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1Recommended default preferences for JMP

Platforms Options

Attribute Chart

Attribute Gauge Chart

Show Agreement Points

Connect Agreement Points

Show Agreement Grand Mean

Bivariate
Show Points

Fit Line

Contingency

 Mosaic Plot

 Contingency Table

 Tests

 Count

 Row %

Distribution

Summary Statistics

 Horizontal Layout

 Histogram

 Outlier Box Plot 

 Frequencies

 Separate Bars

File


Preferences


Platforms

Uncheck any options
not shown here

2JMP defaults (cont’d)

Platforms Options

Distribution Summary 
Statistics

 Mean

 Std Dev

 N

 Minimum

 Maximum

DOE
Suppress Cotter Designs

Optimality Criterion  Make D-
Optimal Design

Fit Distribution
 Diagnostic Plot

 Density Curve

Fit Least Squares

 Profiler 

 Summary of Fit

 Analysis of Variance 

 Effect Tests

 Plot Regression

 Plot Residual by Predicted

File


Preferences


Platforms

Uncheck any options
not shown here



3JMP defaults (cont’d)

Platforms Options

Fit Nominal Logistic
 Logistic Plot

 Likelihood Ratio Tests

 Profiler

Life Distribution

 Show Points

 Show Statistics

 Show Confidence Area

 Interval Type  Pointwise

Model Dialog
 Center Polynomials

 Emphasis  Minimal Report

Oneway

 Means/Anova

 All Graphs

 Points

 Mean Diamonds

 Connect Means

 X Axis Proportional

 Points Jittered

File


Preferences


Platforms

Uncheck any options
not shown here

4JMP defaults (cont’d)

Platforms Options

Overlay Plot

 Overlay Y’s

 Separate Axes

 Show Points

 Connect Points

 Line Width  Thin

 Automatic Recalc

Variability Chart

 Variability Chart

 Show Points

 Show Range Bars

 Connect Cell Means

 Show Separators

 Show Group Means

 Points Jittered

File


Preferences


Platforms

Uncheck any options
not shown here



 



11  JMP menu map

Analyze

Fit distribution models for regular quantitative data, evaluate 
goodness of fit, predict % or PPM beyond given limits

Distribution

Reliability
and Survival

Life Distribution
Fit distribution models for life data 
(time to failure), evaluate goodness of 
fit, predict failure probabilities

Calculate basic statistics, create statistical graphics, find % of 
data points beyond given limits

Hypothesis testing, comparing populations, testing for 
significant differencesFit Y by X

Fit Model
Correlating variables, modeling Y as a function of one X and 
multiple Xs, prediction, optimization

Quality and
Process

Variability / Attribute
Gauge Chart

Categorical MSA with no standards

2JMP menu map (cont’d)

Tables

Summary
Derive a smaller data table by calculating 
statistics over subsets of a larger data table

Extract a subset of a data tableSubset

Sort a data table Sort

Stack a data tableStack

Unstack a data table Split

Overlay Plot Plot one or more data series in time sequenceGraph

Preferences
Specify desired default settings 
for JMP analysis platformsFile Platforms

Create the design matrix for a designed experiment
DOE

Calculate sample size for a designed experiment 



3

• Frequency histogram

• Cumulative distribution function

• Percentiles

• Box and whisker plot

• JMP distribution analysis

• Data validation

• Distribution analysis options

• Plotting data in time sequence

• Saving analyses and data tables

2  Basic Statistics and Statistical Graphics

4Notes

Y variables are characteristics of parts or transactions that determine customer 
satisfaction, or lack thereof. They provide the data from which project metrics are 
computed. In sections 2 and 3 we focus on quantitative Y variables. Examples 
include:

• Properties:  physical, chemical, electrical, optical, . . .

• Distance, time, dimensions, cost, quantity

• Event counts (when there is not a discrete number of opportunities for the 
event to occur)

JMP uses the term continuous for quantitative variables, and often uses the term 
nominal for categorical variables.



5Frequency histogram

Number of data points in each bin
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Continuous Y variable

6Cumulative percentage histogram  
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Percentage of data points   upper limit of each bin

Continuous Y variable
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Cumulative percentage histogram (cont’d)

Made the bins smaller

Continuous Y variable

8
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Cumulative distribution function (CDF)

• Bins are so small they isolate 
individual data values

• For small sample sizes, the CDF 
looks like a staircase with a step 
at each data value

Continuous Y variable

• About 40% are 1600 or less

• About 5% are 1400 or less 



9Percentiles

A percentile is a value that divides a population or data 
set into two groups, based on a stated percentage

10% are less than the 10th percentile, 90% are greater

25% are less than the 25th percentile, 75% are greater

50% are less than the 50th percentile, 50% are greater

75% are less than the 75th percentile, 25% are greater

90% are less than the 90th percentile, 10% are greater

10
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Illustration of 20th and 95th percentiles



11Common percentile-based data summary
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12Box-and-whisker plot
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Investigate
for cause

Rule for plotting points separately



Ignore



Points plotted separately may or may not represent assignable causes

14Notes



15JMP distribution analysis

File  Open  LSSV2 data sets  lead time 1  Open

Analyze


Distribution



16Data validation 

Frequency histogram

• Outlier

• Not always visible in the histogram 

• Click on it

• Look in the data table

?
(later)



17Data validation (cont’d)

 Data entry error

 Enter the correct value

 Go to next slide

18Redoing an analysis 

• Click on this 
red triangle

• Gives context 
specific 
options

• Select Script

• Select Redo 
Analysis

• See next slide



19Redoing an analysis (cont’d)

Note the change in the histogram and the summary statistics

20Cleaning up the box plot (optional) 

• Right click in 
here while 
holding down 
the Alt key

• Select 
Customize 
OK  Box 
Plot

• Uncheck 
Confidence 
Diamond and
Shortest Half 
 OK

• What remains is the box and whisker plot

• JMP calls it Outlier Box Plot because its main purpose in this context is to show 
outliers



21Distribution analysis options 

• Click on the red triangle next to Lead time while holding down the Alt key

• This will show the analysis options for the Distribution platform 

• See next slide

22Analysis options (cont’d) 

Just for practice:

Uncheck Summary Statistics and Outlier Box Plot  Check CDF Plot  OK



23Cumulative distribution function (CDF)

• Plots the proportion of data points  each value in the data set

• The step size at each data value is usually 1/N, where N is the sample size

• If the same value occurs twice in the data set, the step size there is 2/N

24Modifying JMP plots

• Double click on a number on the Y axis  change 
Increment to 0.1  check Major Gridlines 
uncheck Minor Tickmark  OK

• Double click on a number on the X axis  check 
Major Gridlines  uncheck Minor Tickmark 
OK

Lead time

Lead time



25Calculating percentages

• Suppose we want to know the percentage of data points exceeding 9.8

• Click the Lead time red triangle  select Capability Analysis  enter 9.8 
for the Upper Spec Limit  click OK

26Percentages (cont’d)

• Ignore the Long Term Sigma section of the output

• It gives predicted percentages based on the Normal 
(bell shaped) distribution curve

• We will cover distribution fitting in the next section



27Plotting data in time sequence 

Graph  Overlay Plot

• You can have different left and right scales for plotting multiple Y variables

• A date, time, or other sequencing variable would go in the X slot

• Putting a variable in the Grouping or By slot will produce one plot for each 
value of that variable (the output formats differ slightly)

28Overlay plot (cont’d) 

• Modify the default plot 
as shown

• Good way to look for 
assignable cause patterns 
other than outliers

• Same as a line chart in 
Excel



29Saving your analyses and data table

• Click on the thumbnail for your distribution analysis

• Click the red triangle next to Distributions

• Select Script  Save Script to Data Table

30Saving things (cont’d)

• Click on the thumbnail for your overlay plot

• Click the red triangle next to Overlay Plot

• Select Script  Save Script to Data Table

• Go to your data table



31Saving things (cont’d) 

• Two scripts have been added to 
the left panel

• If you save the file (as JMP), the 
scripts will be saved with it

• The next time you open the file, 
you can run the scripts to recreate 
the analyses exactly as you left 
them 

• Close and save your data table 
now*

*Use Save As to make sure you can find 
the file next time you want to open it

Lead time

Lead time

32Notes
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Open LSSV2 data sets \ quotation process (in JMP). Perform the following data 
analysis tasks for the variable TAT (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on 
the outlier box plot. This pattern is common with asymmetric “ski slope” 
distributions that pile up near zero. These points are not assignable causes, so 
don’t exclude them. (If you exclude them and run the analysis again, a new set 
will crop up. If there were points far to the right of the main group, they might be  
assignable causes and, upon investigation, might need to be excluded.)

(b) Record the average, standard deviation, sample size, minimum, and maximum.

(c) Turn off the outlier box plot.

(d) Find the % of data points exceeding 3.

(e) Save your analysis script. Close and save the data table.

Exercise 2.1

34

Open LSSV2 data sets \ DI water (in JMP). Perform the following data analysis tasks 
for the variable Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch 
the graph if necessary). Use your mouse to draw a box around the suspicious data 
points. Right click in an uninhabited area of the plot, select Row Hide and
Exclude. 

(b) Run a distribution analysis. Record the average, standard deviation, sample size, 
minimum, and maximum. 

(c) Turn off the outlier box plot. 

(d) Find the % of data points falling below 1500.

(e) Save your analysis scripts. Close and save the data table.

Exercise 2.2



353  Fitting and Using Distributions  

• Distribution curves  

• Checking goodness of fit

• JMP examples

• Fitting and using the Normal distribution

• Fitting and using the Lognormal distribution

• Finding the best fitting distribution(s)

• Using the best fitting distributions(s)

36

A description of the data
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Continuous Y variable

Frequency histogram  



37Distribution curves

Possible descriptions of the population

Continuous Y variable

38Distribution curves (cont’d)

Area under the curve between y1 and y2

 % of the population with  y1 < Y  y2

y1 y2

Continuous Y variable



39Distribution curves (cont’d)

0 y3

Area under the curve to the right of  y3

 % of the population with Y > y3

Continuous Y variable

40Fitting a distribution curve to the data

• The Normal curve depends only on  and (population mean and std. dev.)

• Plug the sample mean and std. dev. into the formula in place of  and 

 
2

2

1
1

2

1 





 


 σ

μy

e
σπ

yf

Continuous Y variable



41Distribution curves allow us to extrapolate . . . 

1200 1300 1400 1500 1600 1700 1800 1900 2000

0.12% 
(1165 ppm)

are predicted 
to fall on or 
below 1200

LSL

Minimum value in the data is 1267

42. . . but only if the distribution matches the data!

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



43

Data CDF
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44

Best fitting population CDF (assuming Normal)
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Data and population CDFs should match
P
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Checking goodness of fit (cont’d)

46

CDFs plotted on a Normal distribution scale
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Quantile plot (also known as probability plot)



47JMP example:  Normal data

• Data table DI water.jmp
Variable Resistivity

• Distribution  Resistivity
red triangle  Normal 
Quantile Plot 

• Fit is good  the points fall 
along the line and stay 
inside the hyperbolic band

• Leave the data table open

• To create images like this, use Tools  Selection to grab the portion of the output that you 
want, then copy and paste.

48JMP example:  non-Normal data

• Data table quotation process.jmp, variable TAT

• Distribution  TAT red 
triangle  Normal 
Quantile Plot 

• Fit is bad  the points 
do not fall along the 
line, and do not stay 
inside the hyperbolic 
bands

• Leave the data table 
open



49Is this data Normal?
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50Is this data Normal?
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51Fitting and using the Normal distribution

• Data table:  DI water.jmp

• Analyze 

 Distribution 

 Resistivity

 N should be 464

• Red triangle (no Alt key)

 Continuous Fit 

 Normal

52Normal distribution (cont’d)

Click on the Fitted Normal red triangle

 Select Spec Limits

 Enter 1200 for Lower Spec Limit

 OK 



53Normal distribution (cont’d)

• None of the measurements in the data set are less 
than 1200 

• 0.12% (1165 ppm) are predicted to fall below 1200 
in the population (future production)

• Save script, close and save data table

54Notes



55Fitting and using the Lognormal distribution

• Open number & size of defects (in 
JMP)

• Analyze  Distribution  Max size

• Max size is not Normal

• The LogNormal distribution is the 
most common alternative

• Red triangle  Continuous Fit 
LogNormal

-2.33

-1.64
-1.28

-0.67

0.0

0.67

1.28
1.64

2.33

0.5

0.8

0.2

0.05

0.01

0.95

0.99

0 5 10 15 20 25 30

56Lognormal distribution (cont’d)

Click on the Fitted LogNormal red triangle

 Select Spec Limits

 Enter 30 for Upper Spec Limit

 OK 



57Lognormal distribution (cont’d)

• None of the measurements in the data set are 
greater than 30

• 1.17% are predicted to exceed 30 in the 
population (future production)

• Save script, close and save data table

58Notes



59

• Open alignment process.jmp

• Analyze  Distribution  R dev

• Remove:
 Summary Statistics
 Outlier Box Plot

• Red triangle  Continuous Fit All

• See next slide

Finding the best-fitting distribution(s)

60Best-fitting distributions (cont’d)

• Distributions are ranked by AICc (“Akaike Information 
Criterion corrected” ― will call it AIC from now on)

• AIC measures lack of fit  smaller values are better

Double click


Column Numeric 
Format


Fixed Decimal (1)


OK



61Best-fitting distributions (cont’d)

• Distributions with the same AIC (rounded to the nearest tenth) have the same 
lack of fit (equivalently, the same goodness of fit)

• In this example, the Weibull and Extreme value distributions are tied for best fit

• Distributions with equivalent goodness of fit may give different predictions

• If there are multiple best fitting distributions, give predictions for all of them

62Best-fitting distribution (cont’d)

• The diagnostic plots for Weibull and Extreme value both look good

• Note that the plots are identical

• Fun fact:  this always happens with these two distributions



63Best-fitting distribution (cont’d)

Examples of bad diagnostic plots (but by no means the worst)

64

• Regardless of AIC values, don’t use distributions with 
bad diagnostic plots

• Regardless of AIC values, don’t use distributions that 
predict 0 percent or PPM

Additional guidelines



65Using the best-fitting distributions:  (a) Weibull

What % of future parts will have R dev > 40?

• Click on the red triangle here

• Select Spec Limits

• Enter 40 for Upper Spec Limit  OK 

66Weibull fit (cont’d)

• 0.15% of the data values exceed 40

• 0.12% are predicted to exceed 40 in the population 
(future production)



67Using the best-fitting distributions:  (b) Extreme value

What % of future parts will have R dev > 40?

• Click on the red triangle here

• Select Spec Limits

• Enter 40 for Upper Spec Limit  OK 

68Extreme value fit (cont’d)

• 0.15% of the data values exceed 40

• 0.12% are predicted to exceed 40 in the population (future production)

• The results for Weibull and Extreme Value are identical (always happens with 
these two distributions) 



69

Answer both questions in each case below. For the second question, find the best 
fitting distribution(s) and use it (them) to find answer(s). Save the analysis scripts, 
close and save the data tables.

a) Data table quotation process, variable TAT. What % of RFQs in the data set have 
TAT > 15? What % (or PPM) of future RFQs will have TAT > 15? 

b) Data set solution properties, variable SG coded. What % of solution vials in the 
data set have SG coded > 50? What % of future solution vials (or PPM) will have 
SG coded > 50?

Exercise 3.1

70

c) Data table number and size of defects, variable # Defects. What % of castings in the 
data set have more than 50 defects? What % of future castings (or PPM) will have  
more than 50 defects?

d) Data table casting dimensions, variable Length. What % of castings in the data set 
have length outside the interval [598, 602]? What % of future castings (or PPM) 
will have lengths outside this interval?

Exercise 3.1 (cont’d)
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e) Data table casting dimensions, variable Diam. What % of castings in the data set 
have diameters outside the interval [49, 51]? What % of future castings (or PPM) 
will have diameters outside this interval?

Exercise 3.1 (cont’d)

72Notes



734  Introduction to Life Data

Life   elapsed time until the occurrence of some event
• Failure of an item on test

• Planned end of test

• Unplanned end of test

• Failure of an item in service

• Scheduled downtime

Definitions of “time”
• Seconds, minutes, hours

• Days, weeks, months

• Usage cycles, number of moves, distance

74Life data (cont’d)

Usually there is one event of primary interest
• Usually, failure of an item

Other events may preempt the event of primary interest
• Planned end of test

• Unplanned end of test

• These are called “suspensions”

• We say that the time to failure is “censored”



75Example:  failures and suspensions.jmp
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• 15 items were tested

• 12 failures (x)

• 3 suspensions (        )

• This “event plot” distinguishes 
suspensions from failures and 
shows the event times

• If we don’t distinguish 
suspensions from failures, the 
calculated failure probabilities 
will be biased upwards

• This will make our reliability 
look worse than it really is



76Notes
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Cumulative distribution function (CDF)

In this plot, all 
events are treated 

as failures
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• This is the correct plot

• It steps up only at failure times

• The step size increases after 
each suspension, because the 
number of items remaining on 
test decreases
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Suspensions at times 58 and 71

Overlay of CDFs

CDF treating all times as failures

CDF distinguishing suspensions from failures

After the first 
suspension, the solid 
line overstates the 
failure probabilities
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Can’t we just ignore the suspensions?

CDF ignoring the suspensions

CDF distinguishing suspensions from failures
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  height    step  Each .

This intuitive idea is 
actually worse than 
treating all times as 

failures



815  Analyzing Life Data

• The Exponential distribution

• The Weibull distribution

• Fitting life distributions in JMP

• Finding and using the best fitting life distribution

82Notes
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84Notes

The Exponential distribution is the simplest life distribution. It has only one 
parameter: the mean time between/before failure (MTBF). The Greek letter  (theta) 
is often used to denote the population value of the MTBF.

Shown above are the failure functions F(t) for three different Exponential 
distributions. F(t) is the probability that an item will fail before time t. 

The reliability function is defined as R(t)  F(t). R(t) is the probability that an 
item will survive beyond time t. The Exponential reliability function is given by R(t) 
 exp(-t/). 
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86Notes

The Weibull distribution was introduced to the reliability engineering community in 
the 1950s by a man named Waloddi Weibull. (What were his parents thinking?) Prior 
to that, most reliability work was based on the Exponential distribution. Due to its 
greater flexibility, the Weibull has become one of the most widely-used life 
distributions. 

The Weibull distribution has two parameters:  the characteristic life  (eta), and the 
shape  (beta). The characteristic life () has the same qualitative interpretation as the 
MTBF (). The shape parameter () determines which of two distinct failure modes 
are represented. When  < 1, we have a burn-in or infant-mortality failure mode. 
When  > 1, we have a wear-out failure mode. A Weibull distribution with   is 
identical to an Exponential distribution with .

Shown above are failure functions F(t) for four different Weibull distributions. F(t) is 
the probability that an item will fail before time t. 

The Weibull reliability function (probability that an item will survive beyond time t) 
is given by R(t)  exp[-(t/)]. 



87Fitting life distributions in JMP

Analyze


Reliability and Survival


Life Distribution


Set up as shown below


OK

Open data table failures and suspensions

88Fitting life distributions (cont’d)

• CDF that distinguishes 
suspensions from failures

• Shows the corners of the steps 
but not the “staircase”



89Fitting life distributions (cont’d)

↕ 95% confidence intervals 
for failure probabilities

↕ These are “nonparametric”

90Notes

This analysis is referred to as nonparametric, meaning that it is not based on a 
statistical model (such as the ones listed on the left.) This is a good thing, because 
statistical models can be wrong. However, there are drawbacks: 

a) The nonparametric CDF is discontinuous.

b) Large numbers of failures are required to get margins of error small enough 
to be useful. 

In practice, it is preferable to use a statistical model that fits the data well. This 
provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the 
menu produced by the red triangle next to Life Distribution.



91Exponential fit ― linear probability scale

95% confidence 
interval for F(80) 
based on the 
Exponential 
model

Bad fit ― the Exponential failure curve doesn’t match the data

92Exponential fit ― Exponential probability scale

The Scale button modifies the vertical axis so that the failure curve for the chosen 
distribution plots as a straight line

95% confidence 
interval for F(80) 
based on the 
Exponential 
model



93Weibull fit ― linear probability scale

95% confidence 
interval for F(80) 
based on the 
Weibull model

A better fit

94Weibull fit ― Weibull probability scale

Better is good . . . but what about best?

95% confidence 
interval for F(80) 
based on the 
Weibull model



95Finding and using the best fitting distribution

Click the Life Distribution red triangle  Fit All Nonnegative

*You can’t have a negative time to failure!

• JMP plots the best fitting model 
on the corresponding probability 
scale

• In this case, Lognormal appears 
to give the best fit

96Best fitting distribution (cont’d)

• As before, models are ranked by AIC (smaller is better)

• As before, round the AIC values to the nearest tenth

• Lognormal gives the best fit



97The distribution profiler

• The corresponding reliability R(t) is defined as 1 – F(t)

• R(t) is the probability that an item from this population will not fail until after
time t

• For example, R(68)  0.55 (55%)

t 

 Most
likely

• Plots the probability F(t) that 
an item from this population 
will fail at or before time t

• The solid curve is the most 
likely value of F(t)

• For example, the most likely 
value of F(68) is 0.45 (45%) 
(shown in red on the left side 
of the profiler)


F(t)

98Distribution profiler (cont’d)

• The lower dashed curve gives the best case value of F(t)**

• For example, the best case value of F(68)  0.275 (27.5%)

• The dashed curves give 95% 
confidence intervals for F(t)

• The upper dashed curve gives 
the worst case value of F(t)*

• For example, the worst case 
value of F(68) is 0.655 
(65.5%) 

 Worst
case

 Best
case

*For Engineering.                                                                                                  **For Sales.



99Distribution profiler (cont’d)

• The worst case value of F(t) is 85.6%

• The best case value of F(80) is 45.7%

• Suppose we are interested in F(80)

• Change the value 68 to 80 (click 
and edit)

• The most likely value of F(80) is 
68.4% 

100Notes
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Open LSSV2 data sets \ print life (in JMP). The “time” to failure is Pages. 

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s) 
to answer the following questions.

b) What is the most likely value of F(10,000)? 

c) With 95% confidence, what is the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.

Exercise 5.1

102

Open LSSV2 data sets \ probe reliability (in JMP). The “time” to failure is Hits. 

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s) 
to answer the following questions.

b) What is the most likely value of F(200)? 

c) With 95% confidence, what is the worst-case value of F(200)?

d) Save the analysis script, close and save the data table.

Exercise 5.2



103

Open LSSV2 data sets \ field reliability (in JMP). The time to failure is Calendar
Days. 

a) Identify the best fitting non-negative distribution(s). Use that (those) distribution(s) 
to answer the following questions.

b) What is the most likely value of F(365)? 

c) With 95% confidence, what is the worst-case value of F(365)?

d) Save the analysis script, close and save the data table.

Exercise 5.3

104Notes



1056  Categorical MSA Without Standards 

• It is preferable to base nominal MSA on a set of items whose 
true status is known (standards)

• With standards, we can determine the probabilities of passing 
bad items and failing good ones 

• Creating standards can be difficult and time consuming

• Lacking standards, “% agreement within and between 
appraisers” can serve as a proxy for “% agreement with 
standard”

106Example 1

• 50 parts

• Appraisers A, B, C 

• 3 inspections per part per 
appraiser 

• Part is actually nominal, 
but it won’t affect the 
analysis if you leave it as 
continuous

Open LSSV2 data sets \ pass-fail no stds (in JMP) 



107Agreement within & between appraisers

• 100% agreement

• 36 opportunities for pairwise agreement

• 16 pairwise agreements

• Agreement 

• 36 opportunities for pairwise agreement

• 8 pairwise disagreements

• Agreement 

①
②

③

⑤

④

⑥

⑧

⑦

⑨

108Analyzing a categorical MSA without standards

Analyze  Quality and Process  Variability / Attribute Gauge Chart



109Agreement report

• Plot of the agreement percentages for 
the items in the study

• It is helpful to rescale the vertical axis

• See next slide

110Agreement report (cont’d)

• The horizontal dotted line marks the “agreement grand mean”

• In this example, the agreement grand mean is a little over 90

• Nowhere in the report is this number printed ― bad JMP!

• If the agreement grand mean is too low, follow-up should focus on the items with 
the lowest % agreement

• There are no recognized standards for the agreement grand mean. A lower bound 
of 95% is fairly common. 99% is often used in applications involving safety.



111Agreement report (cont’d)

• Percentage of items for which 
agreement was 100%

• This should not be used as a metric

• These are the agreement percentages 
for each appraiser

• The appraiser with the lowest 
percentage represents the greatest 
opportunity for improvement

• Sometimes the smallest % agreement 
among the appraisers is used as the 
metric

112Notes

Save the script, close and save the data table. 



113Example 2

• 15 employment applications

• 5 appraisers

• 2 inspections per application 
per appraiser

• Five point scale, higher is 
better 

• Change Rating to nominal

• This is the wrong data 
format for categorical MSA!

Open LSSV2 data sets \ application rating no stds (in JMP) 

114Unstacking a data table

Tables  Split



115Example 2 in required format

116Example 2 (cont’d)

Analyze  Quality and Process  Variability / Attribute Gauge Chart



117Example 2 (cont’d)

Duncan
Hayes
Holmes
Montgomery
Simpson

Rater
49.8039
69.0196
79.2157
77.2549
74.9020

% Agreement
27.2673
43.9053
53.9935
51.9716
49.5997

95%
Lower CI

72.4205
86.3784
92.5247
91.4246
90.0500

95%
Upper CI

15

Number
Inspected

4

Number
Matched

26.667
% Agreement

10.897

95%
Lower CI

51.950

95%
Upper CI

Agreement Report

• The agreement grand mean is about 71 
― way too low

• Follow-up:  focus on application 10, and 
maybe 1  and 3 as well

• Greatest opportunity for improvement:  
further training of Duncan, and maybe 
Hayes as well

118Notes

Save the analysis script to the data table, close and save the data table as: 

application rating no stds unstacked.jmp



119Exercise 6.1

Open LSSV2 data sets \ print samples 1 no stds. In this study 3 appraisers inspected 18 
print samples 3 times each.

a) Reformat the file as needed and run the analysis. 

b) Record the approximate agreement grand mean. 

c) Which sample(s) would be most useful in follow-up? 

d) Which appraiser has the lowest % agreement, and what is the % agreement?

e) Save the script, close and save the data table as print samples 1 no stds unstacked.

120Exercise 6.2

Open LSSV2 data sets \ print samples 2 no stds. This is the follow-up study after the 
appraisers received additional training.

a) Reformat the file as needed and run the analysis. 

b) Record the approximate agreement grand mean. 

c) Which appraiser has the lowest % agreement, and what is the % agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.



1217  Comparing Populations ― Continuous Y

• Example of comparing populations

• Analysis of variance (ANOVA) for comparing 
populations

• Interpreting P values

• Degrees of freedom for signal and noise

• ANOVA in JMP

122Notes

Y variables are characteristics of parts or transactions that determine customer 
satisfaction, or lack thereof. The provide the data from which project metrics can be 
computed.

Comparison of statistical populations is equivalent to Y  f(X) analysis where the X 
variable is categorical. The distinct values of the X variable define the populations or 
sub-populations to be compared.

JMP uses the term continuous for quantitative variables. Except in the DOE section, 
JMP uses the term nominal for categorical variables.



123Example of comparing populations

Group Data Avg. SD

A 2.8

2.75 0.129
A 2.6

A 2.9

A 2.7

B 3.1

3.05 0.187

B 2.9

B 3.3

B 2.8

B 3.2

B 3.0

• We have two groups of data

• Could be a before/after comparison

• Could be a stratification analysis

• The sample means for the two groups are different

• Is this enough to conclude that the population means are different?

124Example (cont’d)

• Plotting the data is helpful, but doesn’t give a definitive answer

• How far apart do the sample means have to be before we can say 
the population means are different?

• How do we take the scatter around the means into account?



125ANOVA for comparing populations (1 of 6)

LSSV2 other stuff \ ANOVA two groups

Group Error

126ANOVA (1 of 6, cont’d)

This worksheet shows all the calculations used to determine, based on the data, 
whether or not the population means are different. 

The first step is to calculate the Variance column by subtracting the grand mean from 
the Data column. The Variance is then decomposed into Group (the “signal”) plus
Error (the “noise”). 

The Group column captures the portion of total variation caused by the difference 
between the sample means. The Error column captures the rest of the variation, 
variously called the residual, unexplained, or noise variation. 



127ANOVA (2 of 6)

LSSV2 other stuff \ ANOVA two groups

Group Error

128ANOVA (2 of 6, cont’d)

The Data column consists of 10 mathematically independent quantities. We describe 
this by saying it has 10 degrees of freedom (DF). 

The Grand mean column consists of 10 values, but they are all identical. This column 
has 1 DF. 

The Variance column contains 10 values, but they are mathematically constrained to 
sum to 0. This column contains only 9 independent quantities, so it has 9 DF.

The Group column inherits the zero-sum constraint from the Variance column, and it 
consists of only 2 distinct values. This column contains only one independent 
quantity, so it has 1 DF.

The Error column has 8 DF, because DF have to add up.

The DF for Group and Error play a role in determining whether or not the population 
means are different.



129ANOVA (3 of 6)

LSSV2 other stuff \ ANOVA two groups

Group Error

130ANOVA (3 of 6, cont’d)

The sum of squares (SS) is a measure of the magnitude of each column. It is the sum 
of the squares of the values in a column.

The sums of squares for the Variance, Group, and Error columns are usually much 
smaller than those of the Data and Grand mean columns.

The mean square (MS) is the statistically normalized measure of the magnitude of 
each column. It is the SS for a column divided by the DF for that column.

The mean squares for the Data and Grand mean columns play no role in determining 
whether or not the population means are different, so the MS is usually calculated 
only for the Variance, Group, and Error columns. 



131ANOVA (4 of 6)

LSSV2 other stuff \ ANOVA two groups

Group Error

(Group MS / Error MS)

132ANOVA (4 of 6, cont’d)

The Group MS measures the magnitude of the variation caused by the difference 
between the sample means. 

The Error MS measures the magnitude of the variation caused by everything except
the difference between the sample means.

The F ratio is the Group MS divided by Error MS. It is a signal-to-noise ratio. The 
larger the F ratio, the stronger the evidence of a difference between the population 
means.



133ANOVA (5 of 6)

(Group MS / Error MS)

Group Error

134ANOVA (5 of 6, cont’d)

The P value is a probability calculation based on the F ratio, the DF for the Group
column, and the DF for the Error column. 

The P value should be interpreted as the probability of no difference between the 
population means. 

If there are 3 or more groups, it should be interpreted as the probability that the 
population means are all the same.



135Interpreting P values

None None

Some 85%  CL < 95%

Strong 95%  CL < 99%

Very strong CL  99%

0.05

0.15

0.01P 
va

lu
e

0.0001

1.00

Evidence that populations are different 
or variables are correlated

Confidence level
(CL)

136P values (cont’d)

As shown above, the P value has fixed reference values for interpretation. 

The P value is inversely related to the F ratio:  
 The smaller the P value, the stronger the evidence of a difference in the 

population means.

If there are 3 or more groups, the interpretation is:
 The smaller the P value, the stronger the evidence of one or more 

differences among the population means.



137ANOVA (6 of 6)

(Group MS / Error MS)

Group Error

138ANOVA (6 of 6, cont’d)

The Root Mean Square (RMS) for a column is the square root of the MS for that 
column.

The RMS for the Variance column (0.221) is equal to the usual standard deviation of 
the data (STDEV function in Excel).

The RMS for the Error column (0.168) is the standard deviation of the noise 
variation (error, residual, unexplained, etc.). 

JMP uses the term Root Mean Square Error (RMSE) for the RMS of the Error
column.*

*Given that Statistics is a body of knowledge dedicated to quantifying and reducing 
variation, the variation in statistical terminology is appalling.



139Degrees of freedom for comparing populations

N  =  total sample size

G  =  number of groups being compared

G – 1  =  DF for the group column

N – G  =  DF for the error column

• The Error DF is more important than the Group DF

• It determines the accuracy of the predicted values

• Larger is better, 10 is OK, bare minimum is 5

• When DF is mentioned without a qualifier, it always means Error DF

140Exercise 7.1

Open ANOVA three groups. Enter the appropriate numbers and formulas into the 
white cells to produce an ANOVA for the data shown here. 

Group Error

(Group MS / Error MS)



141ANOVA in JMP

File  New  Data Table  Enter (or copy-paste) data as shown

From Exercise 7.1

142ANOVA in JMP (cont’d)

Analyze  Fit Y by X  Set up as shown  OK



143Explanation of “mean diamonds”

Flying saucers!

Upper cockpit
Upper body

Lower body
Lower cockpit

Population means are different
(with 95% confidence)

Saucers can fly horizontally
past each other with no contact

between their bodies

144Mean diamonds (cont’d)

“Fly by” interval 
for comparing 

population means

95% confidence
interval for a single

population mean

 NRMSE2 mean  Sample 

 NRMSE2  mean   Sample 

Approx. formula for “fly by” interval:

Approx. formula for 95% confidence interval:

N = sample size for each group



145Analysis details

Signal

Noise
P value

RMSE

• Standard deviation of the noise variation 
(error, residual, unexplained etc.)

• Smaller is better

• Has units of the Y variable

146Analysis details (cont’d)

Adjusted R2

• Proportion of the total variation in Y that is 
caused by (“explained by”) variation in X

• Larger is better

• Unitless



147How adjusted R2 is calculated

STDEV

Total variation
in the data

2
2

R Adjusted    0.872685   
STDEV

RMSE
  -  1    Xby  CAUSED  variationY ofroportion P 








0.127315   
2558409.0

091287.0
   

STDEV

RMSE
    Xby  caused NOT  variationY ofroportion P

22
















148Notes



149Exercise 7.2

Data table: number and size of defects. Max size is the area in square centimeters of 
the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the 
P value and interpret the result. (Ignore the t Test section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

c) Give the value and the units of the RMSE in this example.

d) The RMSE is meaningful only if each group has roughly the same amount of 
variation. Is this true in this case?

e) Save your analysis script to the data table, close and save the data table.

150Exercise 7.3

Data table: quotation process. A supplier receives requests for quote (RFQs) from 
customers, then develops and submits quotes. TAT is the turnaround around time in 
days. BU is the business unit which prepares the quote. 

a) Is the modeling type for BU correct? If not, change it to what it should be. Test 
for differences among the business units. Give the P value and interpret the 
result. 

b) Which BU(s) represent best practice? What follow-up action should be taken?

c) Save your analysis script to the data table, close and save the data table.



151Exercise 7.4

Data table: alignment process. This process attaches orifice plates to chips. Three 
similar aligners (alignment tools) are used in this process. Y dev and X dev are the 
vertical and horizontal deviations from target in mils. 

The alignment specification applies to 
the radial deviation calculated from X
and Y. Double click on the blank 
column header next to Y dev, click on 
Column 4, rename as R dev. 

Right click on R dev, select Formula. 
Use your mouse and the keypad 
provided to create the formula for R 
dev.

Squaring
function

Square root
function

152Exercise 7.4 (cont’d)

a) Is the modeling type for Aligner correct? If not, change it to what it should be. 
Test for differences among the three aligners with respect to R dev. Give the P 
value and interpret the result. 

b) Which aligner represents best practice? (Smaller R dev is better.) What follow-up 
action should be taken?

c) Save your analysis script to the data table, close and save the data table.



153Exercise 7.5

Data table: casting dimensions. We want to reduce variation in the length of roughly 
cylindrical castings. The specification for Length is 600 ± 1.5. The wax patterns for 
these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Length. Give 
the P value and interpret the result. 

b) Which machine represents best practice? (It is helpful to draw a reference line at 
the nominal value. Right click on one of the numbers on the vertical axis, select 
Axis Settings, use the Reference Lines tool. ) What follow-up action should be 
taken?

c) Save your analysis script to the data table, but don’t close the data table.

154Exercise 7.5 (cont’d)

We also want to reduce variation in the diameter of the castings. The specification for 
Diam is 50 ± 0.75. 

d) Test for differences between the molding machines with respect to Diam.  Give 
the P value and interpret the result. 

e) Which machine represents best practice? (It is helpful to draw a reference line at 
the nominal value.) What follow-up action should be taken?

f) For each of the variables Length and Diam, a certain proportion of the total 
variation is caused by the difference between the machines. For which variable is 
this proportion highest?

g) Save your analysis script to the data table, close and save the data table.



1558  Comparing Populations ― Pass/fail Y

Raw data One part or transaction per row

Tabulated 
data

Multiple parts or transactions 
per row

156Raw data example

Data table: quotation process.jmp
Want to compare the account managers in terms of % late 

Analyze  Fit Y by X  set up as shown  OK

Nominal!



157Raw data (cont’d)

837
N

21
DF

32.411285
-LogLike

0.0687
RSquare (U)

Likelihood Ratio
Pearson

Test
64.823
62.018

ChiSquare
<.0001*
<.0001*

Prob>ChiSq

Tests

P value

Horizontal
dimension is
proportional

to sample
size

• Very strong evidence of differences among account managers

• Who represents best practice?

158Raw data (cont’d)

• Red triangle  Analysis of Means for Proportions

Vertical
dimension is

inversely
proportional

to sample
size

• Not as useful as “flying saucers” (not available for pass/fail Y)

• Points above (below) the shaded region are significantly higher (lower) than points 
inside the shaded region

• Account manager 4 represents best practice  find out what that is, make it the standard

• Save your analysis script to the data table, but don’t close the data table.

Upper
Detection
Limit

Lower
Detection
Limit



159Exercise 8.1

a) Test for differences among the business units in terms of % late. Give the P value 
and interpret the result. Is there best practice? If so, where is it (based on this 
analysis only)?

b) Right click in the PO header, select Column Properties  Value Ordering, then 
reverse the default ordering. (This will make it easier to see differences in the PO 
hit rate.) Test for differences among the account managers with respect to PO hit 
rate. Give the P value and interpret the result. Is there best practice? If so, where is 
it? 

c) Test for differences among the business units with respect to PO hit rate. Give the 
P value and interpret the result. Is there best practice? If so, where is it? 

d) Save your scripts, close and save the data table.

160Exercise 8.2

Open ATE Mar & Apr (in JMP). If necessary, change the modeling types for Model 
Number and Test Station.

a) Test for a difference between the model numbers with respect to failure rate. Give 
the P value and interpret the result. 

b) Test for differences among the test stations with respect to failure rate. Give the P 
value and interpret the result. If significant differences exist, describe them and 
suggest possible causes.

c) Save your scripts, close and save the data table.
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• Pass/fail data often comes in tabulated form

• Each row may represent a 
 Production lot
 Work order
 Time period
 Machine
 Work center
 Part number . . .

• This format is perfect for plotting % defective

• However, it is the wrong format for comparing 
populations in JMP

Tabulated pass/fail data 

162Example

• Open LSSV2 data sets \ out-of-box failures (in JMP)

• See next slide



163Plotting % defective

1. Create a new column 
called % Failed

2. Define it by the 
formula

3. Use Graph  Overlay
Plot to create the plot 
on the next slide

100
Produced Units

Failed


164Plotting % defective (cont’d)



165Reformatting for comparing populations

1. Create a new 
column called 
Passed defined by 
the formula 

2. Go to Tables 
Stack

3. Use Failed and 
Passed as the Stack 
Columns

4. See next slide

Failed - Produced Units

166Reformatting (cont’d)

6. Change the name of 
the Data column to 
Freq and the Label
column to Result

7. There are now two 
rows for each 
month. The Units 
Produced and % 
Failed columns are 
no longer relevant, 
and may be deleted.

8. Save the new data 
table as out of box 
failures stacked



167Analyzing the data

Analyze  Fit Y by X  set up as shown  OK

168Data analysis (cont’d)

• Very strong evidence that processes 
A, B, and C do not all have the same 
failure rate

• The mosaic plot does not help us 
determine where the differences are

• Click on the red triangle at the top of 
the analysis window

• Select Analysis of Means for 
Proportions

• See next slide



169Data analysis (cont’d)

• This plot shows that Processes B and C are significant improvements 
over Process A

• It does not tell us whether or not C is a significant improvement over B

• Save your script, but don’t close the data table.

170Exercise 8.3

a) Exclude the rows for process A. 

b) Test for a difference between C and B. Give the P value and interpret the result.

c) Close and save the data table. (No need to save the script again.)



171Exercise 8.4

Open molding process - stratification (in JMP).

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables  Summary  use PN as the Group variable  use Machine as 
the Subgroup variable  OK. 

c) Note that each part number runs on only one or two of the machines. A 
comparison of the part numbers could be biased by differences among the 
machines. A comparison of the machines could be biased by differences among 
the part numbers. Because of this, we should use the concatenated variable PN-
Machine as the X variable in the analysis.

172Exercise 8.4 (cont’d)

e) Reformat the data for comparing populations (follow steps 1  7 in the worked 
example).

f) Test for significant differences among the combinations of part number and 
machine with respect to fraction defective. Give the P value and interpret the 
results. 

g) Based on fraction defective, which three combinations of part number and 
machine would be the best focus for an improvement project? 

h) Save your script, save the data table as molding process - stratification, then 
close it.



1739  Simple Regression

• Terminology

• Purposes of regression analysis

• “Simple” regression

• The line of best fit

• Regression in JMP

• Regression through the origin

174Terminology

• The term correlation is often used any time we speak of relating one variable 
to another

• Technically, correlation should be used only if both variables are quantitative

• An input/output relationship between the two variables is not required (for 
example, two variables measured at the same point in a process)

• Regression is a special case of correlation where there is an input-output 
relationship Y  f (X), so X is a possible cause of variation in Y

• In regression we want to test for correlation, but beyond that we want to 
quantify the relationship and use it for some purpose



175Purposes of regression analysis

• Predict Y from X 

• Determine best setting for X (optimization)

• Reduce variation in Y by controlling X

176“Simple” regression

Y  0.8387 + 0.4891X + “Error”

Slope


Intercept




177The line of best fit

• There are many ways to the measure the distance from an (X, Y) 
data point to a line in the XY plane

• For example, the shortest distance is along a path perpendicular to 
the line

• The only distance relevant in regression is the “error” ― the 
difference between a Y data value and its predicted value based on 
the line

• The line of best fit is the one that minimizes the sum of the squared 
errors

• This is an example of least-squares model fitting

178The line of best fit (cont’d)

The best fitting line is the one that minimizes
the sum of the squared “errors”



179

Worksheet Prediction & error 1

Open LSSV2 other stuff \ ANOVA linear fit

Finding the line of best fit

180Finding the line of best fit (cont’d)

In this worksheet we ignore the X variable completely, and use the average 
value of Y as the prediction. This is just the calculation of the mean and 
standard deviation of the Y variable. (The values in cells I14 and E17 are the 
same.) 

The sum of the squared errors (cell I12) can be dramatically reduced by using 
the X variable to “explain” more of the variation in the Y variable.



181Finding the line of best fit (cont’d)

Worksheet Prediction & error 2

Proportion of total Y variation caused by 
("explained by") X variation

182

In this worksheet we used the Excel Solver tool to find the line of best fit, using the 
setup shown below. The Error column now contains the deviations from that line. 
The sum of the squared errors has been reduced from 1893.9 to 63.3 (cell I12).

The distribution of degrees of freedom has also changed. The Prediction column is 
now completely determined by the intercept and slope in cells M2 and O2, so it has 
only 2 degrees of freedom. The Error column has 7 degrees of freedom because 
DFs have to add up. 

Finding the line of best fit (cont’d)



183Degrees of freedom for regression

N  =  total sample size

G  =  number of parameters in the equation
=  DF for the prediction column

N – G  =  DF for the error column

• The Error DF is more important than the Prediction DF

• It determines the accuracy of the predicted values

• Larger is better, 10 is OK, bare minimum is 5

• When DF is mentioned without a qualifier, it always means Error DF

184Notes



185Regression in JMP

Open LSSV2 data sets \ simple regression - generic

186Regression in JMP (cont’d)

Analyze  Fit Model   Set up as shown  Run



187Analysis details

P value

• Root Mean Square Error 
(RMSE)

• Standard deviation of Y 
variation caused by factors 
other than X

• “Error” standard deviation 

• Also called “residual” 
standard deviation

• Smaller is better

188Analysis details (cont’d)

• Proportion of Y variation 
caused by (“explained by”)    
X variation

• Larger is better

22

386.15

007.3
1

STDEV

RMSE
1 















(STDEV of Y is 15.386)
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• Estimates of the slope and intercept

• Line of best fit is Y  0.8387  0.4891X

The Parameter Estimates option

• P values for the slope and intercept

• In simple regression, the Analysis of Variance P value is the P value for the slope

• In this example, the slope of the line is significantly different from 0, very strong 
evidence of a correlation between Y and X.

• The intercept is not significantly different from 0. This term should be removed from 
the model equation.

Red triangle next to Response Y  Regression Reports  Parameter Estimates

190Notes



191Removing the intercept from the model equation

Red triangle next to Response Y  Model Dialog  check No Intercept  Run

192This is called “regression through the origin”

• Now the line of best fit is Y  0.5010X

• When X  0, Y  0

• This makes physical sense in some 
situations



193The prediction profiler

• Calculates predicted mean Y as a function of X

• Calculates confidence intervals for predicted means 

194Simple example of prediction

• Suppose we are interested in the predicted mean Y for X  60

• Click on the 55.333, change it to 60

• Predicted mean Y (based on the data) is 30.06

• With 95% confidence, the population mean lies between 27.96 and 32.16



195Simple example of optimization

• Suppose we want to find the X value that predicts a mean Y value of 25

• Red triangle next to Prediction Profiler  Desirability Functions 

• Double click in here (don’t touch the line plot)

• Modify the Response Goal dialog as shown below

• Click OK

196Optimization (cont’d)

• Red triangle next to Prediction Profiler  Maximize Desirability 

• Predicted mean Y of 25 is achieved at X  49.9

• With 95% confidence, this population mean lies between 23.3 and 26.7



197Exercise 9.1

a) Find the X value that predicts a mean Y value of 35. Give the confidence limits for 
the predicted mean.

b) The overall standard deviation of Y is 15.4. The RMSE from the regression is 
2.84. Which of these would be the standard deviation of Y if we controlled X to a 
constant value?

c) Save your script, close and save the data table.

198Exercise 9.2

Open LSSV2 data sets \ production vs capacity (in JMP). 

(a) Fit a regression for Production qty as a function of Capacity utilized (%). Is there 
a correlation? Give the appropriate P value and strength of evidence.

(b) Decide whether or not to remove the intercept from the model equation. Support 
your decision with the appropriate P value. 

(c) Use your model from (b) to find the capacity utilization level that predicts a mean 
daily production quantity of 3500. Give the confidence limits.

(d) The overall standard deviation of Production qty is 733.5. The RMSE from the 
analysis in (c) is 406.06. Which of these would be the standard deviation if 
capacity utilization never changed?

(e) Save your scripts, close and save the data table.



19910  Using the RMSE

Defective in the data:  33.3%

Predicted from distribution curve:  35.8%

Mean   27.9,  Std dev  15.4

Suppose we are not happy with our current process capability

LSL                      Target                      USL

200

Suppose Y is correlated with a controllable X variable

How can we use the regression to improve the Y capability?

RMSE (cont’d)
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USL

LSL

If we control X at 80, the mean will change from 27.9 to 40

Current
mean

RMSE (cont’d)

Target

202

LSL                 Target                 USL

RMSE (cont’d)

Mean   40.0

Std dev  15.4

Defective in the data:  22.2%

Distribution curve:  15.9%

• Moving mean Y to the center of the spec range does reduce % defective

• But is the mean the only thing that changes when we control X at 80? 
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  RMSE
 2.84

By definition, RMSE is the standard deviation of Y 
that would result from eliminating the variation in X 

RMSE (cont’d)

204

When we control X at 80, we don’t just move the mean from 27.9 to 40
― we also reduce the standard deviation from 15.4 to 2.84 !

RMSE (cont’d)

USL

LSL

Target

Hmm . . . how 
do we calculate 
the improved % 

defective?



205Open LSSV2 other stuff \ t distribution calculator 

PPM defective = 109

Error DF from the 
Analysis of Variance

206Notes



207Exercise 10.1

Open LSSV2 data sets \ production vs capacity.jmp. 

a) Find the best fitting distribution for Production qty.

b) What is the predicted % of days on which production quantity will fall below 
3000?

c) What is the % of data values that fall below 3000?

d) We found earlier that capacity utilization 52.8% gives a mean daily production 
quantity of 3500. The RMSE was 406.06, the error degrees of freedom was 35. 
Assuming 52.8% capacity utilization, what is the predicted % of days on which 
production quantity will be less than 3000?

e) Save your scripts, close and save the data table.

208Exercise 10.2

Open LSSV2 data sets \ outgassing process (in JMP). Current (the Y variable) is the 
current required to heat a filament to a target temperature. Resist (the X variable) is 
the electrical resistance of the filament. Machine is the processing unit. This example 
shows how to reduce % defective by separate optimization of each machine.

a) Find the % of Current data values that fall outside the interval (1.9, 2.1).

b) Fit a regression for Current as a function of Resist, using Machine as the By
variable. For each machine, give the RMSE, the error degrees of freedom, and 
the resistance that predicts a mean current of 2. 

c) Assuming we use the indicated resistance values, find for each machine the % of 
Current values predicted to fall outside the interval (1.9, 2.1). 

Machine RMSE DF Resistance % Outside

A

B

C

d)  Save your scripts, close and save the data table.



20911  Multiple Regression

• Multiple regression model 

• Examples  

• Fitting regression models

• Interactive effects

• Predicted values and uncertainty

• Modeling and optimization

210Multiple regression model

Y  b0  b1X1  b2X2  . . .  bkXk  “error”

Y X1, X2, . . . , Xk b0 b1, b2, . . . , bk “Error”

Dependent 
variable

Independent 
variables

Intercept Regression 
coefficients

Mean = 0

Response 
variable

Explanatory variables Parameter Parameters Standard deviation = 
(RMSE)

Output Inputs Distribution = Normal

Predictors

Regressors

Factors (in DOE)
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Y   b0  b1X   “error”

Model and error components, one X

Y

X

When X is 
fixed, predicted 
 of Y  RMSE

Predicted mean Y (X  146)

212

Y   b0  b1X1  b2X2  “error”

Y

X1 

X2

Predicted mean Y (X1 X2  1.2)

Model and error components, two Xs

When X1 and 
X2 are fixed, 

predicted  of 
Y RMSE



213Multiple regression examples

Y X1 X2 X3 X4 X5 X6

Life of 
cutting tool

RPM Tool type Material Feed rate

MPG
Displace-

ment
Horsepower Weight

Salary Education Experience Performance Seniority Gender

Vending
machine

service time

Amount of
product
stocked

Distance 
from truck to 

machine

Fill in examples of interest to you

214Regression model equations

Y X1 X2 X3 X4 X5

MPG
Displacement

(D)
Horsepower 

(H)
Weight

(W)

error  W b    Hb    Db   bMPG 3210 

error    Db    Tb    TDb    Db    Tb    b    Bond 2
5

2
43210 

Y X1 X2 X3 X4 X5

Bond 
strength

Temperature
(T)

Dwell time
(D)

T  D T2 D2

Response surface model (RSM) with two continuous Xs



215Linearizing nonlinear models

Nonlinear model Equivalent linear model

     XXb Y 21 b
2

b
10        XlogbXlogbbloglog(Y) 22110 

     bbb   Y 21 X

2

X

10        XblogXblogbloglog(Y) 22110 

216Notes



217Fitting regression models

Y X1 X2

height age gender

weight age gender

Open LSSV2 data sets \ teenage 
growth (in JMP)

218Fitting models (cont’d)

Say we want to 
model height as 

a function of 
age and gender

Analyze


Fit Model
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50

55

60

65

70

he
ig

ht

11 12 13 14 15 16 17 18

age

F
M

Regression Plot

Model
Error
C. Total

Source
2

37
39

DF
317.25956
384.64044
701.90000

Sum of Squares
158.630
10.396

Mean Square
15.2592
F Ratio

<.0001*
Prob > F

Analysis of Variance

Intercept
age
gender[F]

Term
39.416521
1.6466542
-1.214868

Estimate
4.945343
0.352418
0.516246

Std Error
7.97
4.67

-2.35

t Ratio
<.0001*
<.0001*
0.0240*

Prob>|t|

Parameter Estimates

Categorical X variables

Dummy variable
representing the
effect of gender
in the equation

Alt click red triangle 
next to Response 

Height


Parameter Estimates

220Numeric coding for two-level categorical X

 Fgender bage bbheight 210 

 







  is  Mgenderif  1

  is  F genderif  1
    Fgender

 
 







 is Mgenderif  agebbb

 is F genderif  agebbb
  height 

120

120
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50

55

60

65

70
he

ig
ht

11 12 13 14 15 16 17 18

age

F
M

Regression Plot

Model
Error
C. Total

Source
2

37
39

DF
317.25956
384.64044
701.90000

Sum of Squares
158.630
10.396

Mean Square
15.2592
F Ratio

<.0001*
Prob > F

Analysis of Variance

Intercept
age
gender[F]

Term
39.416521
1.6466542
-1.214868

Estimate
4.945343
0.352418
0.516246

Std Error
7.97
4.67

-2.35

t Ratio
<.0001*
<.0001*
0.0240*

Prob>|t|

Parameter Estimates

 Fgender 1.21

age 65.142.39

height












 M   gender  if  age 65.1    63.40

 F    genderif  age 65.1    21.38
  

  height

Constructing the model equation

222Notes



223The need for interaction effects

• With this model, the growth    
curves are parallel

• That is an assumption of the   
model, not a result of the 
analysis

• How do we test for parallel 
curves?

50

55

60

65

70

he
ig

ht

11 12 13 14 15 16 17 18
age

F
M

Regression Plot

Intercept
age
gender[F]

Term
39.416521
1.6466542
-1.214868

Estimate
4.945343
0.352418
0.516246

Std Error
7.97
4.67

-2.35

t Ratio
<.0001*
<.0001*
0.0240*

Prob>|t|

Parameter Estimates

224

 

 Fgender*age b                       

Fgender bage bbheight

3

210





This product term allows different slopes for M and F

Interaction effects (cont’d)



225Adding an interactive effect

1. Highlight
2. Highlight

3. Click Interactive effect added to model

226

50

55

60

65

70

h
e

ig
h

t

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

age

F
M

Regression Plot

Intercept
age
gender[F]
(age-13.975)*gender[F]

Term
39.457057
1.6360307
-1.227546
-0.600896

Estimate
4.812681
0.343014
0.502444
0.343014

Std Error
8.20
4.77

-2.44
-1.75

t Ratio
<.0001*
<.0001*
0.0196*
0.0883

Prob>|t|

Parameter Estimates

Non-parallel growth curves









 M    gender  if  age 24.2    30.32

 F    genderif  age 04.1    62.46
  

 height 

    [F]gender 98.13age60.0Fgender 23.1age64.146.39height 

    er[F]gendage60.0Fgender 7.16age 64.146.39height 
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Intercept
age
gender[F]
gender[F]*(age-13.975)

Term
39.457057
1.6360307
-1.227546
-0.600896

Estimate
4.812681
0.343014
0.502444
0.343014

Std Error
  8.20
  4.77
 -2.44
 -1.75

t Ratio
<.0001
<.0001
0.0196
0.0883

Prob>|t|

Parameter Estimates

age
gender
gender*age

Source
   1
   1
   1

Nparm
   1
   1
   1

DF
 223.96652
  58.76589
  30.21331

Sum of Squares
 22.7488
  5.9690
  3.0688

F Ratio
  <.0001
  0.0196
  0.0883

Prob > F

Effect Tests

Response height

Testing the interaction effect

Same information in a
more compact format

Some evidence that
growth curves for

girls and boys 
have different

slopes

 Adjusted R2 went up

 RMSE went down

228Notes



229Predicted values and associated uncertainty

Predicted avg. height in the population of 14 year old girls 61.12

95% confidence interval for avg. height of 14 year old girls [59.60, 62.64]
61.12 ± 1.52

230Notes

The model without interaction gave 61.25 ± 1.55 (slightly larger margin of error). 



231Exercise 11.1  

a) In the table below, record the Adjusted R2 and RMSE from the analysis of height in 
this section. Also, record the P values from Effects Tests. Run the same analysis for 
weight and record the corresponding results. 

b) Which variable (height or weight) has the greater proportion of variation explained 
by age and gender? 

c) Explain why it wouldn’t make sense to compare the two models in terms of RMSE. 

P values

Response Adj. R2 RMSE Age Gender Age*Gender

Height

Weight

232Exercise 11.1 (cont’d)  

d) Both age and gender were statistically significant for predicting height. Is this true 
for weight?

e) For height we found evidence that the growth curves for girls and boys have 
different slopes. Is this true for weight as well? Give the P value that is relevant to 
this question, and explain what it means.

f) Give the predicted average weight in the population of 15-year-old boys. Give a 
95% confidence interval for this average.

g) Save your scripts, close and save the data table.



233Exercise 11.2

Open LSSV2 data sets \ lead time 2 (in JMP).

a) Fit a model for Lead time including the terms 
Process Step, Operator, and their interactive 
effect. 

b) If you got the upper right profiler, you did 
something wrong. (What is the correct modeling 
type for Operator?) The lower right profiler is 
the correct one. 

c) Select Model Dialog on the Response red triangle 
menu. Remove terms under Effects Tests with P 
values exceeding 0.15 (use the Remove button). 
Run the model again. Which terms are left? 
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d) Based on the profiler, which factor has the larger effect on 
lead time? Does this correlate with the P values? Please 
explain.

e) Save your script, close and save the data table.

234Exercise 11.3

Open LSSV2 data sets \ number and size of defects.jmp.

a) Fit a model for Max size including the terms Welder, # Defects, their interactive 
effect, and the quadratic effect for # Defects (cross it with itself). This is the 
response surface model for one categorical factor and one continuous factor. 

b) Select Model Dialog on the Response red triangle menu. Remove terms under 
Effects Tests with P value exceeding 0.15 (use the Remove button). Run the 
model again. Which terms are left in the model? 

c) Based on the profiler, which factor has the larger effect on Max size? Does this 
correlate with the P values? Please explain.

d) Save your script, close and save the data table.
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In this example you will analyze data from an optimization experiment concerning the 
removal of excess metal from castings by belt grinding. 

The belt supplier had been recommending that belts be discarded when they are “50% 
used up.” This rule was based on tests conducted by the supplier to define the usage 
point at which the total of labor and belt costs will be minimized. One of the grinders 
thought the supplier’s rule caused grinders to discard belts too soon. Aside from being 
suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s 
tests did not take into account the time lost to belt changes. 

This grinder developed a new standard under which belts would be discarded only 
after they were “75% used up.” He wanted to do a comparative study to show that his 
method was cheaper overall. After he explains the study with his fellow grinders, 3 
additional factors are added to the experiment. 

Each casting in the experiment was weighed before and after the grinding operation. A 
technician kept track of how many belts were used and how long it took the grinder to 
complete each casting. From this information the total cost per unit of metal removed 
was calculated for each casting.

236

• Y variable:  cost per unit of metal removed

• X variables:

• Open LSSV2 data sets \ belt grinding

• Run the Fit Model script provided in the left panel, run the model. This is the 
response surface model for 4 categorical Xs. Remove insignificant terms (P > 0.15) 
then re-run the model. Which terms are left?

• Use the Prediction Profiler to find the minimum cost factor settings.

• What do you expect the mean and standard deviation of Cost to be after 
implementing the optimal factor settings? 

• Save your script, close and save the data table.

 Contact wheel land-groove ratio (LGR):           Low     or   High      
 Contact wheel material (MATL): Steel   or   Rubber  
 Belt usage limit (USAGE):                               “50%”  or   “75%”
 Belt grit size (GRIT):                                      30       or    50

Exercise 11.4 (cont’d)
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In this example you will analyze data from an optimization experiment concerning the 
bond strength of potato chip bags. 

Chips ‘R’ Us was receiving customer complaints about stale chips, especially from 
customers on airplanes. They traced the problem to the bag sealing process. The 
current process involved a temperature of 150C, a pressure of 100 psi and a dwell 
time of 1.1 secs. The current average bond strength was about 85 psi. 

Process Engineer Chip Kettle ran an experiment to increase the bond strength. 
Production Manager Justin Thyme reminded Chip that he would very much like to 
avoid an increase in the dwell time. 

Justin is able to free up a bag sealer for only so much time each shift. Chip realizes he 
will need two shifts to complete the experiment. He decides to include Shift as an 
additional variable in the analysis just in case there is an operator and/or equipment 
effect.

238

• Y variable:  bond strength 

• X variables and feasible ranges:

• Open LSSV2 data sets \ heat sealing 1

• Run the Fit Model script provided in the left panel, run the model. This is the 
response model for 3 continuous Xs. Remove insignificant terms from the model (P 
> 0.15), then re-run it. Which terms are left?

• Use the Prediction Profiler to maximize the average bond strength. If your solution 
requires a long dwell time, find another solution with a short dwell time.

• What do you expect the mean and standard deviation of bond to be after 
implementing the optimal factor settings? 

• Save your script, close and save the data table.

 Temperature (TEMP):              120  to  180 
 Pressure (PRESS):                     50  to  150
 Dwell time (DWELL):                0.2  to  2.0
 Shift:                                          1   or  2

Exercise 11.5 (cont’d) 
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Open LSSV2 data sets \ outgassing process.jmp.  Current (the Y variable) is the 
electrical current required to heat a filament to a specified temperature. Resist (one of 
the X variables) is the electrical resistance of the filament. Machine (the other X 
variable) identifies which of three processing units was used. We want to develop a 
model for Current as a function of Resist and Machine.

a) Fit a response surface model for Current. (The terms will be Resist, Machine, the 
interaction term Resist*Machine, and the quadratic term Resist*Resist. To get the 
quadratic term, cross Resist with itself.) 

b) Select Model Dialog on the Response red triangle menu. Remove any terms under 
Effects Tests with P value exceeding 0.15. (Use the Remove button.) Run the 
model again. Record the RMSE.

c) Use the Prediction Profiler to find the predicted average Current for each 
machine if we always use filaments with resistance 52.

240Exercise 11.6 (cont’d)

d) The target value for Current is 2. For each machine, we want to find the resistance 
for which the average current is 2. On the Prediction Profiler red triangle, select 
Desirability Functions. It should look like this:

e) Double click in the upper right hand 
panel of the profiler. (Try to avoid the 
plotted line.) You should get the 
dialog shown below.

f) Modify the dialog as shown to the 
right, then select OK. Proceed to the 
next slide.

Machine



241Exercise 11.6 (cont’d)

g) On the Prediction Profiler red triangle, 
select Reset Factor Grid. We want to 
lock the factor setting for Machine, so 
check the Lock Factor Setting box as 
shown here.

h) The vertical line for Machine should 
now be solid instead of dotted. This 
will allow you to optimize Resist
separately for each machine. On the 
Prediction Profiler red triangle, select 
Maximize Desirability. Proceed to the 
next slide.

Machine

242Exercise 11.6 (cont’d)

i) The optimal resistance value for 
machine A is 51.5. Move the solid 
vertical line to machine B, find the 
optimal resistance value. Do the 
same for machine C.

j) What will the average current be if 
we always use the optimal resistance 
values?

k) What will the standard deviation of current be if we always use the optimal 
resistance values?

l) Save your scripts, close and save the data table.

Machine



24312  Transforming the Y variable

Residual ()

Predicted value

Y

X

Residual ()
Predicted value

Predicted Y   b0  b1X

244Notes

A fitted model gives the predicted mean value of the response variable as a function of 
the predictor variables. These predicted mean values are also called predicted values, 
or just predicted for short. The residual value is the data value minus the predicted 
value. Residual values are called residuals for short. 

These terms are easiest to visualize in the simple linear model shown above. A 
predicted value is the fitted line evaluated at some X value. A residual is the difference 
between a measured Y value and the predicted value at the corresponding X.  

Residuals contain information about the magnitude and direction of variability in the 
data relative to the fitted model. An unusually large residual might signal a 
measurement error, data entry error or some other type of outlier. A systematic trend or 
pattern in the residuals might signal an inadequacy in the fitted model.



245Plot of residuals by predicted values

Predicted Y values
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Predicted Y   b0  b1X 

246Notes

Here the residuals from the preceding slide are plotted against the predicted values. 
This is a good all-around diagnostic plot. “Healthy” residuals look like random scatter 
around 0—like a control chart with no assignable causes. Here, it looks like there 
might be a suspicious data point. If it turns out to be just a data entry error, we simply 
enter the correct value, then all is well. Most of the time it’s not that simple. When you 
have an outlier of unknown origin, it helps to run the analysis with and without the 
questionable data point. If you’re lucky, the results will be pretty much the same both 
ways, hence no worries.  

If excluding the outlier does make a significant difference in the results, then you have 
a hard decision to make. The official rule is:  leave the data point in unless you can 
identify the cause.  The idea is to throw it out only if you can demonstrate to an 
impartial jury that it does not come from the population you want to study. This is the 
“pure” approach. This should be tempered with the following practical consideration:  
you don’t want your results to be determined completely by one extreme outlier, even 
if you can’t explain it.  
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Predicted Y   b0  b1X1  b2X2

Y

X1 

X2

Same thing for any number of X’s

•

Residual (+)

Predicted value

248Same thing (cont’d)

Predicted Y values
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Plot of residuals by predicted for any number of Xs

Lower left-hand
quadrant of the 
(X1, X2) plane

Upper right-hand
quadrant of the 
(X1, X2) plane



249Basic model assumption

Y constant (does not depend on the Xs)

X

Y

250

Y proportional to mean Y

X

Y

Most common violation of the basic assumption



251Plot of residuals by predicted values

Predicted Y values
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Y proportional to mean Y  “sideways V”

252Notes

The standard assumption in all comparison and correlation analyses involving a 
quantitative Y variable is that the noise (unexplained/error/residual) variation follows a 
Normal distribution with mean 0 and a standard deviation that does not depend on the 
X variables. 

This simple model has served us well. However, when Normality or constant  is 
grossly violated, something must be done. The most common remedy is to use log(Y) 
as the dependent variable instead of Y. This “trick of the trade” is simple and, in most 
cases, effective.



253Transforming the Y variable

Open LSSV2 data sets \ actual vs estimated (in JMP)

We want to see
how accurately
we can estimate 
the time it takes 

to do certain 
tasks

Analyze


Fit Model

254Transforming Y (cont’d)

Variation
increases
as average 
Actual Hrs
increases

Y  0.835 + 0.632 X 



255Transforming Y (cont’d)

• Click on Actual Hrs

• Click on Transform
red triangle

• Select Log

• Run the model

Log(Y) constantY proportional to mean Y

256Effects of log transformation

     XX038.0898.0 04.145.2eeX038.0898.0expY   X038.0898.0YLog 

Nonlinear model for Y



257Effect of not using Log(Y) when you should
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behavior

• Uncertainty is 
correctly stated
everywhere
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• In this example, the model for Y was questionable because it 
assumed constant . 

• Using Log(Y) as the response is better because it models an 
important aspect of the data:   proportional to mean. 

• Answers to frequently asked questions:

 Satisfying model assumptions always takes precedence over 
Adjusted R2.

 P values always take precedence over Adjusted R2.

 Adjusted R2 should be used only when there are no other 
ways to distinguish one model from another.

Summary



259Exercise 12.1

Open LSSV2 data sets \ number and size of 
defects.jmp

a) Fit a model for Max size including the terms 
Welder, # Defects, their interactive effect, and 
the quadratic effect for # Defects (response 
surface model for one continuous factor and 
one categorical factor). You should see a 
distinct sideways V.

b) Select Model Dialog on the Response red 
triangle menu, apply a Log transformation to 
Max size, re-run the model. The sideways V 
isn’t completely gone, but close enough.

c) Select Model Dialog on the Response red 
triangle menu, remove terms with P > 0.15, run 
the model again (and again, if necessary).

d) Which terms are left in the model equation?

260Exercise 12.1 (cont’d)

f) Save your script, close and save the data table.

When you use a Log or square 
root transformation on Y, it is 
helpful to use log scale for the 

Y axes of the plots

e) Now we have a log-linear simple regression.
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An aerospace manufacturer uses integral castings as structural components of jet 
engines. Integral castings give design engineers more flexibility and simplify the 
assembly process. Defect-free castings are known to have long cycle fatigue life, but 
defects often arise in the casting process and must be weld repaired. The engine 
manufacturer’s metallurgical team has proposed a finishing process of the following 
type to ensure adequate cycle fatigue life of weld-repaired castings:

The team wants to optimize the first two steps in this process to achieve maximum 
cycle fatigue life. Also, though other applications of similar processes have included 
peening, they would like to see if it can be omitted to reduce processing time and cost. 

Due to project time constraints and limited availability of test fixtures, the team can 
perform at most 12 cycle fatigue tests for their experiment.

Heat Treat Polish Peen

Exercise 12.2

262

• Y variable:  Cycles (to failure)

• X variables:

• Open LSSV2 data sets \ weldment fatigue.jmp

• Run the Model script provided in the left panel, run the model. 

• Notice the extreme sideways V on the Residual by Predicted Plot.

• Rerun the model using a Log transformation on Cycles. Remove insignificant terms 
from the model (P > 0.15), then run the model again.

• Use the Prediction Profiler to maximize the cycle fatigue life.

 Heat treat:               Anneal or Solution/age

 Polish: Chemical or Mechanical

 Peen:                       Yes or No

Exercise 12.2 (cont’d)
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A Black Belt wants to minimize the leak rate in plastic containers ultrasonically 
welded together. The X variables and ranges are:

Exercise 12.3

 Force:               70 to 150

 Energy: 275 to 325

 Amplitude:        70 to 90

• Open LSSV2 data sets \ ultrasonic welding 1.jmp

• Run the Model script provided in the left panel, run the model. 

• Use the Prediction Profiler to minimize the leak rate.

• Notice anything odd about your minimized leak rate?

264Exercise 12.3 (cont’d)

• Confirm that the Residual by Predicted Plot shows a sideways V.

• Re-run the script provided in the data table, apply a Log transformation to leak rate, 
run the model again. 

• Remove insignificant terms from the model (P > 0.15), then run the model again.

• Use the Prediction Profiler to minimize the leak rate.



265Exercise 12.4

Open LSSV2 data sets \ electron microscope.jmp

a) Run the Fit Model script using D-Width (a 3 measure of non-repeatability) as the 
response. You should see a distinct sideways V.

b) Select Model Dialog on the Response red triangle menu, apply a Log 
transformation to D-Width, re-run the model. The sideways V isn’t completely 
gone, but close enough. 

c) Select Model Dialog on the Response red triangle menu, remove terms with P > 
0.15. (Have Effects Tests and model dialog open at the same time to avoid errors.) 
You will have to repeat this cycle, then run the model a third time. 

d) We want to minimize D-Width. Set up 
the response goal as shown here.

266Exercise 12.4 (cont’d)

e) It is quite likely that the optimal factor settings will be different for each tool. On 
the Prediction Profiler red triangle, select Reset Factor Grid. We want to lock the 
factor setting for Tool, so check the Lock Factor Setting box as shown here.

f) Maximize the desirability for each tool. Verify the table below.

g) Save your script, close and save the data table.

Tool Total Dose W Area W Time Polish Time Bias D-Width

A 11.8 4 30 5 -10 0.74

B 9.6 4 90 5 -10 0.72

C 9.6 4 90 5 10 1.13
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File cabinet data DOE

Data sets

Data collection

Information provided

Interactive effects?

Time period covered

Larger, “messy”

Routine operation

Correlations

Maybe

Longer

Smaller, “clean”

Controlled conditions

Cause and effect

Definitely

Shorter

13  DOE vs “File Cabinet” Data

All experiments are experiences, but not all experiences
are experiments.—R A Fisher

268Notes

Ronald Fisher was an English geneticist and mathematician trying to increase crop 
yields in the 1920s. There were limited numbers of plots available for field trials, 
gradients in the soil, variable proximity to water sources, differing amounts of sunlight, 
and long lead times. To solve these problems, Fisher developed a body of statistical 
methods known as Design of Experiments (DOE).  

During World War II, Fisher’s techniques were extended and applied to military 
optimization problems. After the war, they were further extended and applied to 
industrial problems like improving the quality and reliability of manufactured 
products. For his lifelong contributions to science and statistics, Dr Ronald Fisher 
eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between 
observational studies (analysis of “file cabinet” data) and designed experiments. This 
distinction is as important today in Six Sigma as it was a century ago in agriculture. 
After all, both are concerning with increasing yields!



269Case study:  structural jet engine components

Typical
jet engine

270Typical structural component of jet engine

• Back in the day:  many small 
pieces welded together

• Now:  one piece casting

• 3 to 6 feet in diameter

• Stainless steel, nickel alloys, 
titanium alloys
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• Value stream:  investment casting of nickel alloy structural 
components

• Process boundaries:  shell making through backend processing

• Experiencing “orange peel” surface condition violating 
customer smoothness requirements

• 12% scrap rate (big parts  big $$)

• Y f(X):  analyze existing production data

Case study (cont’d)

272Investment casting process 
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654321

70

60

50

40

30

20

10

0

% of
castings

with
“orange

peel”

Furnace the shells were baked in

A big signal

274Notes

The strongest correlation in the database involved one of the pre-heat furnaces used to 
bake the ceramic shells before transfer to the casting furnace. Furnace 2 was new and 
had come on line just about the same time orange peel started occurring. Almost 
everyone agreed the new furnace was the problem. 

The casting area manager refused to take Furnace #2 off line. He needed all six pre-
heats to keep the casting furnace running nonstop so he could meet his production 
quotas.

Process Engineer Dave (shown above) was skeptical that Furnace 2 was causing the 
problem. For one thing, the other pre-heats were also producing scrap castings. Also, 
he had spent the better part of the past three months evaluating and qualifying the new 
furnace. 



275

654321
0

Bake
time
(hrs)

Furnace the shells were baked in

40

20

60

Another big signal

276Notes

Dave pointed out that the shell bake times were much longer for Furnace 2 than for the 
other furnaces. There was a minimum required bake time, but no upper limit. Dave’s 
theory was that orange peel was caused by long bake times.

Why did shells stay longer in Furnace 2? 

It turned out there wasn’t room to put the new furnace next to the original five, so it 
had to be located further away from the casting furnace. The fork-lift operators 
wouldn’t drive over there unless they had no shells ready from the closer furnaces, so 
shells tended to sit in Furnace 2 for a long time. 
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• The file cabinet data suggested some plausible hypotheses

• It could not establish the cause of the defect

Autopsy





Short
bake

Long
bake

Furnace #2          Others

• The quantity of data was 
not the problem

• The data lacked the 
structure required to 
determine cause and 
effect

278Notes

There was lots of data in the upper right-hand and lower left-hand cells in the table 
above, but virtually nothing in the other two cells. Making sure that data tables like the 
one above are completely filled out is one of the basic principles of experimental 
design.  

Subsequently, engineers ran enough parts in the upper left-hand corner of the table to 
determine that long bakes were indeed causing the problem. An upper limit on the bake 
time was developed and put in place. Shells that exceeded this limit were scrapped. 
This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange 
peel problem go away.
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Y = f (X) 
analysis

• Data collection in the Measure phase may have 
produced little or no useful information

• DOE is an effective way to collect useful current 
state data in a relatively short period of time

Developing 
the future 

state

• May have multiple potential improvement ideas on 
the table

• DOE is an effective way to evaluate these ideas 
prior to defining the future state

14  The Role of DOE in LSS Projects

280Notes
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• Titanium castings  strong & light 

• Ti develops surface oxidation during 
the cooling phase

• Large Ti castings were failing the 
customer O2 requirement

• Analysis of file cabinet data yielded 
no significant correlations

• Engineers developed a list of factors 
for a DOE

Example

282Example (cont’d)

Factor Levels
Current state

X variable
Possible future
state solution

Slurry for shell

Shell thickness

Shell bake time

Shell bake temp

Alloy grade

Alloy status

Heat shield steel

Cooling fan speed

Batch 1  vs  Batch 2

14 dips  vs  18 dips

6 hrs  vs  48 hrs

1950° vs  2050°

Low $  vs  High $

New  vs  Revert

Mild  vs  SS

2400  vs  3200



















28315  One Factor at a Time?

• In this approach, each factor is varied with all others held constant. 
This way, it is felt, we can see the “pure effect” of each factor. 

• This is one way to apply the scientific method, but it is not the only 
way. 

• For any proposed one at a time experiment, there is usually a 
multifactor experiment providing:

More information

Better results

Same (or possibly smaller) total sample size

• One at a time trials are useful for determining feasible ranges for 
factor in a DOE

284

• The current average bond strength of our potato chip bags is 86 psi

• Based on customer complaints, we need to increase the bond strength 

• The most important control factors in the bag sealing operation are 
temperature and dwell time (see below)

• Secondary objective:  decrease the dwell time if possible

Example:  potato chip bags

Factor Current level Feasible range

Temperature 150º 120 to 180

Dwell time 1.0 secs 0.2 to 2.0
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Bond
strength

100

60

86

Dwell time

0.2 2.01.0

Vary dwell time over its feasible range while holding temperature at 150

88

1.4

One-at-a-time experiment #1

N 9

286Notes

Our process engineer Chip Kettle first studies the effect of dwell time while holding 
temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to 
2.0. Chip finds he can increase the bond strength by 2 psi by increasing the dwell time 
to 1.4. 

Our production manager Justin Thyme is not pleased with the prospect of a 40% 
increase in dwell time. 
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100

60

86

Temperature

120 180150

88

161

One-at-a-time experiment #2

N  9

Bond
strength

Vary temperature over its feasible range while holding dwell time at 1.0

288Notes

Chip now studies the effect of temperature while holding dwell time constant. He seals 
and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can 
increase the bond strength by 2 psi by increasing the temperature to 161. 

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will 
increase the average bond strength by 4 psi (2 + 2). However, it is highly likely that 
Justin will oppose the increase in dwell time, in which case the increase in average 
bond strength will be only 2 psi.
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Temperature

Dwell
time

120 150 180

0.2

1.0

2.0

The multi-factor approach

 9 design points (  )

 2 bags sealed at 
each point

 Total N  18 
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120 150 180

0.2

1.0

2.0

60

60

70

70

80

80

86

86

90

90

88

88

Contour plot of predicted average bond strength

Temperature

Dwell
time

Chip’s prediction of 90 
psi at 161° and 1.4 secs 

was way off

Bond strength 
exceeding 90 psi at 
180° and 0.2 secs 



291Why one-at-a-time doesn’t work

The 3D perspective

Dwell  

Bond

Temp

292Notes

When we experiment with all factors but one held constant, we optimize sequentially 
over one-dimensional profiles. The sequence of solutions generated by this process is 
highly dependent on the starting point. It has very little chance of finding a global 
optimum, and often fails to move a significant distance from the starting point.
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Experimental unit
The outcome of a single application of the 

process being studied 

Sample size
The total number of experimental units 

(“number of runs”) 

Response variable
A Y variable measured or inspected on each 

experimental unit 

16  DOE Terminology

Process

Y

294Notes

The experimental unit is often a part, lot, batch or single transaction of some kind. It 
may also be a test specimen or sample of material. It is important to identify the 
experimental unit—it provides the basis for counting sample size, and sample size is 
critical in determining the statistical significance of the results. 

The experimental unit is determined by the process on which we are experimenting, 
not the measurement plan used to evaluate the results. For example, suppose we test 
100 devices for product life. Suppose we measure a degradation parameter on each 
device every 10 hours until the end of the test at 100 hours. The sample size for the 
study is the number of units (100), not the number of measurements (1000).
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• 11 silicon wafers were subjected to vapor deposition at various temperatures, 
pressures, and Argon flow rates

• The thickness of the resulting layer was measured at 8 locations on each wafer

• What is the sample size?

Temp Press Flow Thickness

180 0.3 30

180 0.3 30

180 0.3 30

160 0.4 10

160 0.4 50

160 0.2 50

160 0.2 10

200 0.4 10

200 0.2 10

200 0.2 50

200 0.4 50
...

Example

296

• The sample size is the number of experimental units, not the total number of 
measurements taken

• The response variables of interest may be statistical summaries of multiple 
measurements on each unit

Temp Press Flow Avg.

180 0.3 30

180 0.3 30

180 0.3 30

160 0.4 10

160 0.4 50

160 0.2 50

160 0.2 10

200 0.4 10

200 0.2 10

200 0.2 50

200 0.4 50
...

Example (cont’d)

Std. dev.
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Factor
An X variable controlled in an experiment, 
varied on purpose to determine its effect 
on the responses  

Level
A particular value or setting of a factor to be 
used in the experiment 

Requirements
All levels of each factor must be logically 
and physically compatible with all levels of 
the other factors  

Temperature

120,150 or 180

DOE terminology (cont’d)

298Notes

Variables used as factors in a designed experiment may or may not be controlled in the 
routine process. What matters is that they can be controlled for the purpose of 
experimentation. 
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Time                                       Volume

Temperature                           Weight

Pressure                                 Length

Energy                                    Width

Voltage                                   Density

Resistance                              Rate

Concentration                         RPM

Flow                                        Intensity . . . 

Examples of continuous factors

DOE terminology

300Notes

• A factor is continuous if it can be varied within some range on a scale of 
measurement

• It is generally preferable to use 3 equally-spaced levels (low, medium, and high) 
for continuous factors
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Old or New

1, 2 or 3 

A, B, C or D

X, Y or Z

Bob, Carol, Ted or Alice

Cyan, Magenta or Yellow

Small, Medium or Large

Method

Tool set

Material

Supplier

Operator

Color

Size

Examples of categorical factors

DOE terminology

302Notes

• A factor is categorical if it represents a set of discrete choices

• It is easier to design and analyze experiments with categorical factors because the 
levels are given, the models are simpler, and we don’t need to interpolate.

• Treating a factor as quantitative implies that any value in the range can be used in 
the process

• If the levels used in the experiment are the only values that can be used in the 
process, the factor should be treated as categorical

• For example, one of the controls parameters for certain electron microscopes has to 
be a power of 2. 

• If you treat this as a continuous factor, the optimal value from the DOE will most 
likely not be a power of 2 
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Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 3 levels

Region in factor space

Response surface modeling

Interpolate between design points

Categorical factors           Continuous factors

Distinctions relative to design and analysis

304

Cannot be controlled in the 
routine process 


Ambient conditions

Raw materials
Operators
Suppliers
Batches
Setups
Shifts 
Lots

.

.

.

Control factors
Can be controlled in the 

routine process


Type of material

Temperature
Pressure
Method

Time
.
.
.

Noise factors

DOE terminology (cont’d)

When possible, it is good 
practice to include selected 

noise factors in experiments. 
Why? 
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Design point
A particular combination of levels 

of the factors.

Design matrix
The set and sequence of design 

points to be used in the experiment.

Temp Press

120           50

120         150

180           50

180         150

Full factorial 
The set of all possible design points

for a given set of factors and levels.

DOE terminology

E
xperim

ental units

 Full factorial

 4 design points

 No repeats

 Sample size = 4 

306

Repeat run
An experimental unit created independently 
of other units at the same design point

False repeat
• Repeated measurement of one unit

• Units in the same batch, when 
optimizing a batch process for which 
there is very little variation within 
batches

Replicate
A set of repeat runs, one for each unit in a 
given set

Temp      Press 

120        50

120      150

180        50

180      150

120        50

120      150

180        50

180      150

DOE terminology

E
xperim

ental units

 Full factorial
 4 design points
 1 replicate
 Sample size = 8 



307Exercise 16.1

A bank wants to increase the yield of its credit card offers. It plans to collect VOC data 
by means of a DOE involving the factors in the table below. The bank plans to send out 
1000 offers for each combination of the factor levels. Based on the data, they will 
determine the combination with the greatest % yield.

(a) How many design points are in the full factorial?

(b) What is the experimental unit?

(c) What is the sample size?

(d) What is the Y variable?

(e) For each factor, decide whether you would treat it as quantitative or categorical (give 
your answers and reasons in the table below).

308Exercise 16.1 (cont’d)

Factor Levels Continuous or categorical?

Introductory APR 0, 2.5, or 5%

Introductory time 
period

3, 6, or 9 months

Gift
None, iPhone, iPad, or 

espresso machine  



30917  Creating a Full Factorial Design

DOE  Full Factorial Design

1. Define responses, factors, numerical ranges for quantitative factors, and levels for 
categorical factors.

I‐phone I‐pad

310Creating a full factorial (cont’d)

DOE  Full Factorial Design
2. Add extra “center” points, request one or more 

replicates, and/or pre-sort the matrix if desired. 
Use the Back button to modify Step 1.

• Each “center” point = one additional row in the matrix

• Each “replicate” = one additional set of 36 rows



311Simulating response data

3. Create two new columns as 
shown here. 

4. Define Sent with a formula 
consisting of the constant value 
1000.

5. The Returned column is where we 
would enter the number of offers 
accepted and returned for each of 
the 36 offer types.

6. For this exercise, define Returned
with the formula defined on the 
next slide.

312Simulating response data (cont’d)

7. Define % Yes
with the formula 

8. Run the Model 
script provided 
in the left panel. 

Functions (grouped)


Random


Random Integer[n1]


Random Integer[50]

100
Sent

Returned








313Analyzing the data

314Maximizing % Yes

• Point and click to find the combination with the highest % Yes

• Your profiler won’t look like this one

• Your best combination may not make sense
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Quantitative 
Y

Average Y as a function of X has no jumps or corners
(assumption of smoothness)

Quantitative X

18  Statistical Assumptions

316

A hypothetical smooth response function. 

We never know the true response function, but often we have information about its 
general properties. For quantitative X and Y, smoothness of the Y  f (X) relationship is 
one such property. It means the function can be well approximated over sufficiently 
short intervals by a polynomial, usually linear or quadratic. This is necessary in 
optimization experiments where we want to interpolate between the experimental 
design points. 

Notes



317Non-smooth response function

Average Y as a function of X has jumps and/or corners

Quantitative 
Y

Quantitative X

318

A hypothetical non-smooth response function. 

A function with jumps or sharp corners will not be well approximated by low-order 
polynomials in neighborhoods of the associated X values. This is a problem in 
optimization experiments because we want to interpolate. 

It is not a problem in screening experiments, because there we are merely trying to 
identify factors with large first-order effects. Accurate approximation throughout the X 
range is not required.

Jumps and sharp corners often occur outside the feasible operating range of the 
process. In fact, such discontinuities often define the feasible operating range. A 
smooth response function is usually a safe assumption as long as we are not operating 
too close to a “cliff.”

Notes
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“One should not increase, beyond what is 
necessary, the number of entities 
required to explain something.”

William of Occam, medieval philosopher 

Occam’s razor

Exact “French curve” Linear plus noise

320Notes

Occam’s razor represents a preference for simple explanations over complex ones. This 
reflects a belief that simple hypotheses are more likely to be true than complex ones. 
This belief is not always justified, but it is efficient in that it leads to models with just 
enough complexity to explain a given set of observations.

We can always find a sufficiently complex curve passing exactly through any given set 
of data points. The predictive ability of this “over-fitting” method is notoriously poor. 
The more successful “Occam” strategy is illustrated by random variation superimposed 
on a simple linear model.



321

 Y   f (X1, X2, X3, . . .)   noise

 Can’t assume f (X) explains everything (hence noise term)

 Can’t assume f (X) is linear, but quadratic is sufficient 

 Don’t need cubic or higher order models

 f (X) must include all second order interactive effects

 Don’t need higher order interactive effects

Standard assumptions on the response function

322Notes



323Standard assumption on the noise

Normal distribution with Y constant
(does not depend on the Xs)

X

Y

324

Y proportional to mean Y

X

Y

Most common violation of the noise assumption

Standard fix
• Use LOG(Y) as the response variable
• If that doesn’t work, try SQRT(Y)



325

  
 
 

bags 18

2 2
5

2
43210 DbTbTDbDbTbbY 

For each of 18 potato chip bags, we have data on

T  bonding temperature

D  bonding time (duration)

Y  bond strength

The best fitting response surface model (RSM) is the one whose 

parameters

b0, b1, b2, b3, b4, b5

minimize the sum of squared residuals:

Least squares model fitting

326Least squares RSM model

         22 D2.13T1.16TD8.31D7.7T3.887.2 YAvg. 

least squares 
modeling.xls



32719  Statistical Models

Average Bond  =  67.2 + 8.3(TEMP) + 8.3(DWELL) 

Linear in the Xs

DWELL

328Notes

Response surface:  tilted plane.

Simple linear models like the one shown above are used in screening designs. In many 
cases, simple linear models fit the data poorly, and do not give accurate predictions. 
They should not be used for optimization experiments.
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Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMPDWELL)

Linear interaction model

DWELL

330Notes

Response surface:  saddle.

Linear interaction models like the one shown above usually fit the data much better 
than simple linear models. They are good for optimization experiments where all 
factors are categorical, but they should not be used for optimization experiments 
involving quantitative factors. 
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Avg. BOND  = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMPDWELL)

- 15.5(TEMPTEMP)  - 12.9(DWELLDWELL)

Response surface model (RSM)

DWELL

332Notes

Response surface:  ridge.

The response surface model (RSM) shown above is the standard model for 
optimization experiments. It differs from the linear interaction model in that it includes 
quadratic (squared) terms for all quantitative factors. In most experiments involving 
quantitative factors, the RSM fits the data much better than the linear interaction 
model.
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Avg. TENSILE  = 22.5 - 3.3(RATE) + 3.4(RPM) - 3.6(RATERPM)

- 4.8(RATE  RATE) - 5.6(RPM  RPM)

20

15

RATE

RPM

TENSILE

RSM for a different data set

334Notes

Response surface:  hilltop. 

Other RSM shapes include inverted saddles, inverted ridges, and bowls.

You can’t tell from the plot, but in this example the RSM model does not fit the data 
very well. 
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Avg. TENSILE  = 22.4 - 8.5(RATE) + 8.6(RPM) - 3.2(RATE  RPM)

- 6.1(RATE2) - 4.8(RPM2) - 7.0(RATE2  RPM)

+ 8.1(RATE  RPM2)

TENSILE

20

15

10

RATE

RPM

RSM plus quadratic interactions

336Notes

The shows a more complicated quadratic model fit to the same data as on the previous 
page. This model turns out to fit the data well.

Model terms like 
RATE  RATE  RPM

RATE  RPM  RPM 

RATE  RATE  RPM  RPM 

are called quadratic interactions. Adding one or more quadratic interactions is a good 
thing to try when an RSM model does not fit. 



337Higher-order polynomial models?

3rd order polynomial (cubic)

Avg. Y   b0  b1X  b2X2  b3X3

4th order polynomial (quartic)

Avg. Y   b0  b1X  b2X2  b3X3  b4X4

X

Y

X

Y

338Notes

Even though third- or higher-order models may fit the data better than quadratic 
(second-order) models, they are rarely used in DOE. Why? They require much larger 
samples sizes for any given set of factors.  

It is much more common to use quadratic models in an iterative fashion. A quadratic 
model may not fit the data well over a large initial factor space, but it almost always 
tells us which subset of the initial factor space is most likely to give the results we are 
looking for. The next step is to run another quadratric experiment in the smaller 
region. The smaller the factor space, the better the quadratic model will fit the data.

This concept is illustrated on the next page.
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First experiment, wide ranges  “big picture”

Low X

Y 
(response to be 

minimized)

True
response
function

First quadratic
approximation

Medium X High X

Data points

Iterated quadratic experiments 

340

Low X

Second quadratic
approximation

Medium X High X

Y

Second experiment, narrow ranges  accurate modeling

Iterated quadratic experiments (cont’d) 
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1 if  MATL  Steel

2 if  MATL  Rubber

1 2

Models for categorical factors

Two-level categorical factor

MATL  Steel or Rubber

Average COST  

342Equation form of model

Categorical factors are represented by indicator variables
(also known as dummy variables)

Average COST   b0  b1 MATL[Steel]

MATL[Steel]  
1     if  MATL Steel

 if  MATL Rubber
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Avg. COST   b0

 b1 LGR[Low]   

 b2 MATL[Steel]

 b3 USAGE[50%]

 b4 GRIT[30]

Simple linear model with all factors categorical

• Analogy:  blue book pricing of used cars

• Base price + extra for power windows 
+ extra for air conditioning
+ extra for cruise control
etc.

344

Avg. COST  =  b0

+  b1 LGR[Low]        

+  b2 MATL[Steel]

+  b3 USAGE[50%]  

+  b4 GRIT[30]

+  b5 LGR[Low]  MATL[Steel]

+  b6 LGR[Low]  USAGE[50%] 

+  b7 LGR[Low]  GRIT[30]

+  b8 MATL[Steel]  USAGE[50%] 

+  b9 MATL[Steel]  GRIT[30]

+  b10 USAGE[50%]  GRIT[30]

Categorical interaction model

# Factors      4         5        6  

Full factorial (FF)    16       32      64

Min. sample size    11       16      22

% of FF     69       50     34
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• Bold strategy

• Control group

• Replication

• Randomization 

• “Blocking”

20  Design Principles

346Notes
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Quantitative X

Y

Linear approximation 

Bold strategy

Use the entire feasible operating range in a first experiment

Low High

True response function

(X, Y) data points

348

Quantitative X

HighLow

Not bold enough

Y

• Low and high levels of X are too close together

• We mistakenly conclude that X has no effect on Y
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For each factor, 
one of the levels 
should match the 

current value

Temp      Press    Dwell    Mat’l

120         50       0.2       A
120       100       1.1       B
120       150       2.0       C
150         50       1.1       C
150       100       2.0       A
150       150       0.2       B
180         50       2.0       B
180       100       0.2       C
180       150       1.1       A

Control group

350Notes

The units involved in a DOE may turn out to be uniformly different from those in 
current production — either better or worse.  This can be due to the effects of noise 
variables on production units, or to special circumstances surrounding the creation 
and handling of experimental units. 

For each factor, one of the DOE levels should match the current state value of that 
factor. This allows valid comparisons between current state and experimental process 
settings. This is especially important when non-routine measurements, tests or 
inspections are applied to experimental units. 
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Use repeat runs to

quantify the noise 

in the experiment

and increase the 

signal-to-noise ratios

Temp      Press

120        50

120        50

120      150

120      150

180        50

180        50

180      150

180      150

1

2

3

4

5

6

7

8

Replication

E
xperim

ental units

352Notes

Replication forces redundancy into the experiment. This is necessary for two reasons:

• To quantify the magnitude of noise in the experimental data  differences 
between units at the same design point are, by definition, due to noise variables.

• To reduce the influence of noise variables on the experimental results by 
averaging multiple units at the same design point. In other words, to increase the 
signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the 
validity of the results. Is there anything about the run order shown above that makes 
you nervous? Please explain.
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Use a random number 

generator determine 

the sequence in which  

experimental units are 

created and/or evaluated

Temp     Press

120      150

180        50

180        50

120      150

180        50

120      150

180      150

120        50

1

2

3

4

5

6

7

8

Randomization

E
xperim

ental units

354

Benefits
• Reduces the chance of biased results due to noise variables

• Results are more convincing to skeptics

• Doesn’t require control of noise variables

Drawbacks
• Impractical when some of the factors are hard to change

• Does not quantify the effects of noise variables

What happens if you don’t randomize?
• Same thing as driving without car insurance

• Nothing happens, unless you have bad luck

• Warning:  strong temptation to do false repeats

Randomization
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Include noise variables
as additional factors

in the experiment Block 1
Operator:  Bob

Raw material:  Lot 1

Temp      Press

120        50

120      150

180      150

180        50

180      150

180        50

120        50

120      150

1

2

3

4

5

6

7

8

“Blocking”

• Noise variables are used to 
divide the experiment into 
homogeneous “blocks”

• Effects of control factors   
are determined within   
each block

Block 2
Operator:  Carol

Raw material:  Lot 2

356Agricultural origin of “blocking”

• Want to increase crop yields

• Experimental units are plots of land in a field

• Compare varieties, fertilizers, etc.

Block 1

Block 2

• Need 50 plots, not 25

• Have to use a second field

• Differences in the soil will
cause differences in yields

Plots

More plots
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• Makes the experiment more representative of the real process

• Makes predictions more reliable 

• Temporarily converts noise variables into signal variables

• Quantifies the effects of noise variables 

• Increases signal to noise ratios without increasing sample size

• Usually protects against general time trends

Benefits of blocking

358Notes



35921  The Custom Design Process
1. Specify the response variables and general goals (maximize, minimize, or 

match target).

2. Specify the factors. For continuous factors, give the desired numerical ranges 
(high and low). For categorical factors, give the levels.

3. Calculate and enter the required sample size (see section 22).

4. Specify the blocking variable(s).

5. Specify the statistical model (usually RSM). 

6. Create the design matrix.

7. Back up to make changes, or create the data table. 

8. Sort the data table if necessary, save for later.

3601. Responses and general goals

DOE  Custom Design



3612. Factors, ranges for continuous, levels for categorical

Do not use this option!

dwell

3623. Calculate and enter the sample size

Enter value from
sample size
calculation

dwell

dwell

Do not use this option!



3634. Specify the blocking variable(s)

• DOE will take 2 shifts  2 blocks

• Calculated N  32

• Ask for 16 runs per block

364

Response Surface Model

5. Specify the statistical model 

Don’t label your blocks until 
after you have done this!



3656. Create the design matrix 

3667. Back up to make changes, or create data table  

Rarely need to 
change this

Use this if you 
want to make

changes

Use this to create 
an editable data 

table
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Double-click here . . . then here

8. Sort “hard-to-change” factors within blocks, save

Click here . . . then OK

Tables  Sort

368Notes



369Exercises

Use the Custom Design process to create RSM design matrices for the exercises on 
the following pages. In addition to special instructions given in each case, follow 
these general instructions:

• If a numerical range is given, the factor is continuous. 

• If levels are given, the factor is categorical. 

• Use the given sample size when creating the design.

• Always sort the data table by the blocking factor.

• Some factors are “hard to change” (temperature, for example). Sort by hard-to-
change factors secondary to the blocking factor. Leave other factors randomized.

• For each exercise, have the instructor review your matrix when you are finished.

For these exercises, you don’t have to specify the Y variables

370

• Hard to change factors:  none

• Blocking factor:  none

• Experimental unit:  one small test piece

• Sample size:  12 (constraint on available test fixtures, not 
from a calculation)

Control factors                              Levels

Heat treat                Anneal             Solution/age

Polish Chemical         Mechanical

Peen                        Yes                  No

Exercise 21.1
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• Hard to change factors:  LGR and MATL (have to replace 
one wheel with another)

• Blocking factor:  Time of day (morning vs. afternoon)
(Why?)

• Experimental unit:  one large casting

• Calculated sample size: 18

Control factors                                             Levels

Contact wheel land-groove ratio (LGR)           Low           High

Contact wheel material (MATL) Steel          Rubber        

Belt usage limit (USAGE)                                 “50%”       “75%”

Belt grit size (GRIT)                                          30              50

Exercise 21.2

372

• Hard to change factors:  none

• Blocking factor:  Cavity (parts are molded from 4 tool 
cavities)

• Experimental unit:  one welded plastic container

• Calculated sample size:  68

Exercise 21.3

Control factors                           Ranges

Force                                 70 to 150

Energy                             275 to 325

Amplitude                          70 to 90



37322  Sample Size Calculation

• Sample size (N) is the total number of experimental units

• Also known as “number of runs”

User inputs
(Other than factor info) Abbreviations

Expected standard deviation of 
noise/error/residual/unexplained variation in Y RMSE, noise

Acceptable margin of error for predicting
average Y in the population MOE

Smallest change in average Y worth detecting 
(difference to detect) DTD

374Notes 

RMSE (noise) can sometimes be estimated from historical data or trial runs before the 
experiment. It could also be the RMSE from a previous experiment with the same Y 
variable. As a last resort, data on a similar process or product could be used. 

MOE and DTD are expressed in the units of the Y variable, not as percentages or 
proportions. The values assigned to MOE and DTD are judgments that must be made 
by the project team.



375Interpreting MOE and DTD

Y variable Population parameter to which MOE and DTD apply

Dimension Average dimension

Strength Average strength

Cycle time Average cycle time

Variability in Y Standard deviation

Pass/fail Fraction or % defective

Time to failure
Failure probability at a given mission time, or

Time with given reliability

376MOE and DTD will vary over the factor space 
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Prediction Profiler

• Profiler for an RSM model with 4 factors, N  32

• MOE is 2.55 at the settings shown above, but it 
varies from 2.08 to 2.86 

• The most we can get from a sample size calculation 
is an average MOE or DTD 



377Average variance of prediction (AVP)

• AVP is a function of the design matrix, including N 

• Average MOE is related to AVP

• Solve this to find the required AVP for your expected 
RMSE and desired MOE

2

RMSE

MOE

4

1
    AVP Required 








    AVPRMSE2    MOE Average 

378

• It is most common to specify DTD rather than MOE

• Often DTD is expressed in terms of a project metric:

(Current state value) minus (Goal value)

• There is a relationship:

• From this we get 

AVP (cont’d)

2DTD    OEM 

2

RMSE

DTD

8

1
    AVP Required 










379Steps for DOE sample size calculation 

1. Determine your expected RMSE and desired DTD. 

2. Calculate the required AVP. 

3. In JMP, select DOE  Custom Design  red triangle  Optimality 
Criterion  Make I Optimal Design.

4. Enter your factors into Custom Design. (For categorical factors, you must 
give the number of levels. Except for this, everything can be left generic.)

5. Select the statistical model (usually RSM).

6. Use Make Design to calculate AVP for each N you want to try.

7. Use Back to increase N until AVP is just below the value in step 2.

380Example

• For the bond strength experiment, the design team chose: 

DTD  3 psi

• Based on the standard deviation of bond strength under 
stable process conditions in the past, they chose: 

RMSE  2.1 psi

• Plug into the formula:

255102.0
1.2

3

8

1

RMSE

DTD

8

1
AVP

22
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381Example (cont’d)
Design Diagnostics

I Optimal Design

D Efficiency 43.55102

G Efficiency 93.56364

A Efficiency 30.24629

Average Variance of Prediction 0.635172

Design Creation Time (seconds) 0.066667

Design Diagnostics

I Optimal Design

D Efficiency 49.61847
G Efficiency 80.47364

A Efficiency 36.99781

Average Variance of Prediction 0.254282

Design Creation Time (seconds) 0.133333

Design Diagnostics

I Optimal Design

D Efficiency 49.45745
G Efficiency 76.53297

A Efficiency 38.47656

Average Variance of Prediction 0.148381

Design Creation Time (seconds) 0.216667

543216

382Notes 

Shown on the left is the Custom Design “mock up” for an RSM experiment with 3 
quantitative factors and 1 categorical factor with 2 levels. Shown on the right are the 
calculated AVPs for sample sizes 16, 32, and 54. For each sample size, click on Make 
Design. The AVP is given in the Design Diagnostics element. To do another 
calculation, click on Back and repeat this process.

The AVP for  N  32 is just under our require AVP (0.255). This is the sample size that 
was chosen for this experiment. 

A disturbing feature of the AVP calculation is that it may vary when you hit Make 
Design multiple times with the same sample size. This happens because JMP may not 
select the same design every time. Fortunately, the variation in AVP isn’t large enough 
to make a significant difference the sample size.
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We are planning an experiment to optimize a monofilament extrusion process with 4 
continuous factors. A key response variable is tensile strength. We want to do a 
sample size calculation based on the following information:

• The standard deviation of tensile in recent production during stable periods is 
2314.4 psi.

• The difference to detect (DTD) in mean tensile is 3000 psi.

Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (cont Y). 
Enter the information given above to get the required AVP. Use this to determine the 
required sample size.

Exercise 22.1 

384

We are planning an experiment to optimize an ultrasonic welding process with 3 
continuous factors and a 4-level categorical factor. A key response variable is 
the weld depth. We want to do a sample size calculation based on the following 
information:

• The standard deviation of weld depth in recent production during stable periods is 
0.0236 mm.

• The difference to detect (DTD) in mean weld depth is 0.03 mm.

Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (cont Y). 
Enter the information given above to get the required AVP. Use this to determine the 
required sample size.

Exercise 22.2
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Factor Range Level 1 Level 2 Level 3 Level 4

Resin amount 25 - 75

Catalyst amount 0 - 1

Pigment amount 1 - 5

Resin type Acrylic Polymer Urethane

Catalyst type Tin Zinc

Pigment type Cb FeO2 TiO2

Exercise 22.3

Calculate the sample size for this automotive paint experiment. The experimental units 
are 8½ × 11˝ panels. The Y variable is % gloss. The standard deviation of Y is about 
2.5. In the company’s experience, customers cannot perceive a difference in gloss of 
less than 5 percentage points. Based on this, 5 was chosen as the DTD.

386Exercise 22.4

Factor Range Level 1 Level 2 Level 3 Level 4

Addition amount 1 - 5

Addition type Acrylic Oil Polymer Urethane 

Addition point Grind Let-down Post

Addition method Cow Lift Shaker

Calculate the sample size for this second automotive paint experiment. The 
experimental units are 8½ × 11˝ panels. The Y variable is % gloss. The standard 
deviation of Y is about 2.5. In the company’s experience, customers cannot perceive a 
difference in gloss of less than 5 percentage points. Based on this, 5 was chosen as the 
DTD. 



 



38723  Workshop:  Paper Helicopters

388Notes



1. Do a sample size calculation. 

2. The instructor will tell you how many blocks will be needed. Create a design matrix 
with the calculated sample size and the indicated number of  blocks.

3. Paper will be treated as a hard-to-change factor. Sort the matrix accordingly.

4. Save the data table as Helicopter DOE.

Factor Type Level 1 Level 2 Level 3

Paper Categorical Light Heavy

Blade length Continuous 3.25" 4.5" 5.75"

Stem length Continuous 3.5" 4.0" 4.5"

Midriff taper Categorical No Yes

Paper clip Categorical Small Large

We want to maximize the flight time of paper helicopters dropped from a fixed height. Here 
are the factors and levels:

For continuous 
factors you enter 
only the low and 

high levels

Helicopter DOE

5. We will be dividing into teams to run this experiment. The instructor will show each 
team how to build the helicopters.  

6. Build the helicopters called for in Block 1 of the design matrix in the data table saved 
by one of the team members. (The matrix produced by Custom Design will be different 
for each person.) 

7. Double-check the helicopters against the matrix.

8. Fly the helicopters, enter the flight times into the data table. 

9. For Block 2, everyone changes manufacturing jobs. Block 1 people will provide cross-
training as needed before starting Block 2. The new teams will then build the 
helicopters called for in Block 2.

10. Double-check the helicopters against the matrix.

11. Fly the helicopters. The metrology teams should be the same as in Block 1. Enter the 
flight times into the data table. 



12. When the data entry is complete, the data table should be saved and shared with all 
team members. Each team member is to independently run the analysis. Find the best 
factor settings, the resulting predicted average flight time, and the RMSE.

13. If different team members get different results, find the reasons for these differences 
and make the necessary corrections. 

14. Build a confirmation helicopter using the best factor settings. 

15. Fly and time the confirmation helicopter. The confirmation flight time should fall 
within 2 RMSEs of your predicted average flight time.

16. Save your script and data table.  
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38924  Multiple Response Optimization

• Experiments may have more than one response 
variable

• You can optimize each response separately . . . 

• . . . but you will get different answers for each 
response!

390

In real experiments there are always multiple response variables. If you think you have 
just one, you haven’t finished planning your experiment. For example, any change you 
make to a process could affect multiple Y variables. All of these should be considered 
as possible response variables for your experiment.

If there are only two factors, we can jointly optimize multiple responses by overlaying 
their contour plots. The more factors there are, the more difficult this becomes. In this 
section we introduce and illustrate the most widely used general technique for jointly 
optimizing multiple responses when there are three or more factors.

Notes
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TEMP(120,180)
PRESS(50,150)
DUR(0.2,2)
TEMP*TEMP
TEMP*PRESS
PRESS*PRESS
TEMP*DUR
PRESS*DUR
DUR*DUR
SHIFT

Source
1
1
1
1
1
1
1
1
1
1

Nparm
1
1
1
1
1
1
1
1
1
1

DF
1540.835

8.439
1606.813
1363.630

14.607
1.385

20235.249
0.759

715.715
3.578

Sum of Squares
366.0070

2.0046
381.6793
323.9142

3.4697
0.3290

4806.642
0.1804

170.0096
0.8499

F Ratio
<.0001*
0.1715
<.0001*
<.0001*
0.0766
0.5724
<.0001*
0.6754
<.0001*
0.3671

Prob > F

Effect Tests

Response BOND

Example 1

TEMP(120,180)
PRESS(50,150)
DUR(0.2,2)
TEMP*TEMP
TEMP*PRESS
PRESS*PRESS
TEMP*DUR
PRESS*DUR
DUR*DUR
SHIFT

Source
1
1
1
1
1
1
1
1
1
1

Nparm
1
1
1
1
1
1
1
1
1
1

DF
6.821113

25.625986
2.121674
2.148242
0.300304
0.257674
1.613751
1.065140
1.372401
0.137813

Sum of Squares
85.3929

320.8095
26.5611
26.8937

3.7595
3.2258

20.2024
13.3344
17.1810

1.7253

F Ratio
<.0001*
<.0001*
<.0001*
<.0001*
0.0661
0.0869
0.0002*
0.0015*
0.0005*
0.2032

Prob > F

Effect Tests

Response PRI NT

392

The data table heat sealing 2.jmp contains the data from an experiment to optimize 
the sealing of potato chip bags. In addition to bond strength (BOND) we now have a 
second Y variable PRINT, a rating of cosmetic quality based on visual inspection. 
PRINT is defined so that higher is better.

TEMP and DWELL have significant linear and quadratic effects on BOND. PRESS 
has very little effect on BOND, but a big effect on PRINT. This is good news:  it means 
we can use PRESS to bring PRINT up as high as possible, then use TEMP and/or 
DWELL to get the BOND we want.

SHIFT, a blocking factor, came up insignificant for both responses. Is this good or bad?

Notes
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B
O

N
D

93.2

8.9

80.12406
±2.2485

P
R

I 
N

T

5.06209

0.4

4.349722
±0.3159

TEMP

12
0

18
0

156

PRESS

50 15
0

150

DUR

0.
2 2

0.5

Prediction Profiler

Example 1 (cont’d)

We want BOND  80 and PRINT as large as possible.
Here is a solution:

394

In this example is it easy to find solutions using the Prediction Profiler. Obviously, 
PRESS should be 150, because this increases PRINT without significantly affecting 
BOND. Once we have done that, there are many combinations of TEMP and DWELL 
that predict 80 psi for BOND. One such combination is shown above. 

Notes



395

S
T

R
E

N
G

T
H 30000

10000

31195.16

D
U

C
T

IL
IT

Y 30

10

11.39233

VISC

60 8075.5

TEMP

26
0

32
0320.6

RATE

10
0

20
0140

RPM

15
0

30
0297

Prediction Profiler

(VISC, TEMP, RATE, RPM)  (76, 321, 140, 297)
DUCTILITY  11%

Example 2

396

The data table extrusion 2.jmp contains data from an experiment to optimize the 
mechanical properties of an extruded plastic material We want STRENGTH as high as 
possible while maintaining a lower bound of 20 for DUCTILITY.

As shown above, it is easy to find a great solution for STRENGTH just by visually 
exploring the Prediction Profiler, but the resulting DUCTILITY is too low.

Notes
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S
T

R
E

N
G

T
H 30000

0

3280.752

D
U

C
T

IL
IT

Y 40

20

34.95601

VISC

60 8066.7

TEMP

26
0

32
0259.6

RATE
10

0

20
0202

RPM

15
0

30
0255

Prediction Profiler

(VISC, TEMP, RATE, RPM)  (67, 260, 202, 255)
STRENGTH  3281

Example 2 (cont’d)

398

As shown above, it is easy to find a great solution for DUCTILITY just by visually 
exploring the Prediction Profiler, but the resulting STRENGTH is very low.

Notes



399Joint optimization of responses

• Each response has a goal (minimize, maximize or target)

• Define a “desirability function” for each response

• Combine the individual desirabilities into a single overall
desirability function

• Maximize the overall desirability to jointly optimize all
responses

400

Desirability is a unitless quantity between 0 and 1, defined so that higher is better. JMP 
supplies default desirability functions based on the experimental data for your response 
variables. You must redefine the desirability functions so that they represent your 
objectives for each response variable. 

You start by setting the general goal for each response: Maximize, Minimize or Match 
Target. Then you specify low, middle, and high data values to fine tune the shape of the 
desirability functions.

Notes
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0

0.5

1

Low Mid High

Default desirability functions

0

0.5

1

Low Mid High

0

1

Low Mid High

0.5

Maximize Minimize

Match Target

402

The desirability function is increasing for Maximize responses and decreasing for 
Minimize responses. It is bell-shaped for Match Target responses. 

For Minimize responses with a lower bound of 0, it is a good idea to make the Low
value equal to 0. Examples are number of defects, fraction defective, cycle time, 
standard deviation, cost of waste, etc.

The low and high values for a Match Target response are used to define the allowable 
deviation from the target value.

Notes
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The default overall desirability for Y1 and Y2 is 

w1  weight   relative importance of Y1

w2  weight   relative importance of Y2

w1  w2 1

Overall desirability

This can be customized to

   tydesirabili Y tydesirabili Y 21 

    21 w
2

w
1 tydesirabili Ytydesirabili Y

404

The overall desirability function is calculated as a geometric mean of the desirability 
functions for individual response variables. It is important to use a geometric mean 
instead of an arithmetic mean. With the geometric mean, the overall desirability will be 
zero whenever any individual response desirability is zero. This prevents the 
optimization algorithm from finding solutions that are excellent for some responses but 
completely unacceptable for others.

A weighted geometric mean can be used. The weights (called importance in JMP) 
allow users to specify relative priorities for the responses. The higher the importance,  
the greater the influence the response has in determining the overall solution found by 
the optimization algorithm. 

You can enter any positive numbers for the importance. The program automatically 
normalizes them to add up to 1.

Notes
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Example 2 (cont’d)

Desirability
Functions

Overall
desirability
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Here is the default Prediction Profiler for the four-factor extrusion experiment. The 
individual desirability functions are shown in the right-most column. In this case 
they are both increasing functions because our general objective for both responses is 
Maximize.

The overall desirability is a function of the experimental factors, and is shown in the 
bottom row. By default, it is the unweighted geometric mean of the individual 
desirability functions.

Notes
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Example 2 (cont’d)

Red
triangle

Maximize
Desirability

408

Here is the Prediction Profiler after selecting Maximize Desirability from the red 
triangle menu. We have increased STRENGTH from 21262 to 25761. DUCTILITY 
has dropped from 24.2 to 22.1, but it is still greater than 20.

In presenting these results to a group of stakeholders, including some engineers, the 
project team is challenged to increase the STRENGTH even further. Based on 
knowledge of the extruded material, it is known that this would require a further drop 
in DUCTILITY. This is confirmed by examination of the Prediction Profiler (please 
convince yourself this is true). With DUCTILITY currently at 22.1, there is a good 
possibility we can increase STRENGTH without driving DUCTILITY below 20.

Notes
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To obtain the results shown above, double-click in the individual Desirability pane for 
DUCTILITY (on the right), change the specifications as shown below, then run 
Maximize Desirability again.

We have increased STRENGTH to 27209 by allowing DUCTILITY to fall to 20.5. 

From the output shown above, are sure that average DUCTILITY will exceed 20?

Notes
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(a) Open or go to heat sealing 2. Run the model script. Use the Effects Tests elements 
for Bond and Print to prune out any model terms with P > 0.15 for both responses. 
Re-run the model as needed.

(b) Go to the Prediction Profiler for your final model. Our target for mean Bond is 80, 
with a tolerance of ±5. The highest (best) possible value for mean Print is 5. We 
require mean Print to be greater than 4. Modify the desirability functions for Bond
and Print accordingly. On the red triangle menu for the Prediction Profiler, select 
Save Desirabilities.

(c) Use Maximize Desirability to find the optimal factor settings. Have we achieved 
our objectives?

Exercise 24.1

412

d) The Production Manager is unhappy with our solution. It achieves excellent Bond
and Print, but the proposed increase in Dwell would reduce throughput from 300 to 
50 bags per minute! 

To look for a compromise, select Reset Factor Grid on the Prediction Profiler red 
triangle. Click OK for Temp and Press. We want to lock the value of Dwell at a low 
value, say 0.5. Type 0.5 for Current Value, check the Lock Factor Setting box, then 
click OK. The vertical line on the Dwell profile should now be solid. 

e) Use Maximize Desirability to find the constrained optimal factor settings. Is 
everybody happy now?

f) Save your script, close and save the data table.

Exercise 24.1 (cont’d)
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a) Assembly of inkjet print cartridges includes an ultrasonic welding operation with 
control parameters Force, Energy and Amplitude. The Y variables are Weld Depth
and Leak Rate. The noise factor Cavity is the tool cavity the plastic cartridge 
bodies were molded in. 

Open ultrasonic welding 2. Run the model script, using a Log transformation for 
Leak Rate. Prune the model as needed, run again.

b) Go to the Prediction Profiler. The target for mean Depth is 0.20, with a tolerance 
of ± 0.05. The lowest (best) possible value for mean Leak Rate is 0. We require 
mean Leak Rate to be no larger than 0.10. Modify the desirability functions for 
Depth and Leak Rate accordingly. Save the desirabilities (red triangle on 
Prediction Profiler). 

c) Use Maximize Desirability to find the optimal factor settings. Have we achieved 
our objectives?

Exercise 24.2

414

d) Save your script, close and save the data table.

Exercise 24.2 (cont’d)
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a) Open electron microscope. Run the Fit Model script, but this time go to the Model 
Dialog. Include all 4 response variables, apply Log transformations to all of them, 
then run the model again. In reality, you should remove all terms that have P  > 
0.15 for all responses. Consider that a homework assignment. For now, just let it 
be.

b) Go to the Prediction Profiler. We want to minimize all 4 responses. Use the same 
desirability functions for all 4 responses:  High = 2, Middle = 1, Low = 0. Save the 
desirabilities (red triangle on Prediction Profiler). 

c) Run Maximize Desirability to find the optimal factor settings. Give the predicted 
mean values for all responses. Have we achieved all of our objectives?

d) Save your script, close and save the data table.

Exercise 24.3

416Notes
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Larger number of factors

Single effects only

All factors have 2 levels (usually)

Identify the best factors

Smaller number of factors

Single and interactive effects

Quantitative factors have 3 levels

Identify the best factor levels

Optimization                    Screening

25  Screening Experiments

418

Screening experiments involve a relatively large number of factors, usually all at two 
levels. The objective of a screening experiment is to identify a smaller set of influential 
factors for further experimentation. We don’t need a screening experiment if we 
already know what the key factors are from past experience or knowledge of the 
process.

Screening experiments usually employ linear models with no interaction or quadratic 
terms. This is done to allow relatively small sample sizes. We don’t expect such models 
to give us good characterizations, but they are usually adequate for identifying the “big 
hitters.” 

Notes
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Quantitative X

Y

Linear approximation 

Bold strategy

Use the entire feasible operating range in a first experiment

Low High

True response function

(X, Y) data points

420

Quantitative X

HighLow

Not bold enough

Y

• Low and high levels of X are too close together

• We don’t get a true picture of the X-Y relationship



421Guidelines for screening experiments

Number of factors (including blocking factors)

 8  11  23

16 runs 
OK?

Fractional
Factorial

with 16 runs

Plackett-
Burman

with 12 runs

Plackett-
Burman

with 24 runs

N

Y

 19

Plackett-
Burman

with 20 runs

 27

Plackett-
Burman

with 28 runs

422

The general strategy for factor screening is to use the smallest design possible, subject 
to the guidelines given above. To this end, we use main effects models, even though 
there are significant interaction and quadratic effects in most processes. We use the 
main effect estimates from a screening experiment to rank the factors in importance. 
These estimates are biased, because interaction and quadratic terms are (deliberately) 
left out of the model. 

The designs recommended above work well in practice because the biases are 
distributed evenly among the factors. This makes it relatively safe to rank the factors 
by comparing the estimates. These remarkable designs were discovered by British 
statisticians Plackett and Burman during World War II.

The next four slides show how to create screening design matrices in JMP, using the
guidelines given above. The path is DOE  Screening Design.

Notes



423Guidelines for screening (cont’d)

Up to 8 factors in 16 runs Up to 11 factors in 12 runs

424Guidelines for screening (cont’d)

Up to 19 factors in 20 runs Up to 23 factors in 24 runs



425Guidelines for screening (cont’d)

Up to 27 factors in 28 runs

426Guidelines for screening (cont’d)

Up to 35 factors in 36 runs Up to 39 factors in 40 runs
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• Titanium castings  strong & light 

• Ti develops surface oxidation during 
the cooling phase

• Large Ti castings were failing the 
customer O2 requirement

• Analysis of file cabinet data yielded 
no significant correlations

Example

428Example (cont’d)

Black Belt
“We should brainstorm factors 
for a DOE.”

Plant manager
“We can’t experiment with such 
an expensive part!”

Ti metallurgist
“The problem doesn’t replicate 
on smaller parts.”

Part engineer
“What have got to lose? It’s 
been weeks since we shipped 
any of these!”
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Shell makeup

Slurry                           1                       2  

Dips                           18                     14     

Shell bake

Time                          48                       6 

Temp                     2050                  1950

Alloy

Quality                 Low $                High $ 

Status                    New                Revert

Cooling

Shield                      SS                     Mild

Fan speed            2400                    3200

Factors                          Levels

Factors and levels

430

Here is the list that emerges from the brainstorming session. The first factor Slurry is 
really a noise variable. One batch of shell material is made up each week, and there 
isn’t be enough material from a single batch for the whole experiment.

The other factors are a combination of X variables in the current process and 
improvement ideas for the future process. 

Notes



431Design matrix

 DOE  Screening Design 
Responses  Response Name  O2 
 Goal  Minimize

 Factors  2-Level Categorical  8 
Add  enter factor names and 
values  Continue

 Design List  Number of Runs  16 
 Design Type  Fractional 
Factorial  Continue  Make Table

• 8 factors

• Plant manager agreed to 16 castings

• For screening experiments, it doesn’t 
matter whether factors are entered 
as quantitative or categorical

• Calling them all categorical allows 
entry of text for the levels.

432Design matrix

• Factor combinations in coded form (FYI only)

• Perfect balance: every factor is ( 8 times and (8 times

• For every pair of factors, each  combination appears 4 times



433Two months (and many sleepless nights) later…

LSSV2 data sets \ Ti casting alpha case

434The model dialog

• Can’t analyze 
interactive or 
quadratic 
effects in a 
screening 
experiment

• Just click on 
Run



435Analysis

Red triangle

“Big hitters”

SLURRY

TEMP

DIPS

Effect Screening


Pareto Plot 

anchor 

anchor

The parameter estimates have equal variances.
The parameter estimates are not correlated.

t-Test Scale
Coded Scale

0.9741692
14.625

Lenth PSE

SLURRY[1]
TEMP[1950]
DIPS[14]
FAN[2400]
TIME[48]
STATUS[New]
SHIELD[Mild]
QUALITY[High $]

Term
-27.87500
-27.50000
-19.62500
-10.00000

9.50000
9.37500

-5.62500
4.50000

Estimate

Pareto Plot of Estimates

Effect Screening

Response O2

Oops…SLURRY is a noise factor!

436

To interpret screening experiments, we use the Effects Screening analysis element as 
shown above. It gives a Pareto chart showing the relative magnitude of the factor 
effects. The idea is to use the factors with the largest effects in a subsequent 
optimization experiment.  

The P-values from a screening experiment are not to be trusted. The interactive and 
quadratic effects left out of the model artificially increase the noise in the analysis.  
This biases the signal-to-noise ratios downward, so factors appear less significant than 
they really are. 

The three largest effects in the example are SLURRY, TEMP and DIPS. The result for 
SLURRY was perplexing. There was no doubt that the castings made from shells made 
from Slurry 1 looked a lot better than those from Slurry 2, but the shell making 
operators said there were no differences in how the slurries were made up. 

Notes
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• Do a screening experiment in the shell-making area 

• Include TEMP, DIPS and the important shell-making 

variables in an optimization experiment 

Ideal follow-up plan

438What actually happened

• They changed TEMP to 1950 and DIPS to 14 (easy)

• The problem immediately went away

• 13 of the 16 DOE castings were good to ship as is

• Only 1 eventually scrapped

• Worst-case annual cost avoidance:  $20.8M

• No immediate follow-up



439Root causes

• Investigation of the slurry effect eventually lead to the root 
cause of the problem

 The density of the ceramic powder used to make the 
shell had increased over time, resulting in heavier shells

 The increase had been noted, but no action was taken 
because the densities were still within spec limits

 At the time, shell weights were not monitored

• Why no significant correlations in the “file cabinet” data?

 The O2 data in the engineering database was final rather 
than first pass

440Control limits vs. spec limits

USL

LSL

D
en

si
ty

UCL

LCL

• The data was trying to tell us something

• Disaster could have been averted

?



441Exercise 25.1

(a) Apply the screening experiment guidelines to create a screening design matrix for 
the example shown on the slide below. Ask the instructor to review it before you 
proceed.

(b) Open extrusion 0.jmp. Did these experimenters follow the guidelines?

(c) Based on the results for STRENGTH and DUCTILITY, find the best set of 4 
factors for a subsequent optimization experiment.

442

Polymer
Smoother   0.0   to   0.5    
Filler                          2.0   to   4.0  
Viscosity                    60    to   80  
Moisture 0.1   to   0.25

Process
Zone 1 temp              260   to   320
Zone 2 temp              260   to   320 
Zone 3 temp              260   to   320 
Zone 4 temp              260   to   320 
Rate                          100   to   200
RPM                          150   to   300

Factors              Feasible ranges

Responses are strength and ductility of the extrudate

Exercise 25.1 (cont’d)



44326  Simple Regression with Pass/fail Y

a) Raw data ― each row represents one 
part or transaction

b) Tabulated data ― each row represents 
multiple parts or transactions

444Raw data

Open LSSV2 data sets \ target practice (in JMP)


Fit Model


Set up as shown



445Analysis output

• Model parameters

• P value for correlation (ignore the 
one labeled Target speed ― it is 
not as accurate)

• Very strong evidence of a negative 
correlation between the speed of a 
target and the probability of hitting 
it (big surprise)

Probability 
of a hit

Probability 
of a miss

446Model equation

• The Y variable here is “Hit” or “Miss”

• The plotted curve gives the probability of hitting a target as a function of 
its speed

• One minus the curve gives the probability of missing the target as a 
function of its speed

• These model equations are nonlinear, and bounded between 0 and 1

• If a straight line model were used, it would produce ridiculous 
extrapolations (probabilities larger than 1 or less than 0)

  speedTarget 048.053.12exp1

1
    Prob(Hit)






447The prediction profiler

Calculates the hit/miss 
probabilities for any 

given speed

448

Open LSSV2 data sets \ quotation process.jmp.  

a) Go to Column Properties for PO, select Value Ordering  Reverse  OK.

b) Fit PO by TAT. Give and interpret the P value for TAT. 

c) Use the profiler to find the PO hit rates for 3 day turnarounds and 15 day 
turnarounds. 

d) Save your script, close and save the data table.

Exercise 26.1



449Tabulated data

Open LSSV2 data sets \ cracking vs dwell time (in JMP)

1. Make a plot of % Cracked by 
Mins

2. Rename # Cracked as Yes

3. Create a new column called No 
defined as Total  Yes (Column 
Properties  Formula)

4. Tables  Stack

3. Use Yes and No as the Stack 
Columns

4. Change Label to Cracked, 
Data to Freq

5. Save as cracking vs dwell time 
stacked

450Stacked format

Go to Column Properties
for Cracked


Value Ordering


Reverse


OK


Analyze


Fit Model


See next slide


Set as shown

The Total and % Cracked columns are no longer relevant ― 
you may delete them if you wish



451Fit Model

452Analysis output (edited)

  Mins152.049.5exp1

1
Prob(Yes)




• Model parameters

• P value for correlation

• Very strong evidence of a positive 
correlation between dwell time and 
the probability of cracking



453Prediction profiler

Dwell time
(mins)

Probability 
of cracking

0 0.4%

5 0.9%

10 1.9%

15 3.9%

20 8.0%

454Notes



45527  Multiple Regression with Pass/fail Y

• Project to reduce clogged nozzles 
in print heads

• Comparison of four types of 
adhesive and two print head 
designs 

• Each lot  60 print cartridges

• “Pass”  no customer detectable 
print defects

• Open LSSV2 data sets \ clogging 
pass fail

456Example (cont’d)

Analyze  Fit Model



457Example (cont’d)

• Reverse Value 
Ordering property for 
Result so that “Pass” 
probability is plotted

• Remove insignificant 
Adhesive term

• Run model again

Freq: Freq

Adhesive
Print head
Adhesive*Print head

Source
3
1
3

Nparm
3
1
3

DF
3.01536018
7.68556625
19.7623238

L-R
ChiSquare

0.3893
0.0056*
0.0002*

Prob>ChiSq

Effect Likelihood Ratio Tests

R
es

ul
t

Pass0.975

A
1

A
2

A
3

A
4

A1
Adhesive

D
1

D
2

D1
Print head

Prediction Profiler

Nominal Logistic Fit for Result

458Example (cont’d)

• Best combination 
is D1 with A2

• Baseline failure 
rate was > 20% 

• Predicted failure 
rate is < 2%

Freq: Freq

Print head
Adhesive*Print head

Source
1
3

Nparm
1
3

DF
16.2058108
29.2140908

L-R
ChiSquare

<.0001*
<.0001*

Prob>ChiSq

Effect Likelihood Ratio Tests

R
es

ul
t

Pass0.984

D
1

D
2

D1
Print head

A
1

A
2

A
3

A
4

A2
Adhesive

Prediction Profiler

Nominal Logistic Fit for Result
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A Black Belt wants to minimize the occurrence of bubbles and ripples in the urethane 
coating on truck nameplates. The X variables and ranges are:

Exercise 27.1

 Badge temp:         20 to 40

 Mixing ratio: 92.6 to 94.6

 Curing temp:        30 to 55

• Open LSSV2 data sets \ urethane coating pass-fail

• Reverse the Value Ordering properties for Result so that the “Pass” probability will 
be plotted on the Prediction Profiler.

• Run the Model script provided in the left panel, run the model. 

• Remove insignificant terms from the model (P > 0.15), then re-run the model.

• Use the Prediction Profiler to find a factor combination that maximizes the yield.

460Exercise 27.1 (cont’d)

• The baseline yield was about 95%. What is the predicted yield for the improved 
process?
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 

 

 

2

futurecurrent

0

midmid

0

futurecurrent
mid

currentfuturefuture

currentcurrent

RMSE

DTD

8

1
      :AVP  Required                                        

      :DTD                                                      

n

1
      :MSER                                                     

n      :unit experiment  thedefining size Batch

2
      :ntoiMidp                                                 

0           :objective state uture         F                    

10           :defective fraction stateCurrent              




















28  Sample Size for DOE with Pass/fail Y

462Notes 

The Greek letter  (phi) is used here for the population fraction defective, not to be 
confused with the fraction defective in a particular sample. 

When a pass-fail variable is numerically coded as 0 and 1, it has a standard deviation 
that depends on . This means we need to do a little work on the side to get a correct 
input value for RMSE. The required calculation for RMSE is shown above. Once 
RMSE is determined, the rest of the sample size calculation is done the same way as 
for quantitative Y. 

The assumption here is that the experiment unit consists of a batch of n0 items to be 
processed and tested. All items in a given batch should experience the same factor 
levels, and move through the process at the same time. The design team must select the 
batch size n0. If n0  1, then the sample size N obtained from JMP is the total number 
of items tested for the experiment. If n0   2, then N is the number of rows in the design 
matrix, but the total number of items tested for the experiment is N × n0. 
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 

156248.0
039355.0

044.0

8

1
      :AVP                                                        

.0440 0.01 - 0.054      :DTD                                                      

039355.0
20

968.0032.0
      :RMSE                                                     

02      :unit experiment  thedefining size Batch

.0320      :ntoiMidp                                               

      .010      :objective state Future                              

.0540      :defective fraction stateCurrent              

2













Example 

464Notes 

In the example shown above, the project goal is to reduce the current 5.4% failure rate 
to 1%. The parts in question were routinely processed in batches of 20, so 20 was a 
good choice for n0. 

The top slide on the next page shows the Custom Design “mock up” for the same 
factors as in the previous example, and the AVPs computed for sample sizes 51 and 52. 
The AVP is greater than our calculated AVP (0.156248) for N = 51 and less than that 
for N = 52, so we will go with N =52. The design matrix will have 52 rows, the total 
number of parts produced and tested will be 52 × 20  1040.

The sample size requirements for pass-fail Y are much greater than for continuous Y. 
This is an unpleasant statistical fact of life. People usually experience “sticker shock” 
the first few times they do sample size calculations for pass-fail Y. The only solution is 
to develop quantitative measurements for the quantities of interest.
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Design Diagnostics

I Optimal Design

D Efficiency 50.08028

G Efficiency 81.49717

A Efficiency 38.4207

Average Variance of Prediction 0.153914

Design Creation Time (seconds) 0.2

Design Diagnostics

I Optimal Design

D Efficiency 49.76708

G Efficiency 80.04761

A Efficiency 38.24845

Average Variance of Prediction 0.156398

Design Creation Time (seconds) 0.216667

Example (cont’d)

5251

466

We are planning an experiment to optimize an ultrasonic welding process with 3 
quantitative factors and a 4-level categorical factor. In addition to weld depth, a second 
response variable of interest is whether or not the welded part passes a leak test. We 
want to do a sample size calculation based on the following information:

• About 9% of welded assemblies in current production fail the leak test.

• Our goal is to reduce this to 3% leaking.

• The parts in question are routinely processed in totes of 20.

Open LSSV2 other stuff \ sample size calculator, go the sheet AVP for DOE (pass-fail 
Y). Enter the information given above to get the required AVP. Use this to determine 
the required sample size. Find the total number of parts that need to be welded and 
tested for this experiment.

Exercise 28.1
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• Data on defect types or failure reasons often is available 
only in tabulated form

• Each row may represent a production lot, work order, time 
period, machine work center, part number, . . . , or some 
combination thereof

• Common problem with tabulated data:  wrong format for 
Pareto analysis 

29  Reformatting Data for Pareto Analysis

468Big example:  molding process - Pareto 

Each row  = Date, Machine, P/N, . . . ? Total parts run  = Good + Bad



469Big example (cont’d)

Counts for each type of defect                                          

Total defective  Cost per pc.

470Notes

One of the things we would want from a data set like this is a Pareto breakdown of 
defect types by frequency of occurrence. For this, we need to calculate the total 
number of defective parts for each defect type. With the format shown above, we 
cannot do this by means of a pivot table. As an alternative, we could calculate the 
totals for the columns representing the defect types. However, compared to a pivot 
table, this method is extremely tedious for doing anything else, such as comparing 
Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this is a Pareto breakdown of defect 
types by total cost. It is not impossible to do this with the format shown above, but, 
once again, it would be extremely tedious compared to a pivot table. 



471Small example

Open molding process - small (in JMP)


This is what we have

This is what we need 

 How do we get there?

472Stacking a data table

Tables  Stack  Select the defect columns as the Stack Columns



473Editing the columns

Total defective and Total cost are 
now incorrect row by row

1. Right-click on Data

2. Select Column Info

3. Rename as Freq  OK

4. Rename Label as Defect type

5. Delete Total defective

6. Right-click on Total cost

7. Select Formula  Cost per pc.*Freq

8. Save as molding data small 
stacked.xls

474Pareto plot by frequency

Analyze  Quality and Process  Pareto Plot  set up as shown  OK



475Pareto plot by total cost

In this case the two plots 
are very similar

476Cost Pareto without calculating the total cost column



477

Open molding process - Pareto (in JMP). Use the method described in this section to 
reformat the file for Pareto analysis. Save the reformatted file as molding process -
stacked. Create Pareto plots of defect types by frequency of occurrence and total cost.

Exercise 29.1

478Notes


