sorne 2-factor interactions lg j EraCt!D”a: ’EaCtU”a: g ma‘” E;EEE 8”:V
16 4 Fractional Factorial 4 - Same 2-factor interactions o0 PlraCEU”aE actoria 3 B Ma‘” Eﬁects O”|V
32 Fractional Factorial 4 - Some 2-factor interactions 4 Plackeg—aurman Folded 4 B Sam Qefctst ”!tf N
32 16 Fractional Factorial 4 - Some 2-factor interactions 32 F act_e 3 ”u:rmfn ‘U © J B Sume Q—factur !nteractms
32 g Fractional Factarial 4 - Some 2-factor interactions ractiona’ Tactra - Jome Tactorinieractions
R 32 16 Fractional Factorial 4 - Some 2-factor interactions
a2 4 Fractional Factorial 4 - Some 2-factor interactions N .
32 g Fractional Factorial 4 - Some 2-factor interactions
64 Fractional Factarial 5 - All 2-factar interactions N .
" 32 4 Fractional Factorial 4 - Some 2-factor interactions
i) a2 Fractional Factorial 5 - Al 2-factor interactions X .
G4 Fractional Factorial 4 - Some 2-factor interactions
B4 18 Fractional Factorial 5 - All 2-factor interactions N .
- . Fractional Factorial 4.5 2factor int " G4 32 Fractional Factorial 4 - Some 2-factor interactions
- 4 Frac \Dnal Fac Dr!al 4 ) SDme z—fac orinteractons 84 16  Fractional Factorial 4 - Some 2-factor interactions
ractional Factorial - Some 2-factor imeractions 64 g Fractional Factorial 4 - Some 2-factor interactions
120 Fractional Factorial 5+ - All Zfactor interactions G4 4 Fractional Factorial 4 - Some 2-factor interactions
128 64 Fractional Factur!al 5+ - All 2-factar interactions 128 Fractional Factorial 5 All Zfactor interactions
128 a2 Fractional Factorial &+ - All 2-factor interactions 128 B4 Fractional Factorial 5 - All 2-factor interactions
128 18 Fractional Factur!al 5+ - All Zfactor interactions 128 32 Fractional Factorial 5 - All 2-factor interactions
128 g8 Fractional Factur!al 4- Some 2factor interactions 128 16 Fractional Factorial 5- Al 2-factor interactions
128 4 Fractional Factorial 4 - Some 2factor interactions 128 g Fractional Factorial 4 Some 2-factor interactions
128 2 Fractional Factorial 4 - Some Hfactor interactions 128 4 Fractional Factorial 4 - Some 2-factar interactions
optional iferm ogtional ifern
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Guidelines for screening (cont'd)

Up to 23 factors in 24 runs
[ﬁﬁ DOE- Screening Design

Up to 19 factors in 20 runs

- Screening Design

¥ “Screening Design

* Responses

¥ Factors

Screening Design

19 Factors

Choase a Design

humber Block

Resolution
- what is estimable

¥ ~ Screening Design

Of Runs Size  Design Type
B SR ian Srect Only

* Factors

23 Factars

' Responses

Screening Design

Choose a Design

Mumber Block
Of Runs Size  Design Type

Resalution
- what is estimatle

2 Plackett-Burman 3 - Main Effects Only ég Plackett-Burman 3 m::? Egigz 825

3z Fractional Factarial 3 - Main Effects Only .

3z 18 Fractional Factarial 3 - Main Effects Only 3 Fractional Factorial 3 Ma!n Eifects Only

32 g Fractional Factorial 3 - Main Effects Only 32 16 Fractional Factorial 3- Ma!n Effects Only

3z 4 Fractional Factarial 3 - Main Effects Only 32 8 Fractional Factorial 3 - Main Effects Only

B4 Fractional Factarial 4 - Some 2-factor interactions a2 4 Fractional Factorial 3- Main Effects Only

B4 32 Fractional Factorial 4 - Some 2-factor interactions 64 Fractional Factarial 4- Some 2-factor interactions
G4 18 Fractional Factarial 4 - Some 2-factor interactions 64 32 Fractional Factarial 4 - Some 2-factor interactions
Gd 8 Fractional Factorial 4 - Spme 2-factor interactions B4 18 Fractional Factorial 4 - Some 2-factor interactions
B4 4 Fractional Factorial 4 - Some 2-factor interactions 64 8 Fractional Factarial 4 - Some 2-factor interactions
128 Fractional Factorial 4 - Some 2-factor interactions 64 4 Fractional Factorial 4 - Some 2-factor interactions
128 64  Fractional Factorial 4 - Some 2-factor interactions 128 Fractional Factorial 4 - Some 2-factor interactions
128 32 Fractional Factorial 4 - Some 2-factor interactions 128 B4 Fractional Factorial 4 - Some 2factor interactions
128 16 Fractional Factorial 4 - Some Z-factor interactions 128 32 Fractional Factarial 4 - Some 2-factor interactions
128 & Fractional Factorial 4 - Some 2-factor interactions 128 16 Fractional Factarial 4- Some 2-factor interactions
128 .4 Fractional Factarial 4 - Some 2-factar interactions 128 ] Fractional Factorial 4 - Some 2-factor interactions
optional item 128 4 Fractional Factarial 4 - Same 2-factor interactions

optional term

Continue
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Up to 27 factors in 28 runs
0OE- Screening Design
¥~ Screening Design

* Responses

¥ Factors

Screening Design

27 Factars
Choose a Design
MNumber Block Resolution
Of Funs Size Design Type - what 15 estimahle
28 I 3 - Main Effects Qnly
36 Plackett-Burman 3 - Main Effects Cnly
a2 Fractional Factarial 3 - Main Effects Only
a2 16 Fractional Factorial 3 - Main Effects Only
32 B Fractional Factaorial 3 - Main Effects Only
64 Fractional Factarial 4 - Some 2-factor interactions
64 32 Fractional Factorial 4 - Some 2-factor interactions
64 16 Fractional Factorial 4 - Some 2factor interactions
64 B Fractional Factarial 4 - 3ome 2-factor interactions
B4 4 Fractional Factorial 4 - Some 2factor interactions
128 Fractional Factarial 4 - Some 2-factor interactions
128 B4 Fractional Factorial 4 - Some 2factor interactions
128 32 Fractional Factorial 4 - Some 2-factor interactions
128 16 Fractional Factorial 4 - Some 2-factor interactions
128 8 Fractional Factarial 4 - Some factor interactions
oational ifern
Back

Guidelines for screening (cont'd) 426

Up to 35 factors in 36 runs Up to 39 factors in 40 runs
DOE - Screening Design - JMP 8| ook - screening Design - P
Flle Edit Tables Rows Cols DOE Analyze Graph Took  Wiew  Window Fle Edit Tables Rows Cols DOE  Analyze Graph Tools  Wiew  Window
Help Help
|41 | =| Screening Design A || Screening Design
[* Responses |* Responses
[ Factors [ Factors
4 Design List 2 Design List
Choose a design by clicking on its row in the list Choose a design by clicking an its row in the list.
Numhber Block Resolution Nurmber Block Resalution
Of Runs Size  Design Type - what is estimable Of Runs Size  Design Type - what is estimable
B4 Fractional Factorial 3 - Main Effects Only 64 _Fractional Factorial 3 - Main Effects Only
6 Flackett-Burman 3 - Wain Effects Only a0 stt-Burman 3 ManEffect=Only
128 Fractional Factarial 4 - Some 2-factor interactions 128 Fractional Factarial 4 - Some 2-factar interactions
72 Plackett-Burman Folded 4 - Some 2-factor interactions a0 Plackett-Burman Folded 4 - Sore 2-factor interactions




427

* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

Example (cont'd) 428
Black Belt
- “We should brainstorm factors
: for a DOE."
—®

Plant manager
"We can't experiment with such
an expensive part!”

] Ti metallurgist
. 1 "The problem doesn't replicate
: on smaller parts.”

Part engineer
"What have got to lose? It's
been weeks since we shipped
any of thesel!”

—¥




Factors and levels 429
Factors Levels
Shell makeup
Slurry 1 2
Dips 18 14
Shell bake
Time 48 6
Temp 2050 1950
Alloy
Quiality Low $ High $
Status New Revert_
Coaling
Shield SS Mild
Fan speed 2400 3200
430

Notes

Here is the list that emerges from the brainstorming session. The first factor Slurry is
really a noise variable. One batch of shell material is made up each week, and there
isn’t be enough material from a single batch for the whole experiment.

The other factors are a combination of X variables in the current process and

improvement ideas for the future process.




Design matrix 431

K 8 factors \

* Plant manager agreed to 16 castings

¥~ Screening Design
¥ Responses

- For screening experiments, it doesn't [rdd Response_v ] [Remove] [ Responss... |
matter whether factors are entered Response Name Goal Lower Limit_ Ugper Limit g
as quantitative or categorical vl nimize | ! |
¥ Factors

+ Calling them all categorical allows _
Kem"”y of text for the levels. J Continuous
\ / 2-Level Categorical

3-Level Categorical

— DOE — Screening Design —
Responses — Response Name — O2 Narme Rule Valies
— Goal = Minimize hSLURRY Categarical 1 2
hoiPS Categarical 18 14
. ik TIME Categarical 48 i
— Factors — 2-Level Categorical — 8 thTEWP Categorical 2050 150
th QUALITY Categorical Low § High $
— Add — enter factor names and 1L STATUS Categorical New Revert
: th SHELD Categorical S5 il
values — Continue thFAN SPEED Categorical 2400 3200

— Design List — Number of Runs — 16 Sreenin Besian
pecify Factors

e d DCSigl’l Type —> Fractional Add a Continuous or Categarical factor by clicking its

button. Double click on a factor name or level to edit it

Factorial - Continue — Make Table [contrue)

Design matrix 432
Fractional Factorial
> Fractional Factarial 1 -
Desion Fractional Factarial < Pattern |SLURRY| DIPS | TIME | TEMP | QUALITY | STATUS | SHIELD | FAN SPEED
= Madel [l E— 14 48 2050 |High$ |Mew  |Mild  |3200
Aer—to—|3 14 8 2050 |High$ |Revert |55 2400
] r— 14 B 1950 |High$ |New |55 2400
] [Ee—— 18 B 2050 |High$ |Revert |35 3200
] [ e—— 14 43 1950 |Low$  |New  |Mid | 2400
- Colurmns (10/0) o] e —— 18 B 2050 |High$ |New  |Mid  |2400
I Pattern & Tttt |1 18 G 1980 [Low$ Mewy Mild 3200
b SLURRY % B|—++——t+- |1 14 6 2050 |[Low$  |Revert |Mild 2400
Il DIPS * o] [P — 14 B 2050 |Low$ [New S5 3200
:' %"pr** 10[+—++—+—— |2 12 s 1850 |Low$  |Revert |SS | 2400
T el [E) E— 18 48 1950 |High$ |Revert |Mid  |2400
S [ —— 14 48 1950 [Low$ |Revent |55 3200
T ELTEL [ E— 18 43 1950 |High$ |New |55 3200
I FAN SPEED 14| —————- 1 18 48 20580 Low $ Mews 55 2400
4 07 % (] E——— [ 18 43 2050 |Low$ |Revert |Mild  |3200
16| ++++++++ |2 14 3 1950 |High $ Revert  |Mild 3200
A
* Factor combinations in coded form (FYT only)
* Perfect balance: every factor is (+) 8 times and (—) 8 times
* For every pair of factors, each +/— combination appears 4 times




Two months (and many sleepless nights) later... 433

LSSV2 data sets \ Ti casting alpha case

File Edit Tables Rows Cols DOE  Analyze Graph Tools  Wiew  Window  Help

= Ti casting alph... [ < - PN
Design Custom Desic| = SLURRY | DIPS | TIME | TEMP = QUALITY | STATUS  SHIELD | FAN [ o2
- IMadel 11 14 |48 [2080 Low$ New 55 2400 g1
2[1 14 |48 |2080 High$ Revert  ild 3200 191
21 14 |8 1950 Low$ Revert  Mild 2400 g0
41 14 |8 1950 High$ New 55 3200 76
501 18 |28 [1850 Low$ New Mild 3200 132
61 18 |48 [1950 High$ Revert 55 2400 184
71 18 |8 2050 High$ hew Wil 2400 144
g1 18 |8 2050 Low$ Revert 55 2200 197
g2 14 |28 [1850 Low$ Revet 55 3200 128
< Columns (970) 102 14 |28 [1950 High$ New Mild 2400 174
& SLURRY 3% 112 14 |8 2050 High$ Revet 55 2400 166
ik DIPS s 12]2 14 |8 2050 Low$ hew Mild 3200 255
ik TIME 3k 132 18 |28 [2080 Low$ Revert  Mild 2400 186
i TEMP 3k 142 18 |48 |2080 High$ New 55 3200 318
th QUALITY 3 153 12 |8 1950 High$ Revert  Mild 3200 11
th STATUS ¥ 162 1B |8 1950 Low$ New 55 2400 213
i SHIELD 3k \ )
i FANSK
Aok
The model dialog 434
& |~|Model Specification
Select Columns Pick Rale Variables Personality: |Standard Least Squares v |
hSLURRY 4oz Emphasis: |Minima| Report V|
koIPs optional
. TIvME
:gﬂ:ﬁw opfional nurmeric [ Help ] [ Run
:STATUS optional nurmeric [keep dialog open
SHIELD
haran optional
Aoz

Construct Model Effects

SLURRY - Can' aalyze
interactive or
TIME quqdrqfic
TEMP .
effectsina
GUALITY screening
periment
SHIELD
Dgz FAN

- Just click on

Attributes =
Run




Analysis 435

Red triangle Response 02

Effect Screening

The parameter estimates have equal variances.

The parameter estimates are not correlated.
Lenth PSE

t-Test Scale 0.9741692

Coded Scale 14.625

Pareto Plot of Estimates

g Term Estimate
Effect Screening SLURRY[1] -27.87500
d TEMP[1950] -27.50000 ™
DIPS[14] -19.62500
Pareto Plot FAN[2400] -10.00000
TIME[48] 9.50000
STATUS[New] 9.37500
SHIELD[Mild] -5.62500
o QUALITY[High$]  4.50000
“Big hitters”
SLURRY
TEMP
DIPS Oops...SLURRY is a noise factor!
Notes £ 36

To interpret screening experiments, we use the Effects Screening analysis element as
shown above. It gives a Pareto chart showing the relative magnitude of the factor
effects. The idea is to use the factors with the largest effects in a subsequent
optimization experiment.

The P-values from a screening experiment are not to be trusted. The interactive and
quadratic effects left out of the model artificially increase the noise in the analysis.
This biases the signal-to-noise ratios downward, so factors appear less significant than
they really are.

The three largest effects in the example are SLURRY, TEMP and DIPS. The result for
SLURRY was perplexing. There was no doubt that the castings made from shells made
from Slurry 1 looked a lot better than those from Slurry 2, but the shell making
operators said there were no differences in how the slurries were made up.




|deal follow-up plan 437

* Do a screening experiment in the shell-making area

* Include TEMP, DIPS and the important shell-making

variables in an optimization experiment

What actually happened 438

* They changed TEMP to 1950 and DIPS to 14 (easy)

* The problem immediately went away

* 13 of the 16 DOE castings were good to ship as is

* Only 1 eventually scrapped

» Worst-case annual cost avoidance: $20.8M

* No immediate follow-up




Root causes

439

* Investigation of the slurry effect eventually lead to the root
cause of the problem

— The density of the ceramic powder used to make the
shell had increased over time, resulting in heavier shells

— The increase had been noted, but no action was taken
because the densities were still within spec limits

— At the time, shell weights were not monitored

* Why no significant correlations in the “file cabinet” data?

— The O, data in the engineering database was final rather
than first pass

Control limits vs. spec limits

440

USL

>
‘0
[
()
Q UCL
7777777777777777777777777777777777777777777777777777777777777 LCL
LSL

* The data was trying to tell us something

* Disaster could have been averted




Exercise 25.1

441

proceed.

(b) Open extrusion 0.jmp. Did these experimenters follow the guidelines?

(c) Based on the results for STRENGTH and DUCTILITY, find the best set of 4
factors for a subsequent optimization experiment.

(a) Apply the screening experiment guidelines to create a screening design matrix for
the example shown on the slide below. Ask the instructor to review it before you

Exercise 25.1 (cont'd) 442
Factors Feasible ranges
Polymer
Smoother 0.0 to 05
Filler 2.0 to 4.0
Viscosity 60 to 80
Moisture 0.1 to 0.25
Process
Zone 1 temp 260 to 320
Zone 2 temp 260 to 320
Zone 3 temp 260 to 320
Zone 4 temp 260 to 320
Rate 100 to 200
RPM 150 to 300

Responses are strength and ductility of the extrudate




26 Simple Regression with Pass/fail Y 443
a) Raw data — each row represents one
part or transaction
b) Tabulated data — each row represents
multiple parts or transactions

Raw data 444
v-\_g_.l..ﬂ Calg =
e | Target speed Resut Open LSSV2 data sets \ target practice (in JMP)

1 200 |Hit

2 205 | Hit )

3 210 | Hit Fit Model

4 215 |Hit ‘L

& 220 |Hit

6 225 Miss Set up as shown

; 332 E:I [ Report Fit Model - JMP ‘ [E=EEE =)

cl 240 M.iSS 4 ~IModel Specification

10 245 | Hit Select Columns Pick Role Variables Personality: M‘

11 250 | Hit =12 Columns _

12 255 | Hit Srargetpeea - | |

13 260 | Hit [pee ][R |

14 265 | Miss (Cight ] oo onat romeric Recall | [7] Keep dialog open

15 270 | Miss [ Fea | Remove |

16 275 Hit (i [ootions

17 280 Miss Construct Model Effe

18 285 Miss :@

18 290 Miss i

20 295 | Miss El

21 300 |Hit

22 305 | Miss @l

23 310 | Miss e

24 315 Miss e

25 320 | Miss I [7] Mo Intercept

AR O




Analysis output 445

Nominal Logistic Fit for Result

Logistic Plot
1.00
Probability
0.75 of a miss Miss
3 050
(=4
Probability )
0.25 of a hit il
0.00 * Model parameters
Target speed * P value for correlation (ignore the

one labeled Target speed — it is
not as accurate)

Converged in Gradient, 5 iterations
Parameter Estimates

Term Estima ror ChiSquare Prob>ChiSq
Intercept 125297022 |1 4.7931154 6.83 . : 1
el | 0047683 | 0018103 o Very strpng evidence of a negative
For log odds of Hi/Miss correlation between the speed of a
Effect Likelihood Ratio Tests target and the probability of hitting
LR it (big surprise)

Source Nparm DF ChiSquare Prob>ChiSq
Target spee 1 1 11.1939322

Model equation 446

e The Y variable here is “Hit” or “Miss”

* The plotted curve gives the probability of hitting a target as a function of
its speed

1

Prob(Hit) =
rob(Hit) 1+ exp(—12.53 +0.048(Target speed )

* One minus the curve gives the probability of missing the target as a
function of its speed

* These model equations are nonlinear, and bounded between 0 and 1

* If a straight line model were used, it would produce ridiculous
extrapolations (probabilities larger than 1 or less than 0)




The prediction profiler 447
Prediction Profiler
Calculates the hit/miss
Miss 10.467 probabilities for any
o given speed
&
Hit 10.533
Tahr;et
speed
Exercise 26.1 448

Open LSSV2 data sets \ quotation process.jmp.

a) Go to Column Properties for PO, select Value Ordering — Reverse — OK.

b) Fit PO by TAT. Give and interpret the P value for TAT.

c¢) Use the profiler to find the PO hit rates for 3 day turnarounds and 15 day
turnarounds.

d) Save your script, close and save the data table.




Tabulated data

Open LSSV2 data sets \ cracking vs dwell time (in JMP)

E;l «cracking vs dwell time - JM!

1. Make a plot of % Cracked by

Eile Edit Tables PRows Cols DOE Analyze Graph Tools View Window Help

= I

MInS (= cracking vs ... JE =
|=ISource = Mins = Total # Cracked | % Cracked
ked 1 2 100 0 0
2. Rename # Cracked as Yes a1 0 0
3 6 100 1 1
3. Create a new column called NO iZGome: o0 : lg 123 ; ;
defined as Total — Yes (Column ::":5‘ 6 12 10 3 3
PI’ I | F rm I Al 2 Cracked = v 14 100 hd 4 -
Oope ties — Formu a) A % Cracked 52 cracking vs dwell time - Overlay Plot of % Cracke... |Ssh e |
4. Tables — Stack 4~ 0verlay Plot |
3. Use Yes and No as the Stack = | s .
Rows /
Columns All rows 9 4 —
Selected 0 = / |
Excluded 0 < 3 —
4. Change Label to Cracked, Hidden 0 J [
Data to Freq Labelled 0 2 yd
1 ,)/ L]
5. Save as cracking vs dwell time o B
stacked 0 5 Mm 15 20
2B Or
Stacked format 450

,

Eile Edit Tables Rows Cols DOE Analyze Graph Tools View Window
[=Icracking ... 4 )
= Eontes = Mins % Crack Cracked | Freq
1 2 0 Yes Q
2 2 0 Mo 100
3 4 0 Yes Q
4 4 0 Mo 100
&t r= i 5 6 1 Ves 1
:_f":‘l 6 6 1 No 99
ota
4l % Cracked ! 8 2| Yes 2
th Cracked 8 8 2 Neo 98
A Freq g 10 3 Yes 3
10 10 3 Ne a7
11 12 3 Yes 3
12 12 3 Ne a7
13 14 4 Yes 4
14 14 4 No 96
(=/Rows 15 16 4 Ves 4
All rows 18 16 16 4 Mo 9
;'T?dd g 17 18 5 Ves 5
Do 0 18 18 5 No 95
‘ Labelled 0

The Total and % Cracked columns are no longer relevant —
you may delete them if you wish

Go to Column Properties
for Cracked

\
Value Ordering

0

Reverse

\
OK

\2
Analyze

J
Fit Model

\J

See next slide

\

Set as shown




Fit Model 451

=4 Fit Model - IMP
(-

4~ Model Specification
Select Columns Pick Role Variables

=) 5 Columns E v S ’ tha Cracked )

optional

Personality: [ MNeminal Logistic

[ Help ] [ Run L]
;}Weight |99bi;"'"”sr;: [W] [C] Keep dialog\ppen

Freq | Freq

Construct Model Effects

Add @

Cross

N

Macros *

Attributes (=
Transform (=)
[C] Mo Intercept

Analysis output (edited)

Nominal Logistic Fit for Cracked

Logistic Plot
10%

No----"

4%
3% \ 1
Prob(Yes) =

1+exp[5.49 —0.152(Mins )]

Cracked
2

=
~

Converged in Gradient, 7 iterations
Freq: Freq
Parameter Estimates
Term Estimate d Erre
Intercept| -5.4880044 | 0.7001671 6144
Mins 0.15230995 ) 0.0494273 9.50

For log odds of Yes/No * Very strong evidence of a positive
Effect Likelihood Ratio Tests

correlation between dwell time and
L-R

Source Nparm  DF ChiSquare [Prob>Chiq the probability of cracking
Mins 1 1 11.2187549 0

* Model parameters

P value for correlation




Prediction profiler 453

Prediction Profiler

Dwell time | Probability
(mins) of cracking
2 0 0.4%
o 10 1.9%
15 3.9%
Yes 20 8.0%
= o =2 3 =
Mins

Notes 454




27 Multiple Regression with Pass/fail Y 455
vxg_{_ﬂ Cols =
. 3210 ‘“‘“ Lot | Adhesive | Printhead |Result | Freg
* Project to reduce clogged nozzles 1 Tlaa 02 = 5
in print heads 2 1 (44 D2 Pass 58
E 2[8d D1 Fail 1
4 2[8d D1 Pass 54
. 5 3|4z D2 Fail 13
» Comparison of four types of e 3 A2 02 Fass a7
adhesive and two print head 7 4|1 D2 Fail 11
designs F 4|a1 D2 Pass 48
F 5|A3 D2 Fail 4
10 5|A7 D2 Pass 56
. ) 11 B |ad D1 Fail 5
* Each lot = 60 print cartridges 1 A lad Y Pacs 55
13 7[a1 D2 Fail F
14 7[a1 D2 Pass 52
* “Pass” = no customer detectable 18 B|A2 D1 Fail g
. 18 gz D1 Pass 57
print defects 17 g /ag D2 Fail 1
18 g /ag D2 Pass 54
] 18 10]a2 D2 Fail 13
» Open LSSV2 data sets \ clogging 20 10]A2 D2 Pass 47
pass fail 21 11 |A2 D1 Fail 1
22 11]a2 D1 Pass 54
23 12]a1 D1 Fail 1
24 12]a1 D1 Pass 54
25 13]a3 D1 Fail 7
456

Example (cont'd)

=W Fit Model

Analyze — Fit Mode

¥ * Model Specification

Select Columns

A ot

ik 2dhesive
1k Print head
hResult
AFreq

Personality: Maominal Logistic

[ RLin Madel

Pick Role VYariables
QLTI
’ Help ]
optional numeric
@)
aptional
Construct Model Effec

Print head

Adhesive*Frint head

Degree

Aftributes =
Transform =

] mo Intercept




Example (cont'd) 457
Nominal Logistic Fit for Result
Freq: Freq
Effect Likelihood Ratio Tests
L-R
Source Nparm DF ChiSquare Prob>ChiSq
Adhesive 3 3 3.01536018
Print head 1 1 7.68556625 0.0056*
Adhesive*Print head 3 3 19.7623238 0.0002*
Prediction Profiler
 Reverse Value
= Ordering property for
@ Pass|0.975 Result so that “Pass”
o probability is plotted
; T T T T T
2223 a a * Remove insignificant
Al D1 Adhesive term
Adhesive Print head
* Run model again
Example (cont'd) 458
Nominal Logistic Fit for Result
Freq: Freq
Effect Likelihood Ratio Tests
L-R
Source Nparm DF ChiSquare Prob>ChiSq
Print head 1 1 16.2058108 <.0001*
Adhesive*Print head 3 3 29.2140908 <.0001*
Prediction Profiler
_ * Best combination
= . .
2 Pass.984 1s D1 with A2
(4
* Baseline failure
4 & O N oM rate was > 20%
@) o < < < <
D1 A2 . .
Print head Adhesive * Predicted failure
rate is < 2%




Exercise 27.1 459

A Black Belt wants to minimize the occurrence of bubbles and ripples in the urethane
coating on truck nameplates. The X variables and ranges are:

> Badge temp: 20 to 40
> Mixing ratio:  92.6 to 94.6
> Curing temp: 30 to 55

* Open LSSV2 data sets \ urethane coating pass-fail

* Reverse the Value Ordering properties for Result so that the “Pass” probability will
be plotted on the Prediction Profiler.

* Run the Model script provided in the left panel, run the model.
* Remove insignificant terms from the model (P > 0.15), then re-run the model.

* Use the Prediction Profiler to find a factor combination that maximizes the yield.

Exercise 27.1 (cont'd) 460

* The baseline yield was about 95%. What is the predicted yield for the improved
process?




28 Sample Size for DOE with Pass/fail Y 461

Current state fraction defective : ¢, .., (() <Ot < 1)

F uture state Ob.] eCtiVe : ¢future (0 < ¢future < ¢current )

. . +
Mldp oint : (I)mid — ¢current 2 (I)future

Batch size defining the experiment unit: n,

RMSE .| Pnia (1= Ouio)

DTD: (I)current - (I)future

8

Required AVP : 1
RMSE

DTD jz

Notes 462

The Greek letter ¢ (phi) is used here for the population fraction defective, not to be
confused with the fraction defective in a particular sample.

When a pass-fail variable is numerically coded as 0 and 1, it has a standard deviation
that depends on ¢. This means we need to do a little work on the side to get a correct
input value for RMSE. The required calculation for RMSE is shown above. Once
RMSE is determined, the rest of the sample size calculation is done the same way as
for quantitative Y.

The assumption here is that the experiment unit consists of a batch of n,, items to be
processed and tested. All items in a given batch should experience the same factor
levels, and move through the process at the same time. The design team must select the
batch size n,. If n, = 1, then the sample size N obtained from JMP is the total number
of items tested for the experiment. If n, > 2, then N is the number of rows in the design
matrix, but the total number of items tested for the experiment is N x n,,.




Example 463

Current state fraction defective:  0.054
Future state objective:  0.01

Midpoint:  0.032

Batch size defining the experiment unit: 20

0.032(0.968)
20

RMSE: =0.039355

DTD: 0.054-0.01=0.044

AVP: l(
8

0.044

2
| 20.156248
0.039355)

Notes 464

In the example shown above, the project goal is to reduce the current 5.4% failure rate
to 1%. The parts in question were routinely processed in batches of 20, so 20 was a
good choice for n,,.

The top slide on the next page shows the Custom Design “mock up” for the same
factors as in the previous example, and the AVPs computed for sample sizes 51 and 52.
The AVP is greater than our calculated AVP (0.156248) for N = 51 and less than that
for N =52, so we will go with N =52. The design matrix will have 52 rows, the total
number of parts produced and tested will be 52 x 20 = 1040.

The sample size requirements for pass-fail Y are much greater than for continuous Y.
This is an unpleasant statistical fact of life. People usually experience “sticker shock”
the first few times they do sample size calculations for pass-fail Y. The only solution is
to develop quantitative measurements for the quantities of interest.




Example (cont'd) 465

~ Gustom Design
b Responses

" Factors
Add Factor « || R Add M Fact: 1
— Design Diagnostics
MName Role Changes Values . )
Ay Continuous  Easy -1 1 | Optimal Design
jXZ Continuous  Easy |- 1 D Efficiency 49.76708
p] Continuous  Easy |1 1 .

V4 Categorical Easy  |L1 L2 G Efficiency 80.04761
* Define Factor Constraints A Efficiency 38.24845
" Model /—>[ Average Variance of Prediction  0.156398

IMain Effects ] [Interactions V] [ RSM H Cross ”Powers V] [Remye’\?m ] DESign Creation Time (seconds) 0.216667

MName Estimability

Intercept MNecessary -~

1 MNecessary

X2 Design Diagnostics

iﬁ | Optimal Design

HITH D Efficiency 50.08028

o foeeear . G Efficiency 81.49717
" Design Generation A Efficiency 38.4207

] Group runs inta random blocks offsize 2 [ Average Variance of Prediction 0.153914

Design Creation Time (seconds) 0.2

Number of Runs:

O Minirmurm 14

) Default 18
() User Specified 16
Exercise 28.1 466

We are planning an experiment to optimize an ultrasonic welding process with 3
quantitative factors and a 4-level categorical factor. In addition to weld depth, a second
response variable of interest is whether or not the welded part passes a leak test. We
want to do a sample size calculation based on the following information:

» About 9% of welded assemblies in current production fail the leak test.

* Our goal is to reduce this to 3% leaking.

* The parts in question are routinely processed in totes of 20.
Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (pass-fail
Y). Enter the information given above to get the required AVP. Use this to determine

the required sample size. Find the total number of parts that need to be welded and
tested for this experiment.




29 Reformatting Data for Pareto Analysis 467
» Data on defect types or failure reasons often is available
only in tabulated form
* Each row may represent a production lot, work order, time
period, machine work center, part number, . . . , or some
combination thereof
» Common problem with tabulated data: wrong format for
Pareto analysis
Big example: molding process - Pareto 468

[Each row = Date, Machine, P/N, ... ? ]

[Total parts run = Good + Bad ]

)

)

A B o] D E F G H I J
Primary Regrind  Parts Total

1 Date  Machi PN Primary material lot# Concentrate Concenlot# type palletized defective
2 | 03-Apr-06 9 LSGV0101 CHEIL VE-1877S DrkGry 121642 |NA NA 25 120 7
3 | 03-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 300 17]
4 | 03-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA NA 8 372 19
5 | 04-Apr-06 2 LSGV0093 CHEIL VE-1877S DrkGry 121642  NA MNA 25 288 =
6 | 04-Apr-06 9 LSGV0101  CHEIL VE-1877S DrkGry 121642  NA NA 25 600 7
7 | 04-Apr-06 11 LSGY0251 CHEIL VE-1877S Bk 101200 NA NA NA 690 33
8 | 04-Apr-06 13 LSGY0307 CHEIL HF1690H LtGry 133232 NA NA NA 160 =
9 | 04-Apr-06 15 LSGV0098  CHEIL HF1690H DrikGry 122930  NA NA 8 624 of
10 | 05-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642  NA MNA 25 120 19
11 | 05-Apr-06 11 LSGY0251 CHEIL VE-1877S Bk 101200 NA MNA NA 650 ra|
12 | 05-Apr-06 13 LSGY0252 CHEIL VE-1877S Bk 101200 NA MNA NA 300 1
13 | 05-Apr-06 13 LSGY0307 CHEIL VE-1877S LIGry 133232 NA NA NA 160

14 | 05-Apr-06 14 LSGY0308 CHEIL HF 1690H LtGry 133232 NA MNA NA 240 2!
15 | 05-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA NA 8 336 17
16 | 06-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642  NA NA 25 780

17 | 06-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 600 7
18 | 06-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 101200 NA NA NA 500 4
19 | 06-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122930 NA NA 8 108 34
20 | 06-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930  NA NA 8 276 9!
21 | 07-Apr-06 2 LSGV0102  CHEIL VE-18775 DrkGry 121642 NA NA 25 300

22 | 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642  NA MNA 25 1020

23 | 07-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 360

24 | 07-Apr-06 13 LSGY0252 CHEIL VE-1877S Bk 387487 NA NA NA 200 1
25  07-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 387487 NA NA NA 700 7
26 07-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122930  NA NA 8 72

27 07-Apr-06 14 LSGV0131 CHEIL HF1690H DrkGry 122930  NA NA 8 120 17
28 | 07-Apr-06 15 LSGV0099  CHEIL HF1690H DrkGry 122930  NA A 8 180




Big example (cont'd) 469
{ Total defective x Cost per pc. ]

K L M N o] P Q R Ay u v W x Y Z Ab

Cost per Total |Start- Weld Flow Short Burn Gas Color/ Broken

1 pc. cost up Sink Flash line mark shot Warp marks Silver marks carbon Oil part Scratches Bubbles)
2| $289 s$2025 3 0 0 0 0 0 0 0 4 0 0 0 ] 0 i
3 $5.08 $£8643 4 i} 0 0 0 4 0 0 0 0 0 0 i} 0 9
4 snio si9976f 0 o o o o0 6 0 0 12 0 0 0 0 0 9
5| s$269 s1612/ 6§ ©0 o0 ©0 0 0 0 ©0 0 0 0 0 0 0 q
6 $289 $5.79 0 1} 1} 0 0 0 0 1] 2z 0 0 0 1} 0 0]
7| s508 sie277] © 4 o0 0 0 2 0 0 0 0 0 0 0 2 g
8| $355 s$844 8 0 0 0 0 O 0 ©0 0 0 0 0 0 0 i
9 $11.10 3000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10| $413 se200/ 6 6 0 0 0 3 0 0 0 0 0 0 0 0 9
11| s$s0s sw067] 0 17 0 0 0 3 0 0 0 0 0 0 0 0 1
12 $4 96 $89.28 & i} 0 0 0 0 0 0 0 0 1] 0 (1]} 1 9
1: §§ ;3 $2§E 22 Counts for each type of defect 3
15 $£11.10 318866 U ) T 1) 1) T 1) T 5 U %) U ) 0 0
16| $413 soool 0o o0 o0 ©0o ©0 0 O 0 0 0 0 0 0 0 9
17| ss08 s355¢] o 2 o o 0 4 0 0 0 0 0 0 0 { q
18 $496 324304 3 15 0 0 0 0 0 0 0 0 0 0 0 4 27
19| $1033 35107, 8 o0 o o0 0 14 0 0 12 0 0 0 0 0 9
20 $14198134762| 5% 30 o0 o0 0 0 ©0 0 9 0 0 0 0 0 q
21 $413 $0.00 1} i} 0 1] 0 0 0 0 0 0 0 0 0 0 0
22 $413 s$2067 5 ©0 ©0 0 0 0 ©0 0 0 0 0 0 0 0 i
23 $508 $3050 4 ©0o 0 0O O ©0 ©0 0 0 0 0 0 0 0 2
24 $4.96 $£79.36 0 14 i} 0 0 0 0 0 0 0 0 0 i} 1 1
25 $496 $3472/ 0 ©o 0 o0 o0 0 ©0 0 0 0 0 0 0 0 7
26 $1033 $000f] 0 ©0 ©0 0 ©0 0 ©0 0 0 0 0 0 0 0 q
27 $15.15 325756 8 1} 0 0 1} 0 0 0 1 0 (1] 8 i} 0 0
28 $1419 %000l 0 ©o 0 0 0 0 0 0 0 0 0 0 0 0 i
Notes 470

One of the things we would want from a data set like this is a Pareto breakdown of
defect types by frequency of occurrence. For this, we need to calculate the total
number of defective parts for each defect type. With the format shown above, we
cannot do this by means of a pivot table. As an alternative, we could calculate the
totals for the columns representing the defect types. However, compared to a pivot
table, this method is extremely tedious for doing anything else, such as comparing
Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this is a Pareto breakdown of defect
types by total cost. It is not impossible to do this with the format shown above, but,
once again, it would be extremely tedious compared to a pivot table.




Small example 471
Open molding process - small (in JMP)
v&ﬂ Cols ~

-mp@s& Total defective | Cost per pc. | Total cost | Start-up  Short shot | Silver | Bubbles

1 7 3 21 3 0 4 0

2 17 5 85 4 4 0 9

3 18 1 198 0 6 12 0

.. T v-,,{{ECoIS'

This is what we have o lcostiie] base | Eem ITanene

1 3 Start-up 3 3

2 3|Short shot 0 0

3 3 | Silver 4 12

4 3 |Bubbles 0 0

o 5 5 Start-up 4 20

This is what we need — z = i > =

7 5 | Silver 0 0

8 5 Bubbles 9 45

9 11 |Start-up 0 0

10 11 |Short shot B 66

1 11| Silver 12 132

— How do we get there? 12 11 |Bubbles 0 0
Stacking a data table 472

Tables — Stack — Select the defect columns as the Stack Columns

i_a Stack values from several columns into several rows in one
column,

Select Columns Action
ATotal defective Start-up
4 Cost per pc Short shot
Total cost [remove ] siter
AStart-up Bubbles
AShort shot wtional [ Recal |
ASiver
ABubbles Output table name: | J /[ Hep |

[[] Multiple series stack New Column Names
Stack By Row Stacked Data Column| Data
(] Eliminate missing rows Source Label Column| Label
[ Drop non-stacked columns Copy formula

Suppress formula evaluation

[] Keep dialog open




Editing the columns 473
[0 Cols=
120 . |Total defective | Cost per pc. | Total cost| Label | Data
1 7 3 21 Start-up 3 )
2 7 3 21|Short shot 0 Total defective and Total cost are
3 7 3 21| Silver 4 o
7 7 3 e oot 0 now incorrect row by row
5 17 5 85| Start-up 4
B 17 5 85 |Short shot 4
7 17 5 85 | Silver 0
8 17 54 85 |Bubbl 9
9 18 1 198 | Start-up 0
10 18 1 198 | Short shot 6
1 18 1 198 | Sitver 12
2 8 L O | w-40Cols~| costper | Total | Defect
1. Right-click on Data =120 pc. | cost | tye | Freq
1 3 9 | Start-up 3
2. Select Column Info 2 3 0! Short shot 0
3. Rename as Freq — OK 3 3 12| Silver 4
4 3 0 | Bubbles 0
4. Rename Label as Defect type 5 5 20 Start-up 4
5. Delete Total defective 6 5| 20/Short shot 4
7 5 0 | Sitver 0
6. Right-click on Total cost 2 5 45 |Bubbles 9
7. Select Formula — Cost per pc.*Freq 2 Lt el J
) 10 1 66 | Short shot ]
8. Save as molding data small 11 1 132 Silver 12
stacked.xls 12 11 0 |Bubbles 0
Pareto plot by frequency 474

Analyze — Quality and Process — Pareto Plot — set up as shown — OK

.
i Pareto Plot - JMP

:@g1

The Pareto Chart of Cause, optionally grouped by X

-Select Columns

- Cast Selected Columns into Roles |

= B [ |

i Untitled 4 - Pareto Plot of Defect type - IMP

[*14 Columns tha Defect type
X, Grouping|| cptional
w} optional numeric
[] Thresheld of Combined T | Fre Freq
[T] Per Unit Analysis By optional
(requires sample size)

L,

4 = Pareto Plot
Freq: Freq
4 Plots

20

Shortshot  Bubbles
Defect type

Silver

Start-up

|28 O




Pareto plot by total cost

-Select Columns

[*14 Columns

The Pareto Chart of Cause, opticnally grouped by X

- Cast Selected Columns into Rolg

475
_
[~ Pareto Plot - IMP EERT)
.
" Untitled 4 - Pareto Plot of Defect type 2 - JMP |- o0, [

s Defect type

Y, Cause

dlCost per

thDefect type
dFreq

4~ |Pareto Plot
Weight: Total cost

X, Grouping

optional

< Plots

200

S Weight i

Total cost

[C] Per Unit Analysis
(requires sample size)

[7] Threshold of Combined Causes

Freg

optional numeric

|

optional

In this case the two plots
are very similar

Count

Silver

Shortshot  Bubbles
Defect type

Start-up

[RE O

Cost Pareto without calculating the total cost column

K
[ Pareto Plot - IMP

-Select Columns
[*14 Columns

The Parete Chart of Cause, opticnally grouped by X

dlCost per pc
ATotal cost \
WhaDefect type

dlFreq —_——

T Weight |

:@g]

- Cast Selected Columns into Roles

Y, Cause || Wl Defect type

optional

1]

X, Grouping

Cost per pc.

e —

[T] Per Unit Analysis
(requires sample size)

[] Thresheld of Combined Cause?

Freg Freg

foptional

.

i-. Untitled 4 - Pareto Plot of Defect type 3 - JMP

4 [~|Pareto Plot
Weight: Cost per pc.
Freq: Freq
4 Plots

200

Sihver

Shortshot  Bubbles
Defect type

Start-up

|’,‘E§1 ] w




Exercise 29.1

477

Open molding process - Pareto (in JMP). Use the method described in this section to
reformat the file for Pareto analysis. Save the reformatted file as molding process -
stacked. Create Pareto plots of defect types by frequency of occurrence and total cost.

Notes 478




