Lean Six Sigma Green Belt Training Course

Written by Joan Ambrose, Tracy Camp, and Bethany Quillinan Lean Six Sigma Master Black Belts ETI Group

Presented by

Oregon: 503-484-5979 Washington: 360-681-2188 www.etigroupusa.com

Lean Six Sigma Green Belt Course Table of Contents

Course Outline with Slide Numbers

Lear	Lean Six Sigma OverviewSlide #				
1.	Lean Overview				
2.	Six Sigma Overview				
3.	Why Combine Lean and Six Sigma?				
4.	Relation of LSS to Other Initiatives				
5.	Deploying LSS Projects				
6.	LSS Project Roadmap				
Defi	ne Phase				
7.	Identifying Candidate Projects				
8.	Prioritizing Candidate Projects				
9.	Chartering LSS Projects				
	Supplement - Stages of Team Development 155				
10.	Project Scope and SIPOC				
Mea	sure Phase				
11.	Observing the Current State				
12.	Basic Process Mapping				
13.	Other Common Mapping Formats 217				
14.	Value Stream Mapping 233				
15.	X and Y Variables				
16.	Data Collection				
17.	Data Formatting				
18.	Types of Data				

Lean Six Sigma Green Belt Course Table of Contents (continued) Course Outline with Slide Numbers

10 Decis Statistics and Normal Distribution	Slide #
20. Measurement Variation	
21. Measurement System Analysis	
22. Categorical MSA	
23. Establishing Baselines — Pass/fail Data	433
24. Establishing Baselines — Quantitative Data	
25. Plotting Data Over Time	
26. Process Capability Indices	
Analyze Phase	
27. Testing for Statistical Significance	515
28. Stratification Analysis — Quantitative Y	
29. Stratification Analysis — Pass/fail Y	
30. Root Cause Analysis	
Improve Phase	
31. Developing and Prioritizing Solutions	
32. Lean Solutions	
33. Theory of Constraints	
34. Reviewing the Proposed Future State	657
35. Piloting the Future State	
Control Phase	
36. Control Plan	695
37. Statistical Monitoring	699

Copyright © 2024 ETI Group all rights reserved

1 Lean Overview				
The goal • Provide the greatest value for customers using the fewest resources				
The methods	• Principles and practices based on the Toyota Production System (TPS)			
The barrier	The barrier • Culture always defeats methodology			
 Create a culture of continuous improvement (<i>kaizen</i>) Integrate improvement cycles into the daily wor of all employees Improve all processes, every day 				
*See Toyota Kata (2010) by Mike Rother.				

Cate	Categories of NVA (expanded definitions)			
D	Defects: Failure to meet expected standards of quality or delivery			
0	Over production: Making or doing more than is needed at the time			
W	Waiting: People waiting to work, or things waiting to be worked on			
N	<i>Not utilizing creativity</i> : Failure to integrate improvement cycles into the daily work of all employees			
Т	<i>Transportation</i> : People or things being moved from one place to another			
I	Inventory: Supplies, WIP, or finished goods beyond what is needed			
М	<i>Motion</i> : Excessive motion in the completion of work activities			
Е	<i>Extra processing</i> : Producing or delivering to a higher standard than is required			
7				

The spirit of kaizen

- Open to change
- Positive attitude
- No blaming
- The only bad questions are the ones not asked

- First find the cause of the problem, then seek solutions
- One person, one vote position doesn't matter

Characteristics of a typical kaizen event

• Emphasis on "tribal knowledge" (*a.k.a.* "wisdom of the organization")

- · Causes of the problem are not difficult to identify
- Solutions are not difficult to develop
- · Bias for action
 - \checkmark Develop solutions during the event
 - ✓ Reconsider previous solution ideas that were discarded
 - ✓ Implement solutions during the event if possible

Possible pitfalls (cont'd)		
• Failure to foster <i>kaizen</i> culture in the organization		
"We only do kaizen events — there is very little culture building."		
 Mitigating strategy - Culture change takes time. Be patient. Develop problem identification and solving into daily work cycles for all people. 		
"We have done many kaizen events, but the fundamental behaviors and processes of top management haven't changed."		
 Mitigating strategy - Include top management in LSS training and improvement events. Change in managerial expectation should come from upper management. 		
"Decisions and changes are driven by 'outside experts' rather than the people doing the work."		
 ✓ Mitigating strategy - The role of outside lean experts is to provide knowledge on the lean process and tools, and to guide the process. Solutions should come from process experts. 		

 Process capability (cont'd)
 22

 USL stands for Upper Specification Limit, LSL stands for Lower Specification Limit.
 Specification limits represent the Voice of the Customer with regard to measureable characteristics of products or services.

 For the Normal distribution shown above, the mean (μ) is equal to the midpoint of the specification range, and the process spread (6σ) is exactly equal to the width of the specification range (USL minus LSL). This means that 99.73% of product or service outcomes produced by this process satisfy the spec limits. Equivalently, 0.27% of outcomes lead to scrap, rework, do-overs, or other costly measures to prevent or respond to customer dissatisfaction.

The average yield for 35 operations in an assembly process is 98.4%. Calculate the overall yield under the simplifying assumption that the yield for each operation is exactly equal to 98.4%. (The real answer would be the product of the actual operation yields.)

33

Exercise 2.1 (cont'd) 34				
The area manager reported 98.4% as the overall yield of the operation. His reaction to the correct analysis followed the classic grief cycle:				
Denial	"This can't be right. There must be a mistake in your calculation."			
Anger	"This is ridiculous. You're wasting my time."			
Bargaining "Isn't my method just as valid as your method?"				
Depression 'This is really bad. What am I going to tell everyone?"				
Acceptance	"I guess you can't solve a problem if you don't know you have it."			

In many cases, failure rates are quantified as percentages				
Definition of "opportunity"	Fraction defective	Expressed as a percentage	Focus	
Each part	Defective parts All parts	% Defective	Customer	
Each possible defect on a part	Defects (All parts) × (possible defects per part)	Defects per 100 opportunities (DPHO)	Process	
Each transaction	Defective transactions All transactions	% Defective	Customer	
Each possible error in a transaction	Errors (All transactions) × (possible errors per transaction)	Defects per 100 opportunities (DPHO)	Process	

Pragmatic business initiative

• In the 1990s, GE shifted the emphasis from the Six Sigma quality goal to *Six Sigma projects* — the way to pursue the goal

- Leaders and Champions define key performance indicators (KPIs)
 a "balanced scorecard" including but not limited to \$\$ measures
- KPIs drive a prioritization process
- Prioritization tells us which project(s) should be first in line
- "Black Belts" or "Green Belts" lead the project teams
- "Champions" provide resources and remove barriers for the teams

Comparison of Green and Black Belts		
Prerequisites and roles	Green	Black
• Experience in process improvement	✓	\checkmark
• Strong teamwork, leadership, and people skills	~	\checkmark
Basic Excel skillsAbility to acquire intermediate Excel skills	✓	✓
• Receive training in basic statistical concepts and methods	~	\checkmark
Lead project teams	✓	\checkmark
Provide technical support to project teams	✓	\checkmark
Prior experience with statistical methods		\checkmark
• Able to learn and use statistical software		\checkmark
Receive training in advanced statistical concepts and methods		\checkmark
Assist Champions in project identification and prioritization		\checkmark

Examples of projects 40			
Project	Annual \$\$ benefit		
Reduce alpha case on large titanium castings	20,800,000		
Reduce cost and lead time to develop extrusion tooling	2,000,000		
Reduce wasted medication in hospital central pharmacy	1,100,000		
Reduce roll stock inventory in box plant	768,000		
Reduce cost of belt grinding in casting finishing	500,000		
Improve the court collections process in city government	400,000		
Reduce DOA replacement parts in field service	216,000		
Reduce DPMO and amount of testing of circuit boards	192,000		
Reduce electricity consumption in manufacture of airline storage bins	65,000		
Reduce RFQ turnaround time (not counting increased PO hit rate)	34,000		

Common strategies

- Driven by Voice of the Customer
- Focus on eliminating waste
- Focus on processes and process improvement

43

- Improve processes via team projects
- Keep the improvement cycles going

Complementary problem focus and methods			
Lean	Six Sigma		
Lead time WIP Other visible waste	Defects "Invisible" waste		
Defects caused by chaos and confusion	Defects caused by materials and equipment		
Root causes easier to determine. (Processes directly observable.)	Root causes harder to determine. (Processes often not observable.)		
Value stream mapping Geographic mapping	Basic process mapping Cross functional process mapping		
Defines and standardizes the "Wisdom of the organization"	Data collection and analysis to discover a new solution		
Common TPS solutions can be adapted to many circumstances	Project roadmap provides a method for finding solutions		

Lean Six Sigma 46 Originally, TPS included virtually all the tools of what we now call Lean Six Sigma (LSS). When TPS came to the USA, the Lean tools were adopted right away, but the Six Sigma tools were not. This made sense because there was plenty of "low hanging fruit" that could be harvested by Lean without undertaking the difficult task of teaching people statistical concepts and methods. For many organizations, it still makes sense to embrace Lean concepts and methods first. The LSS project roadmap is an excellent vehicle for this. Eventually, organizations will need to tackle more difficult problems that cannot be solved with Lean concepts and methods. When this time comes, the LSS project roadmap provides the Six Sigma concepts and methods needed to solve the more difficult problems. Thus, in the USA at least, we might think of Lean and Six Sigma as fraternal siblings separated at birth, reunited at last by LSS.

5 Deploying LSS Projects

- Roles and responsibilities
- Limiting projects in process
- The continuous improvement cycle

53

• LSS and the Fire model

53

R	Roles and responsibilities					54
		Define KPls	Identify candidate projects	Prioritize candidate projects	Champion projects	Lead projects
	Leaders/Mgmt	\checkmark	✓	\checkmark		
	Champions	✓	~	~	✓	
	Black Belts		✓	✓		~
	Green Belts					~

PDCA (PDCA (cont'd)				
Plan	Define the problem to be solved, collect and analyze data on the current state, identify possible causes of the problem.				
Do	Identify possible solutions, select the most likely solution, pilot the solution.				
Check	Analyze the results to see if the problem is solved.				
Act	If the solution is successful, implement it. If the solution is not successful, repeat the cycle.				
 PDCA is the oldest improvement cycle for manufacturing, business, and service processes It has been around for more than 80 years, it has served us well, and it is still in use 					

Strengths of LSS projects

- Aligned with business priorities
- Clearly defined scope and boundaries
- Combination of process observation and data analysis

- Solve problems by understanding them
- Conclusions supported by statistical standards of evidence
- Improvements verified quantitatively
- · Statistical monitoring used to sustain gains

Examples of LSS projects	67
	Probability that Lean solutions will apply
 Reduce injection molding defects 	Low
 Reduce injection molding setup time 	High
 Reduce oxidation layer on titanium castings 	Low
 Reduce unplanned downtime 	Medium
• Reduce Request For Quote (RFQ) turnaround time	High
 Reduce repair shop turnaround time 	High
 Reduce the cost of belt grinding 	Low

Other types of projects (non-LSS)	68
• We know what needs to be done, and we want to do it	
• It may be simple, quick, and cheap (a "just do it" project)	
 It may be complex, time consuming, and/or expensive (a "project management" project) 	
• Both of these involve <i>implementing known solutions</i>	
• These could be action items <i>resulting</i> from a LSS project, but they are not in themselves LSS projects	

Examples of non-LSS projects

Automate a task that is currently done manually Upgrade software to the latest revision Revise outdated work instructions Install a new piece of equipment Obtain environmental permits Replace outdated computers Install a bar coding system Build a plant in China

69

Exercise 6.1			70
Classify these projects	Lean	SS	Other
Implement the new ERP system we have decided to use			
Reduce errors in processing purchase requisitions			
Reduce wave solder defects			
Open a new branch office in the next town			
Reduce billing lead time			
Install a web-based ordering system			
Reduce non-manufacturing time from order to sell			
Reduce scrap in the coiling department			
Eliminate cracking of molded housings			
Reduce installation & warranty costs			
Increase the percentage of quotes that produce a PO			

Hidden factory (cont'd)	8	32
• Inspections to sort good parts from bad	Reworking or scrapping defective parts	
• Efforts to determine causes of defects	Complicated inventory management	
• Inflating material orders and time/cost standards	• Specialized training for rework processes	
• Returned goods	• Specialized rework equipment	
• Service activity under warranty	Capacity allocated to rework	
• Trips to placate unhappy customers	 Special rework qualification processes 	
• Loss of business due to unhappy customers		

Othe	other costs of waste (from the Lean playbook)						
D	Failure to meet expected standards of quality or delivery						
0	Making or doing more than is needed at the time						
w	People waiting to work, or things waiting to be worked on						
N	Failure to integrate improvement cycles into the daily work of all employees						
Т	People or things being moved from one place to another						
I	Supplies, WIP, or finished goods beyond what it is needed						
М	Excessive motion in the completion of work activities						
Е	Producing or delivering to a higher standard than is required						
87							

a) Th pi m m is be	ggybacks and syringes for each day at 7 edication is wasted because patients are edication orders changed. The anecdota \$100,000. Use the "hidden factory" dat tter estimate of the annual cost of waste	y in a ':00 a disc l esti a giv e. (As	a hospit am. Eve charged imate o zen belo ssume :	al is to prepare all I ery day, some of this , transferred, or have f the annual cost of to w and a spread-shee 52 working weeks p	V the thein this w et to g er yea
	Weekly averages]	Average rates	
	Number of doses wasted	657	,	Product cost per dose	\$14
	Staff hours spent retrieving wasted doses	21		Disposal fee per dose	\$42
			1		***
		10		I ohor coot nor hour	0

Qualitative description of a good improvement project						
Clearly defined problem, scope, and boundaries	Specific					
Clearly defined project metrics with baselines and goals	Measurable					
Resources available, good chance of success, rapid benefits	Achievable					
Aligned with business priorities	Relevant					
Can complete in a reasonable amount of time	Time-bounded					
How do we quantify these attributes?						

Feasibility metrics (cont'd) 92 Sometimes people want to use cost of implementation or ease of implementation as feasibility metrics. The cost metric doesn't make sense for LSS projects, because we don't know what the solution is going to be. The same can be said for the ease metric, if it refers to a solution. If, on the other hand, the ease metric refers to the changeability of the in–scope work flow, then it is valid.

KPIs (cont'd) 94 An organization should use its key performance indicators (KPIs) to measure the probable impact of proposed improvement projects. KPIs are often established during a strategic planning process. If your organization has a balanced scorecard, it has already taken a step towards understanding what its KPIs are. If a KPI in a balanced scorecard is defined too broadly, it will need to be broken down further to be useful in project prioritization. An example would be breaking "customer satisfaction" into separate KPIs for quality, delivery, and service. KPIs should be defined *before* they are used to prioritize projects. This helps people distinguish between the KPIs and the projects themselves, which in turn helps in scoping projects appropriately. For example, "reduce scrap and rework" is too broad for a project scope. A better project scope would be something like "reduce scrap and rework for product XYZ." KPIs are supposed to reflect the priorities of the organization. As such, they should change when these priorities change, and only then.

Instructions for prioritizing projects

- 1. Open Student Files \rightarrow blank C&E matrix impact & feasibility.
- 2. In the Metrics sheet, change Impact metrics to KPIs. (Already done)

- 3. List your KPIs and relative weights.
- 4. List your feasibility metrics and relative weights.
- 5. Go to the Impact ratings sheet, change Items to be ranked to Projects.
- 6. List the candidate projects you wish to rank.
- 7. Rate each project for degree of positive impact on each KPI.

Student Files \ prioritizing projects – example 1									
Metrics tab									
Reduce cost of waste	1		Short time frame	1	11.5				
Customer satisfaction - quality	2		Low complexity	1	_				
Customer satisfaction - delivery	2		Skill set available	2					
No adverse safety impact	1		Process is easy to change	1					
	KPIs Reduce cost of waste Customer satisfaction - quality Customer satisfaction - delivery No adverse safety impact	tudent Files \ prioritizing proje Metric Metric KPIs Relative weights Reduce cost of waste 1 Customer satisfaction - quality 2 Customer satisfaction - delivery 2 No adverse safety impact 1 Image: Color of the stress of the stres	KPIs Relative weights Reduce cost of waste 1 Customer satisfaction - quality 2 No adverse safety impact 1 Image: Comparison of the stress o	KPIs Netrics tab KPIs Relative weights Feasibility metrics Reduce cost of waste 1 Short time frame Customer satisfaction - quality 2 Low complexity Customer satisfaction - delivery 2 Skill set available No adverse safety impact 1 Process is easy to change Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact Image: safety impact	kudent Files \ prioritizing projects – example 1 Metrics tab KPIs Relative weights Feasibility metrics Relative weight Reduce cost of waste 1 Short time frame 1 Customer satisfaction - quality 2 Low complexity 1 Customer satisfaction - delivery 2 Skill set available 2 No adverse safety impact 1 Process is easy to change 1 Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" I				

Metrics (cont'd)

- Enter your KPIs in the Metrics sheet
- State KPIs in "higher is better" form for example, use "reduce cost of waste" instead of "cost of waste"

- Enter relative weights (importance) for the KPIs. Here is a process for doing this:
 - 1. If the KPIs are equally important, weight them all as 1.
 - 2. If some KPIs are more important than others, split them into a more important group and a less important group.
 - 3. If some KPIs in a group are more important than others, split them into a more important subgroup and a less important subgroup.
 - 4. If necessary, split subgroups into sub-subgroups.
 - 5. If you end up with two homogeneous groups, use weights 1 and 2. If you end up with three homogeneous groups, use weights 1, 2, and 3. And so on.
- Everything said here applies as well to your feasibility metrics.

Impact ratings							<mark>99</mark>
KPIs KPIs Creation of the set of						dalwery safety int	a and a set
Relative weights	1	2	2	1	0	0	0
Reduce manufacturing downtime	М	L	н	н			
Reduce NCR turn time	М	L	L	н			
Reduce out-of-box failures	М	н	L	н			
Reduce redundant inspections	М	L	М	н			
MS II source manufacturing	L	н	М	н			
Improve automatic tester capability	н	М	М	н			
Reduce in-line defects	н	М	М	н			

Comments on impact and feasibility ratings

100

The slide above shows the *Impact ratings* sheet with some project titles entered. Our job is to rate each project as having high (H), medium (M), low (L), or no impact (blank) on each KPI. The numerical codings for H, M, and L are specified in the sheet *Impact calculations*.

Ideally, the team should assign the ratings *one KPI at a time*, because our goal is to prioritize the projects, not the KPIs. If you would rather assign the ratings one *project* at a time, just make sure to check that the resulting project rankings for each KPI make sense.

The next slide shows the *Feasibility ratings* sheet. Here we rate each project as high (H), medium (M), or low (L) for each feasibility metric. The numerical codings are specified in the *Feasibility calculations* sheet.

As for the impact ratings, it is best if the team assigns feasibility ratings one metric at a time. If you would rather assign the ratings one project at a time, just make sure to check that the resulting project rankings for each feasibility metric make sense.

Feasibility ratings							<mark>101</mark>
Feasibility metrics							.8108
Relative weights	1	1	2	1	0	0	0
Reduce manufacturing downtime	М	М	н	н			
Reduce NCR turn time	Н	М	н	М			
Reduce out-of-box failures	L	М	н	М			
Reduce redundant inspections	М	М	н	М			
MS II source manufacturing	L	L	L	L			
Improve automatic tester capability	н	М	н	н			
Reduce in-line defects	L	L	L	L			
0							
0							
0							

Impact-feasibility plo	t			
	Projects	Tag	Impact	Feasibility
	Reduce manufacturing downtime	Α	32	33
	Reduce NCR turn time	в	16	33
	Reduce out-of-box failures	С	32	25
	Reduce redundant inspections	D	20	27
	MS II source manufacturing	Е	34	5
	Improve automatic tester capability	F	30	39
	Reduce in-line defects	G	30	5
	0	н	0	0
	0	1	0	0
	0	J	0	0

• Project names and impact ratings are carried forward from the Impact ratings sheet

• Feasibility ratings are carried forward from the Feasibility ratings sheet

Impact-feasibility plot (cont'd)

This is a scatterplot of the overall impact and feasibility scores for the projects. The upper right hand corner is the "sweet spot." Projects that score highly for both impact and feasibility should be your first priority.

104

Based on the plot, projects A and F both have high priority based on the plot. Assuming you have resources for only one project, how should you choose between them?

The answer to this question can be found by considering the maturity of your organization with respect to continuous improvement. If your organization is solidly committed to continuous improvement, and has been at it long enough to dispel any skepticism in the workforce, you should go with A (greater impact). On the other hand, if your organization has just started its continuous improvement journey, and you want a high probability success to win over the skeptics, you should go with F (greater feasibility).

Student Files \ prioritizing projects - example 2							
Worksheet: "Metrics"							
ĺ	KPIs	Relative weights		Project feasibility metrics	Relative weig	phts	
	Improve cust. satis. w/delivery	2		Process is easy to change	3		
	Improve cust. satis. w/quality	2		Rapid completion of project	2		
	Improve cash flow	1		Needed resources available	2		
	Improve P, Y, E	1		Highly likely to solve the problem	1		
	Lack of compliance/safety impact	1					
	Lack of environmental impact	1					
	Reduce other cost	1					
	Reduce scrap or rework	1					
				·	•		

Impact and feasibility scores				<mark>106</mark>
	Projects	Tag	Impact	Feasibility
	Improve first pass yield of sonic welding	А	34	18
	Reduce injection molding start-up scrap	В	15	24
	Reduce final assembly cycle time for exterior SAE compliant lamps	С	18	40
	Improve first pass yield of manual solder	D	20	28
	Improve first pass yield of wave soldered parts	Е	20	24
22 projects!	Reduce internal scrap due to material handling	F	12	24
I -J	Reduce scrap in painting	G	37	18
	Reduce scrap in metallization	н	36	28
	Reduce scrap in doming	Т	45	14
	Reduce scrap in epoxy mixing	J	13	56
	Reduce internal fog lamp process	к	41	22
	Improved first pass yield of name plates thru painting and doming	L	49	10
	Reduced plant power consumption	М	22	18
	Reduce product development testing cost	Ν	15	50
	Reduce product development time	0	26	14
	Improve % of products that meet requirements 6mos after PPAP	Р	24	18
	Reduce number of design changes post design freeze prior to SOP	Q	26	20
	Reduce payables processing time	R	13	48
	Improve reporting accuracy of end of life service only product cost	S	15	48
	Reduce period end closing time	т	7	48
	Reduce working capital as a % of sales	U	23	18
	Reduce warranty returns of lamps with water ingress	V	14	24

Exercise 8.1

Open *Student Files* \rightarrow *prioritizing projects* –*exercise*. Use your knowledge and experience to do the following tasks.

a) If the weights for the given KPIs and feasibility metrics don't fit your company, feel free to change them.

- b) Rate the projects with respect to impact
- c) Rate the projects with respect to feasibility.
- d) Use the impact-feasibility plot to determine which of these projects your company would give top priority.

109

Problem statement

• Describes the current situation in objective terms

115

- Does not suggest or imply solutions
- Locates the problem in time
- Can include baseline values of project metrics
- Gives enough information that people outside the team can understand what the project is about

115

Problem statement guidelines 116 State the effect Say who and what are affected, and how they are affected. Say what is wrong, not why it is wrong. Avoid "due to" or "because of" statements — they imply solutions. Be specific Avoid general terms like "morale," "productivity," "communication" and "training" — they tend to have a different meaning in each person's mind. Use specific, operationally defined terms to narrow the focus to the problem at hand. Use positive statements Avoid "lack of" statements (e.g., not enough, we need, we should). Negative statements imply solutions. Do not state a problem as a question — this implies that the answer to the question is the solution. Quantify the problem Say how much, how often, when, where. Use project metrics. Focus on the "gaps" Compare the current levels of the project metrics to previous levels, expected levels, or desired levels. These will also be presented in the Project metrics section.

In 2008 there were 15 industrial accidents site wide. Previously, the annual average was 2.5 with at most 7 in a given year. This new level represents a significant decline in employee safety. If it continues, we will see a \$200,000 increase in annual costs, and substantially decreased productivity.

117

Critique this problem statement using the checklist below. Check the boxes for questions that are answered. The purpose of this process is to note which questions are *not* answered.

Customers are dissatisfied with telephone support wait times for calls handled through our call center in Uzbekistan. Our records show an average wait time of 8 minutes. 10% of wait times exceed 20 minutes.

119

Evolution of problem statements			
8		\odot	
We are unhappy with our customers because they don't pay our invoices on time.	15% invoices submitted to customers are paid more than 60 days late.	20% of invoices submitted to Customer X last year were paid more than 60 days late. This compares to 5% for our other customers.	
Due to lack of training in the ER, patients are waiting too long.	The average wait time for ER patients has increased from 1 hour to 2 hours.	In the last 6 months, the average wait time for ER patients during peak hours has increased from 2 hours to 4 hours.	

Evolution of problem statements (cont'd)		
8		\odot
Regional account managers submit RFQs to business units on behalf of customers. The account managers say our customers are voicing dissatisfaction with our long quotation turnaround times (TATs). The business units don't really think there is a problem. If there is a problem, it is most likely caused by the account managers.	Regional account managers submit RFQs to business units on behalf of customers. The expectation is to turn quotes within 3 days. According to the account managers, this expectation is not being met in many cases. This is causing customer dissatisfaction and lost orders.	Regional account managers submit RFQs to business units on behalf of customers. The expectation is to turn quotes in 3 days. Over the past 17 months, 27% have exceeded 3 days. The TATs have ranged from 1 to 29 days, with an average of 2.8 days. We suspect that long TATs are at least partially responsible for lost orders. (<i>Student Files \ quotation process charter</i>)

Student Files \ tool development charter

As our business has grown over the years, our tool development process has become a major problem. The primary customer complaint is that our order-to-sell time is too long. This is caused primarily by large numbers of tool rework cycles. Over the past year, the number of reworks per tool ranged from 0 to 18. The order-tosell time ranged from 3 to 57 days. The rework cost per tool ranged from 0 to \$32,400. We cannot compete on price with our Chinese competitors, so our only hope is to compete on quality and lead time.

123

124

A secondary problem is that many of the tools released to manufacturing from the current testing process require slow line speeds and high material weight.

123

Student Files \ Ti casting charter

"Alpha case" is an oxidation layer commonly found on titanium castings in the as-cast condition. It must be removed by chemical milling. Alpha case is measured by chemical analysis of coupons taken from the castings. The upper specification limit for O_2 is 200 PPM. Over the past six months, post-milling O_2 levels on large titanium castings have gradually trended upward. It has become common practice to send castings back for one or more extra chemical mills to bring the O_2 below 200. Each extra cycle reduces our profit margin by \$TBD and adds TBD days to the lead time.

In the past two months, repeated chemical milling has failed to solve the O_2 problem for increasing numbers of castings. Instead, these castings are scrapped for dimensional nonconformance. This has resulted in scrap costs of about \$400,000 per week, and has severely hindered our ability to meet delivery schedules.

Exercise 9.2

(a) Write a problem statement for the project you and your team currently have in mind. Leave blanks for metrics, as needed.

- (b) Share your problem statement with another team.
- (c) Write a critique of the problem statement you receive from another team.
- (d) Share your critique with the other team and the class. (Start by saying something positive.)
- (e) Revise your problem statement in light of the other team's comments.

125

Project scope: the two dimensions		
Value stream scope	Workflow scope	
• Which customers?	• Starts with an RFQ from the customer, ends with an approved quote or a request to modify the RFQ	
• Which products?	• Starts with receipt of a CAD drawing from the customer, ends with an approved tool and run conditions released to Manufacturing.	
• Which services?		
• Which locations?	• Starts with ceramic slurry make up, ends with a finished casting.	
• Which suppliers?		
	• Billing, payment, adjustment, and collection.	
• Which materials?	• Order processing, fulfillment, and costing.	

Examples of constraints and concerns 128		
Constraints	Concerns	
 Deadlines for project completion Types of solution excluded 	• Several previous attempts to solve this problem were unsuccessful	
• Limitations on availability of resources	• The low average TAT has created the impression there is no problem	
• Limitations on availability of data	• None of the process participants want to be on the team	
•	• Our yield is currently 0%, so we must move quickly to solve this problem	
	•	

Examples of assumptions

- How often the team will meet
- How long the meetings will be
- Time to be spent on the project by each team member

129

- · Roles and responsibilities of the team members
- In scope solutions will apply to out of scope areas
- We will be able to get some process participants on the team
- We will engage stakeholders and convince them to support the project

• . . .

129

Са	ategories of Project Metrics	13:
Th	e three main categories of project metri	cs are quality, delivery and cost.
• It is recommended that your primary metric be a Quality or Delivery metric, in order to keep your project focused on the process.		
• With process improvement, cost will follow.		
Ι	f your primary metric is:	Secondary metrics to consider are:
(Quality (defects, scrap, rework, etc.)	Delivery and Cost
I c	Delivery (time to complete, on-time lelivery, etc.)	Quality and Cost
	Post	Quality and Delivery

Examples of project metrics 133			
a) Statistics calculated from current state data (must be <i>normalized</i>)			
Statistic	Data needed to calculate statistic		
Avg. number of reworks	Numbers of reworks for N tools		
Avg. time order to sell	er to sell Order to sell times for N tools		
PO hit rate	PO (yes or no) for N quotes		
% TAT > 3	TAT > 3 (yes or no) for N quotes		
Avg. TAT	Turnaround times for N quotes		
% $O_2 > 200$	% $O_2 > 200$ (yes or no) for N castings after first chem. mill		
Avg. O ₂	O_2 levels for N castings after first chem. mill		
Do you see a pattern here?			

Exercise 9.4

Define secondary metrics for the project you currently have in mind. Describe the data that will be needed to calculate them, and give the formula by which it will be calculated.

137

Setting goals for project metrics

- From benchmarking
- From established business goals
- Performance prior to onset of the problem
- A percentage of the current state value (once this has been established)

139

• 50% reduction is a common goal*

 * In many cases this is feasible and will have substantial business impact

Knowledge and experience (cont'd)

It might seem that the ideal project team would consist entirely of people who possess substantial knowledge in all of the dimensions mentioned above. One problem is that such people may not exist. In any case, the ideal team should be *well balanced* with respect to these dimensions. Here are some reasons:

- All relevant perspectives on the in-scope work flow must be represented within the team: process participants, customers, suppliers, and other stakeholders.
- Team members with little prior knowledge of the in-scope work flow can provide the team with "outside eyes" and "out of the box" thinking.
- The team must include members with knowledge and experience in Lean Six Sigma.
- Team members with little prior knowledge of Lean Six Sigma receive valuable hands-on training by participating in the project.

Team member strengths and weaknesses							
Code	Strengths	Weaknesses					
CIU	Creative, imaginative, unorthodox. Can solve difficult problems.	Ignores details. Too preoccupied to communicate effectively.					
EEC	Extrovert, enthusiastic, communicative. Explores opportunities, develops contacts.	Overly optimistic. Loses interest once initia enthusiasm has passed.					
MCL	Mature, confident, good leader. Clarifies goals, promotes decision making, delegates well.	. Clarifies goals, Can be seen as manipulative. Delegates elegates well. personal work.					
CDP	Challenging, dynamic, good under pressure. Has the drive and courage to overcome obstacles.	¹⁵ Can provoke others. Hurts people's feelings					
SSD	Sober, strategic, discerning. Sees all options, judges accurately.	Lacks drive and ability to inspire others. Overly critical.					
CMPD	Cooperative, mild, perceptive, diplomatic. Listens, builds consensus, averts conflict.	Indecisive in crunch situations, easily influenced.					
DRCE	Disciplined, reliable, conservative, efficient. Turns ideas into practical action.	Can be inflexible, slow to respond to new possibilities.					
PC	Painstaking, conscientious. Searches out errors and omissions, delivers on time.	Inclined to worry unduly. Reluctant to delegate. Can be a nit-picker.					
SAD	Analytical, detail oriented, specialist. Provides knowledge and skills in rare supply.	Contributes only on a narrow front. Dwells on technicalities. Can't see the "big picture."					

Strengths and weaknesses (cont'd)

Optimal team composition has been researched from a personality point of view. The table above is adapted from the book *Team Roles at Work* by Meredith Belbin.

145

Successful teams need members with a variety of different strengths such as those described above. The strengths that a member brings to the team usually come with corresponding weaknesses. Team members make their greatest contributions when they are aware of their strengths and weaknesses. Team leaders are most successful when they are aware of the strengths and weaknesses of every team member.

The pairings of strengths and weaknesses shown above are based on statistical correlations. They do do not apply to all individuals. However, most people can find themselves somewhere on each list.

Which strengths do you possess? Which weaknesses?

145

Stakeholders

People with a vested interest in the project or its outcome

- May control critical resources
- May have concerns with proposed changes
- May have approval authority over proposed changes
- May own the in scope process
- Team must engage stakeholders to get support for the project

147

Stakeholder analysis										
	Student Files \ stakeholder analysis example									
		1	2	3	4	5				
	Position with respect to the project	Strong support	Support	Indifference	Resistance	Strong resistance				
	Degree of Influence on the project or its outcome	Very low	Low	Medium	High	Very high				
	Degree affected by the project or its outcome	Very low	Low	Medium	High	Very high				
							_			

Stakeholder analysis (cont'd)

Shown here is the Criteria sheet in stakeholder analysis example.

It is in the best interest of the team to determine the current levels of stakeholder support or resistance, and the levels of support needed for the project to succeed. The more strongly a stakeholder is affected by the project and its outcome, and the greater the influence he/she has on the project and its outcome, the stronger his/her support must be.

For each stakeholder, gather information (tactfully) and evaluate their level of support or resistance. Use this information to rate them with respect to the three criteria shown above.

> A stakeholder analysis contains sensitive information and should remain confidential to the core team and champion.

Sta	akeholder analysis (cont'd)							50
	Criteria →	Cu	inet pe	stel Cal	jeri ternit. Potenes	ofed lorent at	Jece atte	d sed
	A	2	2	1	5	2	20	
	В	3	2	2	4	2	48	
	C	3	2	2	3	2	36	
	D	4	2	3	4	3	144	
	E	2	2	1	2	3	12	
ers	F	3	2	2	3	4	72	Ħ
ploc	G	3	3	1	2	3	18	otal I
akeł	н	3	2	2	1	3	18	ratin
ŭ	1	1	1	1	1	1	1	ĝ
	J	1	1	1	1	1	1	

Stakeholder analysis (cont'd)

Shown here is the Stakeholders sheet in stakeholder analysis example.

A form of risk analysis is used to identify the stakeholders most in need of gentle persuasion. Your ratings should be entered into the white cells of the sheet shown above. The column *gap between current needed* is computed from the *current position* and *needed position* columns. For example, if the *current* and *needed* scores are the same, the *gap* is 1 — the lowest (best) possible value. If the *current* score is 5 and the *needed* score is 1, the *gap* is 5 — the largest (worst) possible value.

The total rating is the product of all columns, excluding the *needed position* column. The *needed position* is used only to compute the *gap*, the degree of increase in support required.

In the *Pareto* sheet, you should sort the stakeholders in decreasing order by total rating. (You may have to unprotect the sheet to do this.) The resulting chart is shown in the top slide on the next page.

You should focus your efforts to increase levels of support on the critical stakeholders — those with the highest total ratings.

A template for this analysis is in Student Files \ blank stakeholder analysis.

PAIN	Γ your way into stakeholder support
Ρ	<i>Persuade</i> them by creating a compelling case using data, examples, what competitors are doing, links to strategic goals
A	<i>Appeal</i> to their ideals, values, virtues, visibility, personal ambition
I	<i>Involve</i> them in the project — perhaps not on the core team, but get them in the loop as soon as possible, avoid surprises.
N	<i>Negotiate</i> with them. Is there a <i>quid pro quo</i> for their support?
Т	<i>Tell</i> them to cooperate. (This only works if you have the authority. Even so, use as a last resort.)

Storming

As the name indicates, the Storming Stage is marked by conflict, competition and polarization

- Energy is put into unproductive activities
- Members may disagree on team goals
- There is resistance to group influence and task requirements
- Subgroups can form around strong personalities or areas of agreement
- Individual personalities emerge
- Members may:
 - question boundaries established in the Forming Stage
 - think they are working harder than others on the team
 - · be frustrated by the different working styles of other team members

Performing

In the Performing Stage, the team is well-functioning and mature

161

- Roles become flexible and functional
- Structural issues have been resolved
- Cooperation and consensus have been well established
- Problems and conflict are dealt with constructively
- Members are committed to the team's mission
- Group energy is channeled into the task

Stages of Team Development Activity:

Your instructor will break you into groups. You will have 15 minutes in your group to complete this activity, for each phase assigned.

165

As a group:

- Quickly review the guidelines for brainstorming.
- Brainstorm specific ideas on the question for your assigned phase(s)
 [~ 10 min.] Consider the question from the <u>team leader</u> perspective.
- List all ideas on a white board or flipchart during the brainstorming session.
- Discuss the brainstormed list and make ideas more specific so they are actionable, as needed. Indicate all "good" ideas. [~ 5 min.]
- Choose someone to report out.
- Present all ideas deemed 'good' by your team.

Sta	Stages of Team Development Activity (cont'd)				
	Assigned Phase	As the team leader, what specific things can you do in team meetings, or with individual members between meetings, to help your team work together effectively in this phase and			
	Forming	move from Forming to Storming?			
	Storming	move from Storming to Norming?			
	Norming	move from Norming to Performing?			
	Performing	remain in Performing?			

Exercise 10.1

Our company makes prototypes for various types of mounting brackets. These are classified as either standard or non-standard. A project has been launched to reduce the lead time for designing and building prototypes for non-standard brackets (see slide below for a typical example).

177

What is the value stream scope for this project?

What is the workflow scope for this project?

177

- The project charter frames the project in the *business* space
- SIPOC is a separate document that frames the project in the *process* space:

 $\textbf{S} uppliers \rightarrow \textbf{I} nputs \rightarrow \textbf{P} rocess \rightarrow \textbf{O} utputs \rightarrow \textbf{C} ustomers$

- SIPOC also documents the *data collection* needed for the project
- The five elements of SIPOC are defined on the slide below.
- The logical sequence for reading or creating a SIPOC:

$\textbf{P} \rightarrow \textbf{O} \rightarrow \textbf{C} \rightarrow \textbf{I} \rightarrow \textbf{S}$

179

SIPOC definiti	ons 180
5) Suppliers	Entities who provide necessary <i>inputs</i> to the workflow scope. Suppliers may be internal or external to the organization.
4) Inputs	Products, services, or information provided to the workflow scope by suppliers.
1) Process	The workflow scope: the activities to be analyzed and improved. A <i>high-level</i> description including first step, main intermediate steps, and last step.
2) Outputs	Products, services, or information provided by the workflow scope to customers.
3) Customers	Entities who receive <i>outputs</i> from the workflow scope. Customers may be internal or external to the organization.

X variables

• Data variables that are possible causes of variation in the Ys are called *X variables*

183

- Examples: Who, What, Where, When, Which, ...
- The greater the number of X variables identified, the greater the chance of solving the problem (Why?)
- The Fishbone Diagram will be used in the Measure Phase to identify and document the X variables

The SIPOC will contain only products, services, or information provided to the workflow scope by suppliers.

183

Blank SIPOC template 184							
Project	The title of your project						
Suppliers	Internal	External					
Inputs and Xs	Inputs	↓ Inputs					
Process and Xs	First step Main step Main step	Main step Main step Last step					
Outputs and Ys	Outputs	Outputs					
Customers	Internal	External					

Blank SIPOC (cont'd)

The slide shows a graphical SIPOC template. All you have to do is edit the various boxes and text. You can also add or delete boxes or text.

185

The following three slides show the graphical SIPOCs for three case studies.

Electronic versions can be found in the Student Files folder:

- blank SIPOC
- quotation process SIPOC #1
- Ti casting SIPOC #1
- tool development SIPOC #1

185

SIPOC e	example 2	87
Project	Reduce RFQ Turnaround Time	
Suppliers	External customer External suppliers	
Inputs and Xs	Request for quote	
Process and Xs	Receive RFQ Develop quote Review quote Send quote or request a revised RFQ	
Outputs and Ys	Request to revise RFQ	
Customers	External customer	
187		

Exercise 10.2

Our company makes prototypes for various types of mounting brackets. The process of designing and building the prototypes is referred to as the Mounting Bracket Development Process (MBDP). A project has been launched to reduce the MBDP lead time for non-standard brackets (see below for an example). For background on the project and process, please refer to the following documents in the *Student Files* folder:

MBDP charter MBDP description for SIPOC

Based on the information in these documents, create a SIPOC for this project using the template in *Student Files* $\$ *blank SIPOC*. (Don't worry about X and Y variables. We will not use this feature yet.)

Update the MBDP charter by entering your description of the workflow scope.

Save the charter and your SIPOC.

189

Guidelines (cont'd)

• Don't "gang up" on a few participants or process steps deploy team members effectively to get as many perspectives as possible 193

- Ask permission to take notes, photographs or videos this helps team members get the information they need without having to repeat questions later
- Observations should begin with introductions and guided tours, in some cases
- This should be done on all relevant shifts
- Subsequent "unguided" observations are often needed

Team roles & responsibilities							<mark>195</mark>
	Bob	Carol	Ted	Alice	Мое	Larry	Curly
Interview workflow participants	~			~			
Observe and record changes to process map		~			~		
Identify workflow data variables and inspection points			~			~	
Identify data variables and inspection points for workflow inputs				~			~
Interview internal customers	~				~		
Identify data variables and inspection points for workflow outputs		~				~	
Focus on measurement systems			~				~

Asking questions

• The *way* you ask questions can affect the usefulness of the answers you get

- *Closed* questions can be answered with "yes" or "no" if the person is reluctant to talk to you, closed questions will not get you anywhere
- *Open* questions start with words like *what, why, when, where, who, which, how,* etc.
- Open questions are much better for eliciting information, ideas, opinions, etc.

Asking questions (cont'd)	197		
Open questions	Closed questions		
"How do you do that?"	"Can you see from where you're sitting?"		
"Why is it done this way?	"Can you hear me in the back?"		
"How do you think that would help?"	"So, you agree with the schedule change?"		
"When you say , what do you mean?"	"Have we decided to meet on Fridays?"		
"What would be an example of that?"	"We covered that earlier, didn't		
"What are some possible causes of?"	we?"		
"Why do think that could be a cause?"	• Closed questions are useful for moving a conversation along		
"Why do you think that happens?"	• Try to phrase them so that the answer you want is "yes"		

Correcting bad listening habits	<mark>198</mark>
Concentrate on what is being said.	
Observe	
Respond with eyes, voice, gestures, and posture to communicate empathy and understanding.	
R eflect information by paraphrasing.	
Elicit information by asking questions.	
C ontrol the urge to interrupt, judge, or change the subject.	
Take advantage of lags between question and answ to record observations or further questions.	ver
Take advantage of lags between question and answ to record observations or further questions.	'er

Lean checklist

- □ Are there opportunities for reducing batch size?
- □ Where is the greatest amount of work-in-process (WIP)?
- □ What are the most common do-overs?
- □ Is the physical layout causing excessive movement of people or material?

199

- \Box Is there unnecessary complexity?
- □ Where are the most time-consuming changeovers?
- □ Are there opportunities for mistake proofing?

Observation log

- Team members may see possible causes of problems and solutions as soon as they start observing and mapping the current state
- These observations should *not* be publicized until the appropriate point in the project roadmap

201

- These observations *should* be logged as they arise, preferably in Excel (facilitates categorization and prioritization)
- The possible causes will be reviewed in the *Analyze* phase, along with data analysis results, to determine root causes
- The possible solutions will be reviewed in the *Improve* phase to develop the future state

201

Observation log (cont'd)							
Team member	Date	Location	Possible cause	Possible solution			

Basic process mapping (cont'd)

204

Process mapping is easy to learn and produces useful documentation of the current state. It is also a great team building activity.

The key to successful application of any mapping technique is to focus on the appropriate *level of activity* for your project. In SIPOC we identify the first, last, and main intermediate steps of the in-scope workflow. This gives you a high-level process map.

A high-level map is a good starting point for more detailed mapping. A basic process map, discussed in this section, shows individual tasks and decision points within the main steps. A cross functional or swimlane maps shows who is responsible for each task and decision. This and other common mapping formats are discussed in the next section.

A high-level map is also the usual starting point for value stream mapping (VSM). VSM combines visualization of what is happening with certain forms of data analysis. VSM will be discussed later in the program.

Mapping as a team activity		207
Suspend your disbelief	Map the process the way it really is, not the way yo think it should be.	ou
Don't make assumptions	If you don't know what happens at a certain point, can't agree on what happens, put a question mark t Then, go ask someone who does know.	or here.
Solicit feedback	Ask participants of the in scope workflow, and thei internal customers, to review the map for accuracy clarity.	r and
Document your work	Use mapping software to create an electronic version the map.	on of

Writing good narrative	98
✓ Use active voice, not passive voice ☺ Order is entered ☺ Enter the order	
✓ Use verb/object, not name of activity ☺ Order Entry ☺ Enter the order	
✓ Use short sentences with familiar words ☺ Twilight's last gleaming ☺ Dusk	
✓ Use present tense	
✓ Use logical, consistent layout	

Exercise 12.1

How would you modify the toast-making process to further reduce the lead time?

213

Exercise 12.2 (cont'd)

There are two types of material, A and B. The material must be processed before it can be used. There are two steps in this process. For Process 1, the A and B materials must be processed in separate Type 1 machines. If two Type 1 machines are available, load the A material into one machine, the B material into the other, and run the two machines at the same time. If there is only one Type 1 machine available, run the two loads sequentially in that machine.

When Process 1 is completed, unload the material, and move on to Process 2. Process 2 requires Type 2 machines. If two Type 2 machines are available, load the A material into one machine, the B material into another, and run the two machines at the same time.

Unlike the Type 1 machines, the A and B material can be processed together in the same Type 2 machine. If there is only one Type 2 machine available, load both the A and B material into that machine for processing. This will take longer than processing the A and B materials in separate machines, but not as long as running two loads sequentially.

When Process 2 is completed, unload the material, separate the A and B materials if necessary, then store them for subsequent use.

Swimlane Diagram (cont'd)

A swimlane diagram visually portrays the responsibilities for all process activities and decisions. In addition to showing responsibilities, swimlane diagrams are much better than simple maps for identifying opportunities for improvement.

226

To create a swimlane diagram, first determine all the departments or functions involved in the activities and decisions you want to map. Enter swimlanes for departments or functions from top to bottom in the order they are first called for in the sequence of activities and decisions. Also, you should follow a qualitative timeline in placing activities and decisions on the map.

With this method, the general flow of the activities and decisions will be from top left to bottom right on the map. This usually leads to the simplest and easiest to read depiction of the process.

Topological map (cont'd) 228 topological adj : concerned with relations between objects abstracted from exact quantitative measurement A topological map is similar to a spaghetti diagram, but without the geography/scale. It shows connections, but not distances. It may or may not indicate a time or process sequence. The routing diagrams in the London Underground are famous examples of topological maps. An example of a topological map is shown above. It shows the information flow among several departments, organizations, or regions. It makes no attempt to depict location or distance. The numbers in the circles indicate the process sequence.

Exercise 13.1

Each team (same teams as for the SIPOC) will create a cross functional process map for the current state mounting bracket development process (MBDP). Use the information in the following file:

Student Files \ MBDP description for process map

231

The instructor will provide paper. Enter swimlanes (departments) as they occur in the narrative. (Make the swimlanes at least two sticky notes wide.) Add a sticky note for each step or decision in the process. Use marker for the text. Use masking tape to attach additional paper if needed. Add flow lines in pencil as you go. Trace flow lines with marker once your map is finished.

Definitions	237
 Available Working Time (AWT) • The time a process is available to conduct work • AWT excludes time when work isn't occurring such a for breaks, meetings, lunch, preventative maintenance estimates of unplanned downtime, change overs, etc. 	
Throughput (Tput)	 The average number of good parts or transactions completed over a period of time Typically measured as average over at least several days Throughput, lead time, and WIP are related through Little's Law

Definitions (cont'd)		
Lead time (LT)	 The total elapsed time to produce one defect free product or transaction The time difference between when a part or transaction enters and leaves a process 	
Customer Demand Rate (CDR)	• The number of parts or transactions that the customer desires over a period of time (usually a day, week, or month)	

Definitions (cont'd)		
 The pace at which an operation should complete product transactions in order to meet customer demand during Available Working Time. Takt time (TT) Available working time during a period divided by the number of products or transactions <i>required</i> during that period 		s or e L
Cycle time (CT)	 The fastest repeatable time between part or transaction completions using the current processes and resources Shows how a process is capable of performing Combines with AWT to determine capacity 	Ľ

Definitions (cont'd)			
Process Cycle Efficiency (PCE)	• The percentage of time that WIP is being transformed by activities. In other words, the percentage of lead time the value added.	v VA at is	
Work In Progress (WIP)	• Includes items waiting to be worked on and items active being worked on. WIP includes all of the inventory in the production system.	ly e	

Example 1

Available Working Time per day = 480 min - 90 min breaks, lunch, meetings

= 390 min

Avg. daily Customer Demand Rate = 32 units

```
Takt time = <u>390 minutes</u> = 12.2 mins
```

241

During a study of this process, parts were completed at the following times:

9:00, 9:09, 9:17, 9:28, 9:37, 9:46, 9:58, 10:07, 10:16, 10:24, 10:33, 10:42

Based on this, the elapsed time in minutes between completed units was:

9, 8, 11, 9, 9, 12, 9, 9, 8, 9, 9

Cycle Time = 9 minutes (the fastest repeatable value)

Exercise 14.1

Using the information provided in Example 1, consider the scenario where the customer wants to increase their purchases from 32 to 42 units per day.

- a) What is the new takt time?
- b) What is the cycle time and is the new takt time faster or slower than the cycle time?
- c) Can you accommodate this demand increase?
- d) What problems might need to be solved?
- e) Why should cycle time measurements not typically be taken from process output data in an ERP system?

How do we get lead time data?				
Method	Drawbacks			
Download accurate, time stamped records from database	 The best scenario, if such data exists Make sure WIP time is accounted for properly			
Shadow parts or transactions	 Tedious Logistically difficult Time consuming for team members 			
Tag documentation	 Anything identified as "special" is likely to be expedited Data will not represent reality 			
Enter "file cabinet data" into Excel	 Tedious and time consuming Likelihood of data entry errors May not exist 			
Little's Law	• Allows calculation of LT from WIP and T'put			

Applying Little's Law

	Avg. WIP	The previously described process was studied and the
Queue 1	5.0	average WIP counts are shown here. They are
Operation 1	1.0	measured as follows:
Queue 2	7.5	• Onene WIP is the average pieces waiting to be
Operation 2	1.5	processed. For example, Queue 1 WIP is the typical
Queue 3	15.0	amount of work waiting to be processed by
Operation 3	3.0	Operation 1.
Queue 4	10.0	• Operation WIP is the average pieces actively being
Operation 4	2.0	processed. For example, Operation 1 is typically
Queue 5	22.5	processing one piece.
Operation 5	4.5	• The Total WIP in the process is the sum of all of the
Queue 6	22.5	Queue and Operation WIPs
Operation 6	4.5	
Queue 7	5.0	
Operation 7	1.0	
Total	105.0	

249

Applying	Little	e's Law	250
		Avg. WIP	We can apply Little's Law to the antire process, an
Qu	eue 1	5.0	individual process, or a subset of processes.
Opera	tion 1	1.0	Remember:
Qu	eue 2	7.5	Lead Time = $(WIP) / (Throughput)$
Opera	tion 2	1.5	
Qu	eue 3	15.0	Since each operation, and therefore the entire process
Opera	tion 3	3.0	sequence, averages 6 pieces per hour, Little's Law lets
Qu	eue 4	10.0	us calculate lead times as follows:
Opera	tion 4	2.0	• For the entire process:
Qu	eue 5	22.5	-
Opera	tion 5	4.5	Lead Time = 105 pieces / 6 pieces per hour = 175 hours or 1050 minutes
Qu	eue 6	22.5	– 17.5 hours of 1050 hindues
Opera	tion 6	4.5	• For Queue 1 and Operation 1:
Qu	eue 7	5.0	Lood Time Criscos / Criscos res hour
Opera	tion 7	1.0	= 1 hour or 60 minutes
	Total	105.0	

Exercise 14.3

Open *Data Sets* \rightarrow *MBDP VSM*. Average WIP and estimates of process times (in hours and days) are given for the six main steps in this process. The quantity completed in 260 work days is also given. Use Excel formulas to calculate the following:

253

- a) Throughput, total process time in days, total WIP.
- b) PO-PD (lead time) for the six main steps individually and the overall process?
- c) Where are the bottlenecks? Do these steps have anything in common?
- d) What would the overall lead time be if all transactions were handled immediately upon receipt at each step?
- e) Save your work.

Exercise 14.4 (cont'd)

The average annual revenue of the company whose billing process is shown in the previous slide is \$300M. Its average dollars in accounts receivable (AR) is \$60M. Consider the following translations:

- AR is a process
- Dollars in AR is the WIP quantity
- Annual revenue is the quantity completed in 365 days
- Average days in AR is the average lead time of this process

Use Little's law to calculate the average days in AR.

The result will explain why the Accounts Receivable (billing) process was targeted for improvement.

255

 Exercise 14.4 (cont'd)
 256

 Open Data Sets → billing process VSM. Use Excel formulas to calculate the following in units of \$M (dollars in millions) and days (use a 24-hour day):
 a) Throughput, total VA process time, and total WIP.

 b) Lead time for the five main process steps, and overall.
 c) Total NVA Lead Time, NVA Process Time and Process Cycle Efficiency.

 d) Wait time and Wait time as a percentage of total NVA time.
 e) Where does WIP indicate a capacity constraint? If each process had the same resources and AWT, where would the constraint be? Why might there be little WIP in front of a constraint?

Fishbone Diagram (cont.)

The Fishbone Diagram is created with the project team.

- It focuses the team on the particular effect, shown in the "head of the fish"
- All ideas for potential causes (critical x's) are collected using brainstorming

261

- Categories on the main "bones" help trigger ideas
 - Standard categories are Man, Machine, Materials, Methods, Measurement and Environment ("5 M's and an E")
 - The team can choose to use different categories
 - Standard categories (with minor modifications) are recommended for your first uses

Prioritizing X variables for data collection

- X's are measurable characteristics of process inputs
- Who/what/where/when/how within the workflow scope

265

- These are shown on your fishbone diagram
- It may not be feasible to collect data on all X variables of interest
- You may need to prioritize them

Ins	structions for prioritizing X variables
1.	Open Student Files \rightarrow blank C&E matrix - Pareto method
2.	In the Metrics sheet, change Metrics to Y variables
3.	List your Y variables and relative weights
4.	In the Items to be ranked sheet, change Items to be ranked to X variables
5.	List the X variables you wish to rank
6.	Rate each X variable for degree of correlation with each Y variable: none (blank), low (L), medium (M), high (H)
7.	Copy your X variable list, paste it into the <i>Pareto</i> sheet under <i>Paste items to be</i> ranked
8.	Copy your overall rankings, Paste Special \rightarrow Values into the Pareto sheet under Paste overall rankings
9.	Select the range B3:C27, select $Data \rightarrow Sort$, uncheck <i>My data has headers</i> , sort by column C, largest to smallest

Ex	xample (cont'd)					
A	В	С	D			
1	[]	1				
2	Paste items to be ranked	Paste overall rankings				
3	Which auditor	27			Durate	
4	# People who have to review findings	27			Pareto	
5	Auditor experience	27			sheet	
6	# Records reviewed	21			Sheet	
7	Which audit	19				
8	Which auditee	18				
9	Audits started on time	18				
10	Availability and use of audit templates	15				
11	Auditees given adequate time to respond to NCs	11				
12	Perceived value of audits	9				
13	Where audit is conducted (desk, etc.)	7				
14	Perceived value of findings	7				
15	Data delivery time	7				
16	# Functional area SOPS required in audit	7				
17	Audit SOPs readily available	7				
18	Which sites	6				
19	Location of records	6				
20	# Times touch same record/auditee	6				
21	Accuracy of recorded observations	5				
22						
23						
24						

Exercise 15.2

Open *Student Files* \rightarrow *MBDP X variable prioritizer*. Y variables and X variables are given. Use your knowledge and experience to rate the X variables for correlation with the Y variables and produce the Pareto Chart.

271

Prioritizing X's using Multi-voting	272
Another method for prioritizing X's for data collection is tuse multi-voting:	to
1. Count the number of X's	
2. Divide the total number of X's by 3. Each team member gets that many "votes"	5
3. Each team member decides how they will apply their votes, giving one vote to each X they think is a most likely main contributor to the problem	
 Give a marker to each team member and have them write their vote the fishbone diagram or list 	es on
 Use a <i>secret ballot</i> if there are concerns of undo influence among to members 	eam
4. Focus data collection on those X's that rise to the top	

Working with one or two others from your company, if possible:

1. Give an operational definition for PO-PD in the Mounting Bracket Development Process (MBDP) project. Your definition should address the relevant questions on the previous slide.

275

2. Give an operational definition for one of the Y variables for your project. Your definition should address the relevant questions on the previous slide.

275

Population sampling				
	Population	• A specified collection of people or things		
	Sample	 A subset of a population Usually relatively small Intended to represent the population 		

Exercise 16.1

Decide whether or not the proposed sample in each case below will be representative of the population. If not, note obvious or possible biases on the slide below.

Population	Purpose	Proposed sample
(a) Former Enron employees	Opinion on culpability of top Enron executives	Those with the largest retirement accounts, comprising 85% of lost value
(b) A year, make, and model of car	Surreptitiously determine % with a given defect	Offer a free until 100 cars have been inspected at each US dealership
(c) ER patients at a hospital last year	Customer satisfaction survey	Those whose last names begin with the letter M
(d) Lambs born in New Zealand last year	Determine % with "mad lamb" disease	Random sample of each ranch in NZ, proportional to # of lambs
(e) Registered voters	Opinion on presidential candidate	Generate telephone numbers at random, call those people

285

Process sam	pling	291
Process	A predetermined sequence of actions and decisions intended to produce a desired outcome. (A way of doing something.)	
	✓ Manufacturing process	
	✓ Service process	
	✓ Business process	
	✓ Transactional process	
	✓ Decision process	
	✓ Design process	
Fo	or any process, there is an associated population	

Process sampling for LSS projects

• 100% sampling for a period of time, is the most common method

293

- What are some situations where 100% sampling is not possible?
- The sample must cover a representative time period
- The sample must capture all *typical sources of variation* (see slide below)

293

"Less than 100%" sa	impling methods	<mark>295</mark>		
Random	Items are selected by a random number generator			
Systematic	Systematic Items are selected at regular intervals			
Stratified random*	Items are sampled from homogeneous subpopulations, in proportion to subpopulation siz	ze		
Judgment	Items are selected using knowledge of the process	i		
Convenience	Items are selected based on cost or ease of access			
*Usually considered to b	e the most representative sampling method.			

Exe	rcise 16.2						<mark>296</mark>
Chec each	the sampling methods that apply in case based on the given information.	Rand	on syste	matic strati	iled Judgfr	lent Conve	nience
	Pulled 10 parts off the high volume production line at the top of each hour						
	Reviewed Enron electricity trades during periods of highest demand						
	Used random numbers to select 10% of patient charts for the past year						
	Monitored every 1000 th customer service call						
	Downloaded invoices with numbers ending in 0 or 5						
	Inspected the first 3 parts from each production lot						
	Took a sample from the top of each barrel on the top layer of the stack						

- Amount of data: more is better than less
- Time period: longer is better than shorter*
- Capturing all typical sources of variation usually gives an adequate sample size

• You should do a sample size calculation just to make sure

 * But beware of old data that is no longer relevant to your current state.

297

Sample	e size calculation: opinion poll example					
ф	The fraction (proportion) of people in the population who would say yes to the survey question if asked. We don't know, and will never know, the exact value of ϕ . However, we can					
	get an accurate estimate of ϕ if we collect enough data.					
Sample	The people who respond to the survey. Usually, this is a very small subset of the population.					
ф _{sample}	The fraction (proportion) of the respondents who say yes to the survey question. This is our estimate of ϕ .					
	We don't know this now, but we will after we get the data.					
MOE	Margin of error: the amount by which ϕ_{sample} could differ from ϕ , based on an established statistical standard of evidence.					
	The most common standard of evidence is called "95% confidence."					
	The number of people who respond to the survey — the <i>sample size</i> .					
N	The required sample size depends on ϕ_{sample} and the desired MOE.					

Sample size (cont'd)

In most opinion polls, ϕ_{sample} is assumed to be close to 0.5 when determining sample size. This gives the largest sample size needed to achieve the desired margin of error (MOE). If ϕ_{sample} is not 0.5, the MOE will be smaller, which is desireable. The approximate formula for the MOE (with 95% confidence) is:

MOE = 1.96	$\frac{\phi_{\text{sample}}\left(1-\phi_{\text{sample}}\right)}{N}$	= 1.9	$96\sqrt{\frac{0.5}{2}}$	(0.5) N	$= \frac{0.98}{\sqrt{N}}$
We can solve this	equation for N:		MOE	Ν	
N = (0.98)	$3 / MOE)^2$		0.05	384	
- (0.2	,,		0.04	600	

0.03

0.02

0.01

1067

2401

9604

Exercise 16.3								
We want to sample size	to get ze in	an accurate estima the following scena	te of the population % def rios.	ective. Find	the required			
		Guess for sample % defective	Desired upper bound on population % defective	Sample size				
	(a)	10	20					
	(b)	10	15		-			
	(c)	10	13					
	(d)	1	4					
	(e)	1	3					
	(f)	1	2					

305

Exercise 16.4

a)	For the previous example, calculate the sample size assuming we want our MOE
	to be 5% of the mean instead of 10%.

307

b) Calculate the sample size assuming we want MOE to be 1% of the mean.

Standard data matrix for	nat				311
	 Each column A unique <i>field</i> (database terminology) A unique <i>variable</i> (statistical terminology) 				
 Each row A unique <i>record</i> (database terminology) An observation (Statistical terminology) A part, sample, lot, batch, transaction, time period, person, The number of rows is the <i>sample size</i> 					

Data matrix example 1 31								
	← <i>D</i> e	ata variabl	$es \longrightarrow$					
				[
	S/N	Length	Diameter					
	501	599.54	48.92	Fach row represents one				
	502	598.31	47.89	serial number of a				
	503	598.37	48.16	particular part number				
	504	599.06	48.06					
	505	598.14	47.78					
	506	598.93	48.21					
	507	599.28	47.44					
	508	599.66	48.22					
	509	599.60	49.09					
	510	597.52	47.38					
	511	598.39	48.78					
	512	599.31	48.48					
	513	600.20	48.89					
	514	599.63	48.23					

Data matrix example 2

Quote Num	AcctMgr	BU	Initial RFQ	Month	Cycles	Finance reviews	TAT
3250024	8	3	12-Jun-03	2003.06	1	1	:
3250029	2	3	04-Jul-03	2003.07	1	0	:
3250031	5	3	29-Aug-03	2003.08	1	1	
3250032	4	3	16-Jun-03	2003.06	1	0	
3250033	3	3	06-Jun-03	2003.06	1	1	:
3250034	20	3	30-Jun-03	2003.06	1	1	
3250035	3	3	09-Jun-03	2003.06	1	1	
3250036	4	3	16-Jun-03	2003.06	1	0	
3250037	4	3	16-Jun-03	2003.06	1	0	:
3250038	4	3	26-Jun-03	2003.06	1	0	
3250039	8	3	30-Jun-03	2003.06	1	1	9
3250040	4	3	26-Jun-03	2003.06	1	0	
3250041	4	3	26-Jun-03	2003.06	1	0	
3250042	4	3	01-Jul-03	2003.07	1	0	
3250043	11	3	07-Jul-03	2003.07	1	0	
3250045	20	3	12-Aug-03	2003.08	1	1	
3250046	3	3	14-Jul-03	2003.07	1	0	1
3250047	2	3	14-Jul-03	2003.07	1	0	

313

		- Data varia	ıbles –		;
WORK ORDER	PARENT P/N	COMP P/N	AREA	CATEGORY	SCRAP QTY
35709	672-5668-00	162-4219-66	HDSI	TRAINING ISSUE	1
88198	174-B983-00	178-2758-66	WC	RECUT	4
88198	174-B983-00	178-2764-66	WC	RECUT	8
96772	180-9272-66	M83519/2-3	CH	TRAINING ISSUE	
97130	672-6163-66	174-5274-00	HDSI	SPLICES	2
97166	180-8208-66	178-2564-66	WC	FAILED TEST	1
97166	180-8208-66	388-5021-66	NC	BAD MOLDING	
97166	180-8208-66	388-5021-66	NC	FAILED TEST	
97327	H542E371-01	162-4356-66	CH	FAILED TEST	
97327	H542E371-01	162-4718-66	CH	FAILED TEST	:
97327	H542E371-01	47180GY-25	CH	FAILED TEST	
97544	180-0829-66	178-1565-66	PR	FAILED TEST	
97555	196-3501-66	47439-001LF	WC	MACHINE/TOOLING	20
97563	170-0135-66	178-0103-66	WC	MACHINE/TOOLING	1
97563	170-0135-66	178-0104-66	WC	MACHINE/TOOLING	
97564	170-0148-66	131-0965-00	WC	MACHINE/TOOLING	30
97570	180-8728-66	132-6158-66	CH	TRAINING ISSUE	1
97582	010-0735-00	131-7989-00	HDSI	VENDOR MATL	3
97582	010-0735-00	174-5274-00	HDSI	TRAINING ISSUE	2
97582	010-0735-00	174-5274-00	HDSI	VENDOR MATL	1

Data matri	c example 4						
	← Da	ıta varia	$bles \rightarrow$				
	Week	Inspected	Defective				
	1	400	2				
	2	169	1				
	3	208	1				
	4	510	3	Each row			
	5	132	1	rennecente			
	6	500	3	Tept esents			
	7	393	2	one week			
	8	625	3				
	9	167	1				
	10	395	3				
	11	200	1				
	12	122	1				
	13	178	2				
	14	527	4				
	15	132	1				
	16	1/1	2				
	1/	610	5				
	18	446	5				
	19	428	5				
	20	207	3				
	21	708	15				
	22	149	3				

Exer	Exercise 17.1 (a)							
					Average monthly WIP			
		2001	2002	2003	Is this a valid data matrix?			
	Jan	19	20	20				
	Feb	27	22	15	If not give the column headings for the			
	Mar	20	19	27	standard data matrix format			
	Apr	16	16	25				
	May	18	22	17				
	Jun	25	19	19				
	Jul	22	25	28				
	Aug	24	22					
	Sep	17	18					
	Oct	25	20					
	Nov	15	16					
	Dec	17	17					

Exercise 17.1 (b) Patients admitted to an emergency department Jan '01 Feb '01 Mar '01 Apr '01 May '01 June '01 July '01 Aug '01 Sept '01 Oct '01 Nov '01 Dec '01 Jan '02 Feb '02 Mar '02 Apr '02 May '02 June '02 July '02 Aug '02 Sept. '02 Oct. '02 2991 3055 3328 Is this a valid data matrix? If not, give the column headings for the standard data matrix format.

		Pass/fail	& failur	e rea	sons
Test Date & Time	Model Number	Serial Number	Test Station	Result	Failure Reason
3/1/2006 6:02	690	6099948	3	Passed	
3/1/2006 6:03	692	6087149	1	Passed	
3/1/2006 6:05	690	6099949	3	Failed	DoBatteryAccuracyTest
3/1/2006 6:06	690	6099949	3	Passed	
3/1/2006 6:12	692	6087150	1	Passed	
3/1/2006 6:12	690	6099932	3	Passed	
3/1/2006 6:13	692	6099622	2	Passed	
3/1/2006 6:15	690	6099933	3	Failed	Operating current outside of allowed rang
3/1/2006 6:17	692	6099623	2	Passed	
Is this a va If not, give format.	lid data ma the columr	trix? 1 headings	: for the s	tanda	rd data matrix

Exercise 17.1 (d)

Tue	sday	Wedn	esday	Thur	sday	Friday	
Hour	Resist	Hour	Resist	Hour	Resist	Hour	Resist
10	1609	0	1549	0	1746	0	1563
10	1832	0	1658	0	1539	0	1621
10	1808	1	1841	1	1735	1	1842
11	1714	1	1593	1	1754	1	1546
11	1846	1	1725	1	1637	1	1737
11	1686	2	1845	2	1895	2	1790
12	1559	2	1631	2	1696	2	1608
12	1888	2	1784	2	1715	2	1813
his a vali ot, give 1 nat.	d data m he colun	atrix? nn headi	ngs for -	the stan	dard da	ta matri	×

319

319

Exercise 17.2 (cont'd)

Computer chips are cut from silicon wafers. We selected chips cut from the same 5 locations on 4 wafers. We measured the X and Y dimensions of each chip. (It may help to sketch the data matrix.)

321

(a) Give the column headings for the standard data matrix format.

(b) How many rows are there?

(c) What does each row represent?

321

Business Unit 1, 2, etc. Quote Number X000000X Rev AA, AB, etc. First quote? Yes/No FY Requested 06, 07, etc. Date Requested Format: 6/2/06 Service Approval Yes/No Final Appr Yes Date Rev 1	xample formats for manual data collection					
Business Unit 1, 2, etc. Quote Number AA, AB, etc. First quote? Yes/No FY Requested 06, 07, etc. Date Requested Format: 6/2/06 Service Approval Yes/No Final Appr Yes Date No Image: Service Approval Format: 6/2/06 Service Approval Yes/No Final Appr Yes Date No Image: Service Approval Format: 6/2/06 Service Approval Yes/No Final Appr Yes Date No Image: Service Approval Format: 10/28/04 Job NO. TASK OPER AG, ET, GR, etc. Image: Service Approval Format: 10/28/04 Image: Service Approval Format: 10/28/04 Image: Service Approval Format: 10/28/04 Service Ap						
DATE JOB NO. TASK OPER Format: 10/28/04 31, 32, etc. See code sheet AG, ET, GR, etc.	roval Date Sent /No Format: 6/3/06	Region See code sheet	Account Manager AG, ET, GR, etc			
DATE JOB NO. TASK OPER Format: 10//28/04 31, 32, etc. See code sheet AG, ET, GR, etc.						
DATE JOB NO. TASK OPER Format: 10/28/04 31, 32, etc. See code sheet AG, ET, GR, etc.						
DATE JOB NO. TASK OPER Format: 10/28/04 31, 32, etc. See code sheet AG, ET, GR, etc.						
DATE JOB NO. TASK OPER Format: 10/28/04 31, 32, etc. See code sheet AG, ET, GR, etc.						
Format: 10/28/04 31, 32, etc. See code sheet AG, ET, GR, etc.	T0TAL HOURS V	A HOURS				
	X.XX	X.XX				
	I	1				

Data collection forms (cont'd)

These examples are set up to match the desired data matrix format. This makes data entry easier.

The most important thing about a data collection form is to eliminate as much variation in data entry as possible. Specify desired date and time formats. Use codes instead of free form text. Use uppercase initials instead of names. Specify desired numeric formats precisely.

Try to fit all the variables for which you want data collected on one page. Try to make the spaces big enough to write in. These things may work against each other. If there are too many columns to fit into portrait mode, use landscape mode instead. Do not include variables that can be calculated from other variables after the data are entered into a spreadsheet.

Best Practice: Have at least one person *test the form* or spreadsheet by collecting data for a short period of time, to make sure it works well before deploying it more broadly for data collection.

Summary of c	lata types	326
	Also known as	Examples
Quantitative measurement	 ✓ Continuous ✓ Variable ✓ Parameter ✓ Physical/chemical/electrical/optic properties, dimensions, distance, tic Counts, 	
Categorical classification	√Qualitative √Discrete √Attribute	<u>Y variables</u> Pass/fail, type of defect, quality rating, <u>X variables</u> Batch, lot, part number, supplier, customer, machine, operator, method, time period, location, condition,

Ç	Quantitativ	e Y variables 327					
Dimensions of cylindrical castings							
	S/N	Length	Diameter				
	501	599.54	48.92	. Thus values may be infinitesimally of	000		
	502	598.31	47.89	to each other	056		
	503	598.37	48.16	to each other			
	504	599.06	48.06				
	505	598.14	47.78	• Data resolution is determined by the			
	506	598.93	48.21				
	507	599.28	47.44	measurement system			
	508	599.66	48.22				
	509	599.60	49.09	T AAL STATE			
	510	597.52	47.38	• Is S/N a quantitative measurement?	2		
	511	598.39	48.78				
	512	599.31	48.48				
	513	600.20	48.89				
	514	599.63	48.23				
	515	601.10	50.14				
	516	599.90	49.20				
	517	599.37	49.17				
		÷					

Quantita	titative Y variables				
		ŀ	Resistiv	ity of DI water	
Tue	sday	Wedn	esday	• Deionized water used in machining and	
Hour	Resist	Hour	Resist	cutting operations	
10	1609	0	1549		
10	1832	0	1658	 Electrical resistivity is the opposite of 	
10	1808	1	1841	conductivity	
11	1714	1	1593	1	
11	1846	1	1725	. Higher registivity means lower	
11	1686	2	1845	Prigner resistivity means lower	
12	1559	2	1631	conductivity, which is good	
12	1888	2	1784		
13	1592	3	1704	 Data resolution is determined by the 	
13	1752	3	1676	measurement system	
13	1784	3	1860		
14	1443	4	1619	 Day of week is a categorical 	
14	1502	4	1398	classification	
14	1700	5	1556		
15	1500	5	1687		
15	1675	5	1574	· Hour of day: quantitative or	
15	1707	6	1733	categorical?	

Qua	uantitative Y variables 32					
	X dev	Y dev	Alignment of assembled components			
	8	-6				
	-7	-2				
	-9	-4	Y day			
	-10	-5				
	-21	-7	X dev			
	-20	6				
	-13	-3				
	-16	9	 Deviations from target in X and Y 			
	-20	-1	directions			
	-14	-4				
	-14	-6				
	-16	3	 Reported to the nearest thousandth of 			
	-14	-6	an inch			
	-23	-4				
	-11	-10				
	-19	7	 Decimal point dropped 			
	-14	3				
	-10	-6				

Quar	Quantitative Y variables							330			
				EL) patie	ent vis	sits				
Jan '01	Feb '01	Mar '01	Apr '01	May '01	June '01	July '01	Aug '01	Sept '01	Oct '01	Nov '01	Dec '01
3114	2778	3026	2869	3009	3119	3000	3069	2841	2962	2707	2815
Jan '02	Feb '02	Mar '02	Apr '02	May '02	June '02	July '02	Aug '02	Sept. '02	Oct. '02		
3015	2991	2769	2961	2991	3055	3328	3337	3209	2921		
		✓ Coun ✓ Who ✓ Mont	t data le numb h-yea	nu – nu	mber o Ily, no r regorica	f occur negative al	rences e numb	s of son ers	ne defi	ned ev	ent

Quantitative Y variables

Date	# Inits	# Defects		
	# UIIII.5	# Delects	1.00	
9-Feb-90	8	8	1.00	
10-Feb-90	8	17	2.13	
11-Feb-90	9	18	2.00	•
12-Feb-90	8	15	1.88	
15-Feb-90	8	23	2.88	
16-Feb-90	7	9	1.29	
17-Feb-90	7	19	2.71	
18-Feb-90	8	6	0.75	•
19-Feb-90	8	14	1.75	
22-Feb-90	8	17	2.13	
23-Feb-90	7	13	1.86	
24-Feb-90	8	15	1.88	
25-Feb-90	9	16	1.78	
26-Feb-90	9	22	2.44	
1-Mar-90	8	13	1.63	
2-Mar-90	8	10	1.25	
3-Mar-90	4	14	3.50	•
4-Mar-90	8	9	1.13	
5-Mar-90	12	23	1.92	
8-Mar-90	12	21	1.75	
9-Mar-90	16	51	3.19	•
10-Mar-90	8	31	3.88	
11-Mar-90	4	3	0.75	

Defects per unit
Scratches on lenses, particles on silicon wafers, bubbles in a laminate, errors in documents,
DPU = number of defects divided by number of units inspected
Used instead of DPMO when multiple defects per unit are possible, but there is not a finite number of identifiable defect opportunities per unit
If the number of units is always 1, this is count data
Date : quantitative or categorical?

Quantitative Y variables									
Date	Date	Calendar	Business						
requested	sent	days	days						
05/26/04	05/26/04	1	1	Transaction turnaround time					
05/26/04	05/26/04	1	1						
06/02/04	06/02/04	1	1	• (Date sent) - (date requested)					
06/02/04	06/02/04	1	1	(Bare sent) (date requested)					
06/02/04	06/02/04	1	1	or					
06/02/04	06/02/04	1	1	(Data cant) (data naguastad) 1					
06/02/04	06/03/04	2	2	• (Date sent) = (date requested) + 1					
06/03/04	06/04/04	2	2						
06/04/04	06/04/04	1	1	• Calendar or business* days					
06/04/04	06/07/04	4	2	calendar of business days					
06/07/04	06/07/04	1	1						
06/07/04	06/07/04	1	1	 The whole number resolution is a 					
06/07/04	06/08/04	2	2	limitation of the measurement					
06/08/04	06/08/04	1	1	system					
06/08/04	06/08/04	1	1	System					
06/08/04	06/08/04	1	1						
06/09/04	06/09/04	1	1						
06/11/04	06/11/04	1	1						
06/11/04	06/11/04	1	1						
06/14/04	06/14/04	1	1	The Excel function NETWORKDAYS subtracts					
06/14/04	06/14/04	1	1	out the weekends					

Ρ	Pass/fail Y variable									
	Monthly late account closings									
		2001	2002	2003						
	Jan	3	6	2	 Data for 35 offices Tabulated pass/fail data 					
	Feb	5	4	2						
	Mar	3	3	4						
	Apr	2	2	6						
	May	3	4	2	 Underlying raw data: 					
	Jun	7	4	5	On time or late for each					
	Jul	5	1	10	office for each month					
	Aug	4	5							
	Sep	3	2		 What we really want is days late for each office for each month 					
	Oct	3	7		for each office for each month					
	Nov	3	2							
	Dec	2	1							

Pass/fail Y	Pass/fail Y variables 336										
	Result & failure reasons										
Test Date & Time	Model Number	Serial Number	Test Station	Result	Failure Reason						
3/1/2006 6:02	690	6099948	3	Passed							
3/1/2006 6:03	692	6087149	1	Passed							
3/1/2006 6:05	690	6099949	3	Failed	DoBatteryAccuracyTest						
3/1/2006 6:06	690	6099949	3	Passed							
3/1/2006 6:12	692	6087150	1	Passed							
3/1/2006 6:12	690	6099932	3	Passed							
3/1/2006 6:13	692	6099622	2	Passed							
3/1/2006 6:15	690	6099933	3	Failed	Operating current outside of allowed range						
3/1/2006 6:17	692	6099623	2	Passed							
3/1/2006 6:18	690	6099933	3	Failed	DoBatteryAccuracyTest						
3/1/2006 6:18	690	6099933	3	Failed	Operating current outside of allowed range						
3/1/2006 6:19	692	6087151	1	Passed							
3/1/2006 6:20	690	6099782	3	Passed							
3/1/2006 6:21	692	6099624	2	Passed							
3/1/2006 6:22	692	6087152	1	Passed							
3/1/2006 6:22	690	6099934	3	Passed							
3/1/2006 6:24	690	6099935	3	Failed	DoSwitchTest						
3/1/2006 6:24	692	6087153	1	Failed	Sleep current outside of allowed range						
3/1/2006 6:25	692	6099625	2	Passed							
3/1/2006 6:27	690	6099935	3	Failed	DoSwitchTest						

Tabulated defect data

Date	Shift	Defect	Freq	
3/1/1991	А	Contamination	15	
3/1/1991	А	Corrosion	2	
3/1/1991	A	Doping	1	
3/1/1991	А	Metallization	2	
3/1/1991	A	Miscellaneous	3	
3/1/1991	A	Oxide Defect	8	
3/1/1991	А	Silicon Defect	1	
3/1/1991	В	Contamination	8	
3/1/1991	В	Corrosion	2	
3/1/1991	В	Doping	1	
3/1/1991	В	Metallization	4	
3/1/1991	В	Miscellaneous	2	
3/1/1991	В	Oxide Defect	10	
3/1/1991	В	Silicon Defect	3	
3/2/1991	A	Contamination	16	
3/2/1991	A	Corrosion	3	
3/2/1991	A	Doping	1	
3/2/1991	A	Metallization	3	
3/2/1991	A	Miscellaneous	1	
3/2/1991	A	Oxide Defect	9	
3/2/1991	А	Silicon Defect	2	

Defects by type
• Defect is a categorical classification
• Freq is quantitative — it counts the number of defects of each type for each day and shift
• Good for Pareto analysis
• Can we get actual occurrence rates? What is missing?
• Shift is a categorical classification
• Date: quantitative or categorical?

337

337

Categorical Y variable									
Application	Appraiser	Rating							
1	Simpson	5	Quality rating						
1	Montgomery	5	Quanty raining						
1	Holmes	5							
1	Duncan	4	• Five-point scale: 1, 2, 3, 4, 5						
1	Hayes	5							
2	Simpson	2	To all in the second big bound in the state of						
2	Montgomery	2	• In this case, higher is detter						
2	Holmes	2							
2	Duncan	1	• Treated as quantitative when we want to						
2	Hayes	2	evenues the nations (for example, GPA)						
3	Simpson	4	average the ratings (for example, OFA)						
3	Montgomery	3							
3	Holmes	3	• Appraiser is a categorical classification						
3	Duncan	3							
3	Hayes	3							
4	Simpson	1	 Application: quantitative or categorical? 						
4	Montgomery	1							
4	Holmes	1							
4	Duncan	1							
4	Hayes	1							
5	Simpson	0							
5	Montgomery	0							

Exercise 18.1								
Pretend the data shown below		Quantitative	Categorical					
contains actual data on actual cars. Check the appropriate	Model year							
data type for each variable.	Origin							
In some cases, the data type may go either way, depending	Make							
on how the variable is used.	Model							
	Cylinders							
	Displacement							
	Horsepower							
	Weight							
	Accel							
	MPG							

Exercise 18.1 (cont'd)										
Model year	Origin	Make	Model	Cylinders	Displace	Horsepower	Weight	Accel	MPG	
79	Europe	Mercedes	300D	5	183	77	3530	20.1	25.4	
80	Europe	Mercedes	240D	4	146	67	3250	21.8	30.4	
79	America	Cadillac	Eldorado	8	350	125	3900	17.4	23.0	
81	Japan	Toyota	Cressida	6	168	116	2900	12.6	25.4	
81	Europe	Volvo	Diesel	6	145	76	3160	19.6	30.7	
81	Europe	Peugeot	505S DI	4	141	80	3230	20.4	28.1	
82	America	Chevrolet	Camaro	4	151	90	2950	17.3	27.0	
81	Japan	Datsun	810 Maxima	6	146	120	2930	13.8	24.2	
81	Europe	Saab	900S	4	121	110	2800	15.4		
80	Japan	Datsun	280-ZX	6	168	132	2910	11.4	32.7	
80	Europe	Audi	5000S DI	5	121	67	2950	19.9	36.4	
82	Japan	Toyota	Celica GT	4	144	96	2665	13.9	32.0	
82	America	Oldsmobile	Cutlass DI	6	262	85	3015	17.0	38.0	
82	America	Buick	CenturyLmt	6	181	110	2945	16.4	25.0	
80	Japan	Mazda	RX-7 GS	3	70	100	2420	12.5	23.7	
80	Europe	Volkswagen	Rabbit	4	98	76	2144	14.7	41.5	
80	Europe	Volkswagen	Rabbit	4	89	62	1845	15.3	29.8	
81	America	Oldsmobile	Cutlass LS	8	350	105	3725	19.0	26.6	
81	America	Buick	Century	6	231	110	3415	15.8	22.4	
82	Japan	Honda	Accord	4	107	75	2205	14.5	36.0	
82	Japan	Nissan	Stanza XE	4	120	88	2160	14.5	36.0	

Exe	ercise 18.2	<mark>341</mark>
(a)	Which useful statistical project metrics can be calculated from a quantitative variable?	Y
(b)	Which useful statistical project metrics can be calculated from a pass/fail Y variable?	

Basic statistic summary for continuous (quantitative) data Average = (Sum of N numbers)/N Sample mean = Average of a sample from a population A set of numbers: 76, 80, 80, 81, 82, 82, 88, 92 N = 8 Average = (76 + 80 + 80 + 81 + 82 + 82 + 88 + 92)/8= 661/8= 82.6Minimum = 76 Maximum = 92

Basic statistics (cont'd)

Sample standard deviation =

$$(76-82.6)^{2} + (80-82.6)^{2} + (80-82.6)^{2} + (81-82.6)^{2} + (82-82.6)^{2} + (82-82.6)^{2} + (88-82.6)^{2} + (92-82.6)^{2} 7$$

= 5.04

345

345

A١	Average and standard deviation in Excel										
	C2 \checkmark f_x =AVERAGE(A2:A9)										
	А	B		С	D	E	F				
1	Data			Average	Std. Dev.						
2	76			82.6	5.0)					
3	80										
4	80										
5	81										
6	82			D2	, (•	fx =STDE	V.S(A2:A9)			
7	82			А	В	C	D	F	F		
8	88		1	Data	2	Average	Std. Dev.	-			
9	92		2	76		82.6	5.0				
			3	80							
			4	80							
			5	81							
			6	82							
7		82									
			8	88							
			9	92							

С	Open Student Files \rightarrow anatomy of STDEV 34										
	A	В	С	D	E	F	G	Н	1	J	
1			Data		Average			_			
2			76		Average 82.6		Difference)			
3			80		82.6		-0.0				
4			80		82.6		2.0				
5			00		92.0		-2.0				
6			01	_	02.0	=	-1.0		Sum =	0.00000	0
7			02		02.0		-0.0				
8			82		82.6		-0.6				
9			88		82.6		5.4				
10			92		82.6		9.4				
11	Sums of Squares (SS)	5	4793.0	_	54615.1	=	177.9				
12	Degrees of Freedom (DF)		8	-	1	=	7				
13	Mean Square (MS)*	(S	SS ÷ DF)			25.41	-			
14	Standard Deviation	(S	Square re	oot of MS	S)		5.04				
15											
16											
17	*Also known as Variance										
18											
19											
20											

Anatomy of STDEV (cont'd)	<mark>348</mark>
This sheet lays out the calculation of the sample standard deviation (the STDEV.S function in Excel).	S
The <i>Data</i> column contains 8 independent measurements (no constraints among them). We describe this by saying this column has 8 <i>degrees of freedom</i> (DFs).	
The <i>Average</i> column contains a single value, repeated 8 times. We describe this b saying this column has 1 DF.	у
The <i>Difference</i> column is mathematically constrained to sum to 0, so it contains of 7 mathematically independent values. From any 7 values in this column, we can calculate the remaining value. (What is the formula?) We describe this by saying column has 7 DFs.	only this
This is why the sum of the squared differences is divided by 7 rather than 8. Divide by 8 would bias it downwards.	ding
 The Data column contains 8 independent measurements (no constraints among them). We describe this by saying this column has 8 degrees of freedom (DFs). The Average column contains a single value, repeated 8 times. We describe this b saying this column has 1 DF. The Difference column is mathematically constrained to sum to 0, so it contains of 7 mathematically independent values. From any 7 values in this column, we can calculate the remaining value. (What is the formula?) We describe this by saying column has 7 DFs. This is why the sum of the squared differences is divided by 7 rather than 8. Divide by 8 would bias it downwards. 	oy only this ding

Exercise 19.1

a) Open *Data Sets* \rightarrow *solution properties*. Calculate the average and standard deviation for *Spec grav*. Save your work.

349

b) Open *Data Sets* \rightarrow *ED patient visits*. Calculate the average and standard deviation of *Visits*. Save your work.

349

Normal distribution (cont'd)

The Normal distribution is an abstraction, an idealization, a mathematical construct. At the same time, it has been a device of great practical value in Statistics.

It's called the Gaussian distribution because the German mathematician Carl Friedrich Gauss made important early applications to astronomy in the 1820s. As we will see, it was actually discovered a century earlier by the French mathematician Abraham de Moivre.

I guess life really isn't fair.

351

Origin of Normal distribution (cont'd)

The statistical model for the number of heads in N tosses of a coin is called the Binomial distribution. In 1730, the French mathematician Abraham de Moivre discovered the bell-shaped curve as the limiting form approached by the Binomial distribution as the sample size N increases without bound. He never made any money on his discovery of the Normal distribution, and in fact died a pauper. To add insult to injury, it was eventually named after someone else (Gauss).

Over the next 200 years, de Moivre's discovery was extended far beyond coin tossing. Today, we know that many quantitative measurements are sums of large numbers of small, independent, possibly unobservable contributing factors. Measurements of this type in a stable population will follow the Normal distribution, at least as a good approximation. Statisticians call this phenomenon the Central Limit Theorem.

The Normal distribution is the default population model for quantitative measurements.

353

Bell-shaped curve (cont'd)

A population model is an equation that can be used to make predictions about a population. When we represent the mean and standard deviation by Greek letters, as above, we are thinking of the mean and standard deviation of the entire population, not just the numbers in our data set. It means we are thinking of the Normal distribution as a population model.

The formula for the bell shaped curve is given below. In this equation, f(y) is the height of the curve above the value *y* on the horizontal axis.

$$f(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} e^{-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2}$$

You may have been graded "on the curve" at some point in your academic career. Well, this is the curve.

355

For a Normal population:

• The 1.960σ limits contain 95% of the population.

- The 2σ limits contain 95.45% of the population.
- The 2.576σ limits contain 99% of a Normal population
- The 3σ limits contain 99.73% of the population.

357

The practice of calculating % defective or DPPM by means of fitted distributions instead of raw data came about historically as a crude but effective way for customers in the aerospace and automotive supply chains to expose the "hidden factories" of their suppliers.

361

Suppliers would present final inspection data to customers to document their process capability. In the example shown above, the supplier claims 100% yield. When plotted as a histogram, the data mysteriously disappears right at the upper spec limit. This is because parts exceeding the upper limit are either scrapped or reworked to the limit. Often the rework is done by the inspector and not recorded as rework. In many cases, the first pass data is not recorded.

A distribution curve pays no attention to spec limits and will always produce a positive value for % defective or DPPM. This gives an estimate of the supplier's first pass yield. In the example shown above, it is obvious that the first pass yield is far below 100%.

Exercise 19.2

a) Open *Data Sets* \rightarrow *solution properties*. Use the mean and standard deviation you calculated in Exercise 19.1 to find the % or PPM for which *Spec grav* is greater than 0.925.

365

b) Open Data Sets → ED patient visits. Use the mean and standard deviation you calculated in Exercise 19.1 to find the % or PPM for which Visits is either less than 2700 or greater than 3300.

365

371

S	TDEV revisited									373
	A	B C	D	E	F	G	H I	J	K	L
1		Data		Average		Difference	;			
2		9.61		9.691		-0.081				
3		9.71		9.691		0.019				
4		9.54		9.691		-0.151				
5		9.67		9.691		-0.021				
6		9.75		9.691		0.059				
7		9.49		9.691		-0.201				
8		9.55		9.691		-0.141				
9		9.42	=	9.691	+	-0.271	Sum	n = 0.00000000)	
10		9.58		9.691		-0.111				
11		9.61		9.691		-0.081				
12		9.87		9.691		0.179				
13		9.93		9.691		0.239				
14		9.81		9.691		0.119				
15		9.89		9.691		0.199				
16		9.94		9.691		0.249				
17	Degrees of freedom (DF)	15	=	1	+	14				
18	Sum of squares (SS)	1409.220	=	1408.829	+	0.391				
19	Mean square (MS)	(SS / DF)				0.028				
20	Square root of MS					0.167				
21						↑				
22					Sample	standard de	eviatio	1		
23						(GIDEV)				
37	3									

STDEV (cont'd)

The slide above is a screen shot of the worksheet *Observed variation* in *Student Files* \rightarrow *MSA* - *one appraiser*. This sheet reviews the calculation of the sample standard deviation. In MSA, this is called the "observed variation." In other types of data analysis, it is called the "total variation."

374

Recap of degrees of freedom (DFs)

- The *Data* column has 15 DFs because it consists of 15 independent measurements.
- The *Average* column has 1 DF because it consists of a single value repeated 15 times.
- The *Difference* column is constrained to sum to 0, so it contains only 14 independent values, so it has 14 DFs.
- DFs have to add up. For example, 15 = 1 + 14.

Ν	/ISA with one appraiser (cont'd) 37												<mark>375</mark>
	A	В	С	D	Е	F	G	Н	1	J	K	L	М
1						Part	M	leasuremen	nt				
2		<u>Part</u>		Data		averages		variation	_				
3		1		9.61		9.656		-0.046					
4		1		9.71		9.656		0.054					
5		1		9.54		9.656		-0.116	5	Sum =	0.00000000		
6		1		9.67		9.656		0.014					
7		1		9.75		9.656		0.094					
8		2		9.49		9.530		-0.040					
9		2		9.55		9.530		0.020					
10		2		9.42	=	9.530	+	-0.110	5	Sum =	0.00000000		
11		2		9.58		9.530		0.050					
12		2		9.61		9.530		0.080					
13		3		9.87		9.888		-0.018					
14		3		9.93		9.888		0.042					
15		3		9.81		9.888		-0.078	5	Sum =	0.00000000		
16		3		9.89		9.888		0.002					
17		3		9.94		9.888		0.052					
18	Degrees of freedor	n (DF)		15	=	3	+	12					
19	Sum of square	s (SS)		1409.220	=	1409.159	+	0.061					
20	Mean square	e (MS)		(SS / DF)				0.005					
21	Square root	of MS						0.072					
22								↑					
23	σ of measurement variation												
24			_						_				

MSA with one appraiser (cont'd)

The slide above is a screen shot of the sheet *Measurement variation*. It lays out the calculation of σ_{ms} when each of 3 parts is measured 5 times by one appraiser.

376

The *Part averages* column has 3 DFs because it consists of 3 independent values (the part averages).

In the *Measurement variation* column, the values for each part are constrained to sum to 0, so any 4 of them determine the remaining value. There are 3 parts, so there are only $3 \times 4 = 12$ independent values in this column, so it has 12 DFs.

Because the calculation of σ_{ms} involves only 12 independent values, we sometimes refer to σ_{ms} itself as having 12 DFs. The greater the DFs for σ_{ms} , the more accurate it is.

As before, DFs have to add up: 15 = 3 + 12.

MSA with one appraiser (cont'd)							377				
4	А	В	С	D	E	F	G				
1	Part 1	Part 2	Part 3								
2	9.61	9.49	9.87		Excel data format for MSA with one appraise						
3	9.71	9.55	9.93		Excel data for mar for MOA with one a	pruise					
4	9.54	9.42	9.81								
5	9.67	9.58	9.89								
6	9.75	9.61	9.94		Data > Data Analysis > ANOVA Single Factor						
7	·			r							
8				4	Anova: Single Factor	_					
9				[Input						
10					Input Range: \$A\$1:\$C\$6 K						
12	Tn	structio	ons for		Grouped By: Columns Cancel						
13	doi	na tha i	analysis		Rows Help						
14	uun	ny me t	unurysis		✓ Labels in first row						
15					Aloba: 0.05						
16					April. 0100						
17					Output options						
18					Output Range:						
19					New Werksheet Blue						
20					New Worksheet Py:						
22					I New Workdook						
23											
24											
25		50	reen st	not of	f the sheet Data format & analysis						
26		50			The sheet burn formar a analysis						
28			File:	Stud	ent Files \MSA-one appraiser						
20											

N	SA with one appraiser (cont'd)							378		
	А	В	С	D	E	F	G	Н		
1	Anova: Single Factor									
2										
3	SUMMARY									
4	Groups	Count	Sum	Average	Variance					
5	Part 1	5	48.28	9.656	0.00688					
6	Part 2	5	47.65	9.53	0.00575					
7	Part 3	5	49.44	9.888	0.00272					
8										
9										
10	ANOVA									
11	Source of Variation	SS	df	MS	F	P-value	F crit			
12	Between Groups	0.329773	2	0.164887	32.22541	1.5E-05	3.885294			
13	Within Groups	0.0614	12	0.005117						
14										
15	Total	0.391173	14							
16										
17										
18										
19										
20										
21										
22		6		C 11		c 1.	•. •			
23		Scree	n shot	ot the s	sneet D	petault	output			
24										
25										
26										
27										

N	ISA with one a	ppraise	r (conť	d)					<mark>379</mark>
	А	В	С	D	E	F	G	Н	
1	ANOVA: Single Factor	r							
2									
3	SUMMARY								
4	Groups	Count	Average						
5	Part 1	5	9.656						
6	Part 2	5	9.530						
7	Part 3	5	9.888						
8									
9									
10	ANOVA								
11	Source of Variation	SS	df	MS					
12	Between Groups	0.330	2	0.165					
13	Within Groups	0.061	12	0.005	$(\sigma_{ms})^2$				
14				0.072	σ_{ms}	=SQRT(D13)		
15				0.215	$3\sigma_{ms}$	=3*D14			
16									
17									
18									
19		Screen	shot of	the she	et Edi	ted out	but		
20		JUIEEN	31101 01	THE SHE			pui		
21									
22									
23									

Exer	cise 20.2			382
For ea	ach scenario below, give the total number of means for σ_{ms} .	asurements a	nd the degrees of	
		N	DF	
	(a) 1 item is measured 15 times			
	(b) Each of 15 items is measured 1 time			
	(c) Each of 3 items is measured 5 times			
	(d) Each of 3 items is measured 10 times			
	(e) Each of 15 items is measured 2 times			
	(f) Each of 4 items is measured 10 times			
	(g) Each of 20 items is measured 2 times			
	(h) Each of 8 items is measured 8 times			
	(i) Each of 36 items is measured 2 times			

Topics		386
	• Gages	
	Measurement systems	
	Statistical model for measurement variation	
	• Impact of measurement variation	
	• Measurement system analysis (MSA)	
	Basic assumption for MSA	
	MSA for quantitative measurements	

Gages A *gage* is a measurement device Gages can produce quantitative measurements or categorical classifications The people who use the gages are usually called *appraisers*, *inspectors*, or *operators*For visual inspections, the appraisers are themselves the gages, but they are not called that

387

• For automated measurement systems, the appraisers may not play a significant role in producing the results

Impact of measurement variation						
	Action taken					
		Pass	Fail			
True	Good	\bigcirc	"False alarm"			
outcome	Bad	"Escape"	Ô			
Which type of	error is n	nore costly? For which i	s the cost easier to quanti	fy?		

Capability me	Capability metrics for quantitative MSA			
% Tolerance	$100 \times \frac{3\sigma_{ms}}{(\text{USL}-\text{LSL})/2}$	 Most common metric Must have both LSL and USL (usually product or process specs) 		
% Tolerance LSL only	$100 \times \frac{3\sigma_{ms}}{\mu - LSL}$	 Use when there is only LSL Process mean (μ) should be based on historical data, not the MSA data 		
% Tolerance USL only	$100 \times \frac{3\sigma_{ms}}{USL-\mu}$	 Use when there is only USL Process mean (μ) should be based on historical data, not the MSA data 		
% Process	$100 \times \frac{\sigma_{ms}}{\sigma_{obs}}$	 Doesn't require spec limits Process standard deviation (σ_{obs}) should based on historical data, not the MSA d 	d be data	
Measurement error	$3\sigma_{ms}$	 Has units of the measured characterist Intrinsic capability, not relative to proc or process requirements 	ric duct	

Accepta	Acceptability criteria for "percent" metrics							
	10% or less	Excellent						
	10-20%	Good						
	20-30%	Acceptable						
	Greater than 30%	Unacceptable						

Designing a quantitative MSA

- 1. Choose <u>at least</u> 5 items (parts, samples, documents...) spanning the range of application of the measurement system. (Spanning the range is more important than the actual number of items.)
- 2. If the measurement system has only a few appraisers, include them all in the study. If there are many appraisers, include as large a representative sample as possible.
- 3. Let I = the number of items, A = the number of appraisers, and S = the number of *sessions* (measurements per item per appraiser).
 - The quantity IA(S 1) is the number of independent opportunities for appraisers to agree *with themselves* (repeatability). It should be at least 30.
 - The quantity I(A-1) is the number of independent opportunities for appraisers to agree *with each other* (reproducibility). It also should be at least 30.

It is best to satisfy these requirements by increasing A, with I = 5 and S = 2. If this is not possible, increase I.

Examples of step 3

Open Student Files \rightarrow calculator - sample size \rightarrow MSA sheet

399

10	
3	
3	
60	These should be at least 30 for
20	quantitative, at least 60 for categorical.
90	
	10 3 60 20 90

- The standard automotive gage study ("10 3 3")
- Not enough opportunities for appraiser cross agreement
- Unnecessarily many opportunities for appraiser self agreement

Examples of step 3

Best plan, assuming there are actually 7 appraisers

401

Number of items	5	
Number of appraisers	7	
Number of sessions	2	
# Opportunities for appraiser self-agreement	35	These should be at least 30 for
# Opportunities for appraiser cross-agreement	30	quantitative, at least 60 for categorical.
Total sample size	70	

- Adequate opportunities for self and cross agreement
- Smaller total sample size

Analyzing a quantitative MSA						403				
		A	В	С	D	E				
• Open Data Sets \rightarrow msa velocity	1	Session	Part	Oper A	Oper B	Oper C				
		1	1	9.61	9.54	9.67				
guge	3	1	2	9.49	9.44	9.58				
	4	1	3	9.87	9.77	9.89				
 Measurements are of Drop Velocity 	5	1	4	9.78	9.66	9.74				
	6	1	5	9.89	9.91	9.89				
• This is the data format required for	7	1	6	10.15	10.12	10.16				
continuous MSA in Excel	8	1	7	9.96	9.87	9.97				
continuous WSA III Exect	9	1	8	9.80	9.72	9.72				
The standard analysis requires that	10	2	1	9.71	9.61	9.75				
• The standard analysis requires that	11	2	2	9.55	9.42	9.61				
every appraiser measures every part the same number of times		2	3	9.93	9.81	9.94				
		2	4	9.75	9.63	9.72				
		2	5	10.03	9.84	9.93				
\bullet I - 8 \land - 3 S - 2	15	2	6	10.31	10.08	10.18				
-1-0, A-5, S-2	16	2	7	10.05	9.96	9.97				
	17	2	8	9.87	9.74	9.78				
• Was this a well designed MSA?	18									
What do the numbers in cell range C2:C9 represent: part variation, measurement variation, or observed variation? What do the numbers in cell range C2:E2 represent: part variation, measurement variation, or observed variation?										

Worked example 40							
		A	В	С	D	E	
1. Sort the data by <i>Part</i> as shown to	1	Session	Part	Oper A	Oper B	Oper C	
the right (the Excel procedure needs	2	1	1	9.61	9.54	9.67	
this)	3	2	1	9.71	9.61	9.75	
tins).	4	1	2	9.49	9.44	9.58	
	5	2	2	9.55	9.42	9.61	
2. Data \rightarrow Data Analysis \rightarrow Anova:	6	1	3	9.87	9.77	9.89	
Two-Factor With Replication $\rightarrow OK$	1	2	3	9.93	9.81	9.94	
	8	1	4	9.78	9.66	9.74	
	9	2	4	9.75	9.63	9.72	
3. Set up as shown below, click OK.	11	1	5	9.89	9.91	9.89	
		2	3	10.03	9.04	9.93	
Anova: Two-Factor With Replication				10.13	10.12	10.18	
			7	9.96	9.87	9.97	
Input	_		ок 7	10.05	9.96	9.97	
Input Range: \$B\$1:\$E\$17				9.80	9.72	9.72	
		Ca	ancel	9.87	9.74	9.78	
Rows per sample:							
<u>A</u> lpha: 0.05							
-Output options							
O Output Range:				Pla	ice curso	r here,	
				hic	hlight th	nis range	
New Worksheet Ply:				< ⁻		5	
O New <u>W</u> orkbook				En [.] Of	ter the r sessions	umber 5 here	

	A	В	С	D	E	F	G
58							
59	ANOVA						
60	Source of Variation	SS	df	MS	F	P-value	Fcrit
61	Sample	1.729748	7	0.247107	103.23	2.37E-16	2.422629
62	Columns	0.096329	2	0.048165	20.12097	7.39E-06	3.402826
63	Interaction	0.028371	14	0.002026	0.846575	0.618209	2.129797
64	Within	0.05745	24	0.002394			
65							
66	Total	1.911898	47				
67							
68							
5.	Open Student Files \rightarrow cale	culator – G	Gage R&	R.			

E>	ample (cont'd)							<mark>406</mark>
6.	Copy the shaded area							
_	A	В	С	D	E	F	G	Н
1	ANOVA							
2	Source of Variation	SS	df	MS				
3	Sample	22.4742	7	3.2106				
4	Columns	84.5409	2	42.2704				
5	Interaction	73.5770	14	5.2555				
6	Within	233.2751	24	9.7198				
7								
8	Total	413.8672	47					
9								
10		σ^2		3σ				
11	Reproducibility	2.3134	19.2%	4.5630		1		
12	Repeatability	9.7198	80.8%	9.3530				
13	Measurement System	12.0332	100.0%	10.4067		Conv	this area	
14					K F	Paste into	ANOVA to	ıble.
15	N	48						
16	Items	8						
17	Appraisers	3						
18	Sessions	2						
19								

Example (cont'd)

• If part variation is large enough relative to measurement variation, the lines on the previous chart will appear to be superimposed on each other

409

- The file *Data Sets* \rightarrow *msa velocity gage with charts* gives the calculations for the chart below, which shows the data with the part averages subtracted out.
- This helps you see what's going on with the measurements by each operator, when part variation in the study is large compared to measurement variation.

409

Interpreting 3σ_{ms} In this example, 3σ_{ms} = 0.2179 For a given measurement *m*, the true value lies in the interval *m*±0.2179 with 99.7% confidence The tolerance for drop velocity is ±1.65 (Given on previous slide) 1.65 - 0.2179 = 1.4321 To be confident that a drop velocity is in spec, it must be within 1.4321 of the target value (see next slide)

Exercise 21.2

Open *Data Sets* → *msa calipers*. These are dimensional inspections of PVC extrusions made with a hand held digital caliper.
(a) The tolerance for this dimension is Target ± 0.020". Find 3σ_{ms} and calculate the % *Tolerance* metric. Classify the measurement system as excellent, good, acceptable, or unacceptable.
(b) Create a line chart of the operator columns. Who seems to be the greatest opportunity for improvement?

413

Exercise 21.4

Each team is to conduct an MSA involving coins of different diameters. Every team member will be an appraiser in the study. Each appraiser will measure the diameter of each coin twice (S = 2). Each team is to do the following:

- a) Develop a procedure for measuring the diameter.
- b) Determine the number of coins needed for the study.
- c) Create an appropriately formatted Excel worksheet for data collection.
- d) Follow the guidelines for conducting a quantitative MSA.
- e) Collect and enter the data. Give the $3\sigma_{ms}$ value and calculate the % *Tolerance* metric. (The tolerance for all diameters is *target* ± 0.050".) + 1.27 mm
- f) Is the measurement system excellent, good, acceptable or unacceptable?

Designing a categorical MSA

- 1. Choose <u>at least</u> 10 items (parts, samples, documents...) to be inspected. There should be roughly equal numbers of items that are clearly passing, borderline passing, borderline failing and clearly failing. Choose an expert appraiser to function as the reference standard.
- 2. If the measurement system has only a few appraisers, include them all in the study. If there are many appraisers, include as large a representative sample as possible.
- 3. Let I = the number of items, A = the number of appraisers, and S = the number of measurements per item per appraiser.
 - The quantity IA(S 1) is the number of independent opportunities for appraisers to agree *with themselves*. It should be at least 60.
 - The quantity I(A-1) is the number of independent opportunities for appraisers to agree *with each other*. It should be at least 60.

It is best to satisfy these requirements by increasing A with I = 10 and S = 2. If this is not possible, increase I.

Examples of step 3

Number of items	30	
Number of appraisers	3	
Number of sessions	2	
# Opportunities for appraiser self-agreement	90	These should be at least 30 for quantitative
# Opportunities for appraiser cross-agreement	60	data, at least 60 for categorical data.
Total sample size	180	

421

Conducting a categorical MSA*

1. Perform this sequence for each session:

First appraiser measures all items once Second appraiser measures all items once 423

Last appraiser measures all items once.

2. The order in which the items are measured should be reversed each time the appraiser changes.

*Same as for quantitative MSA

423

Analyzing a categorical MSA							424
		A	В	С	D	E	F
	1	Session	Part	Standard	Insp A	Insp B	Insp C
• Open Data Sets \ msa passfail	2	1	1	P	P	P	Р
1 1 1 0	3	1	2	P	P	P	P P P P F F F F P P P P P P P P P P P P P P
	4	1	3	F	F	F	F
I = 50 $A = 3$ $S = 3$	5	1	4	F	F	F	F
-1 = 50, R = 5, S = 5	6	1	5	F	F	F	F
	7	1	6	P	P	P	P
	8	1	7	P	P	P	P
• Did they follow the best plan for	9	1	8	P	P	P	P
3 appraisers?	10	1	9	F	F	F	F
5 appraisers.	11	1	10	P	P	P	P
	12	1	11	P	P	P	P
• $P = pass, F = fail$	13	1	12	F	F	F	F
	14	1	13	P	P	P	P
	15	1	14	P	P	P	P
	10	1	10	P	P	P	P
• Standard gives the correct	17	1	10	P	P	P	P
answer for each part increated	10	1	10	P	P	P	P
answer for each part inspected	20	1	10	P D	P D	P D	P
	20	1	20	D	D	D	D
	22	1	20	P	P	P	F
• The analysis is based on %	23	1	22	F	F	F	P
agreement with the standard	24	. 1	23	P	P	P	P
agreement with the standard	25	1	24	P	P	P	P
	26	1	25	F	F	F	F
	27	1	26	F	F	F	F
	28	1	27	P	P	P	P
	29	1	28	P	P	P	P
	30	1	20	D	D	D	D

Exercise 22.2

Open Data Sets → msa print samples 2. These are visual inspections of new print samples by the same 3 inspectors after additional training.
(a) Calculate the % agreement with standard by inspector and overall. Have we improved?
(b) There is something interesting about the data for sample 18 (not row 18). What are the possible explanations? (Sorting by sample number will help.)
(c) It turns out the standard for sample 18 was wrong. Reclassify the standard for sample 18 as passing. What is the % agreement now?
(d) Save your work.

431

Exercise 22.3	<mark>432</mark>						
Open <i>Data Sets</i> \rightarrow <i>msa ratings</i> . Each of 15 employment applications was rated twice on a five point scale (1 = worst, 5 = best) by each of five appraisers.							
a) Calculate the % agreement by appraiser and overall.							
b) Which inspector offers the greatest opportunity for improvement? Make a pive table to determine the particular error this inspector often makes.	ət						
c) Save your work.							

%	% Defective from "raw" pass/fail data										
	Open Data Sets \rightarrow ATE Mar & Apr										
	Α	В	С	D	E	F					
1	Date & Time	P/N	S/N	Tester	Result	Failure Reason					
2	3/1/06 6:02 AM	690	3457456	3	Pass						
3	3/1/06 6:03 AM	692	4499441	1	Pass						
4	3/1/06 6:05 AM	690	3457457	3	Fail	Backlight-LCD					
5	3/1/06 6:06 AM	690	3457458	3	Pass						
6	3/1/06 6:12 AM	690	3457442	3	Pass						
7	3/1/06 6:12 AM	692	4499442	1	Pass						
8	3/1/06 6:13 AM	692	4500377	2	Pass						
9	3/1/06 6:15 AM	690	3457443	3	Fail	Op curr out of range					
10	3/1/06 6:17 AM	692	4500378	2	Pass						
11	3/1/06 6:18 AM	690	3457444	3	Fail	Backlight-LCD					
12	3/1/06 6:18 AM	690	3457445	3	Fail	Op curr out of range					
13	3/1/06 6:19 AM	Francis			_						
14	3/1/06 6:20 AM	•	Part leve	l data (no	t tabulate	ed)					
15	3/1/06 6:21 AM			,		<i>′</i>					
16	3/1/06 6:22 AM		V voriah	los - Par	ult Fail	ura Dagson					
17	3/1/06 6:22 AM		1 vallau	10s - Res	<i>un, ram</i>	ire Reason					
18	3/1/06 6:24 AM					nge					
19	3/1/06 6:24 AM	•	X variab	les = Da	te, Time,	P/N, Tester Fest					
20	3/1/06 6:25 AM	0-									
21	3/1/06 6:27 AM	692	4499446	1	Fail	Slp curr out of range					
22	3/1/06 6:27 AM	690	3457449	3	Fail	Switch Test					
23	3/1/06 6:27 AM	692	4500381	2	Pass						
24	3/1/06 6:30 AM	690	3457451	3	Pass						
25	3/1/06 6:30 AM	692	4499448	1	Pass						

4	А	В	С	D	E	F	G
	Date & Time	P/N	S/N	Tester	Result	Failure Reason	
2	3/1/06 6:02 AM	690	3457456	3	Pass		
;	3/1/06 6:03 AM	692	4499441	1	Pass		
	3/1/06 6:05 AM	690	3457457	3	Fail	Backlight-LCD	
	3/1/06 6:06 AM	690	3457458	3	Pass		
	3/1/06 6:12 AM	690	3457442	3	Pass		
	3/1/06 6:12 AM	692	4499442	1	Pass		
	3/1/06 6:13 AM	692	4500377	2	Pass		
	3/1/06 6:15 AM	690	3457443	3	Fail	Op curr out of range	
)	3/1/06 6:17 AM	692	4500378	2	Pass		
	3/1/06 6:18 AM	690	3457444	3	Fail	Backlight-LCD	1. Select columns
2	3/1/06 6:18 AM	690	3457445	3	Fail	Op curr out of range	A-F
;	3/1/06 6:19 AM	692	4499443	1	Pass		A-1
	3/1/06 6:20 AM	690	3457439	3	Pass		
	3/1/06 6:21 AM	692	4500379	2	Pass		2 Incent > Direct
1	3/1/06 6:22 AM	690	3457447	3	Pass		2. Insert \rightarrow Pivot
1	3/1/06 6:22 AM	692	4499444	1	Pass		Table $\rightarrow OK$
	3/1/06 6:24 AM	692	4499445	1	Fail	Slp curr out of range	
1	3/1/06 6:24 AM	690	3457448	3	Fail	Switch Test	
1	3/1/06 6:25 AM	692	4500380	2	Pass		3 Go to the next
	3/1/06 6:27 AM	692	4499446	1	Fail	Slp curr out of range	5. Go to the hext
2	3/1/06 6:27 AM	690	3457449	3	Fail	Switch Test	slide.
	3/1/06 6:27 AM	692	4500381	2	Pass		
L	3/1/06 6:30 AM	690	3457451	3	Pass		
;	3/1/06 6:30 AM	692	4499448	1	Pass		
;	3/1/06 6:30 AM	692	4500382	2	Pass		
	3/1/06 6:32 AM	690	3457452	3	Pass		
	3/1/06 6:32 AM	692	4499449	1	Pass		
	3/1/06 6:33 AM	692	4500383	2	Fail	Switch Test	
	3/1/06 6:34 AM	690	3457453	3	Pass	2 million root	
f	3/1/06 6:34 AM	692	4499450	1	Pass		
1	3/1/06 6:35 AM	692	4500387	2	Pass		

% Defective (cont'd) 43								
B6	$\sim : \times \checkmark f_x \sim =1$ B Column Labels T Fail	00*B5/D5 C D Pass Grand Total	E	 10. Select cell B6 11. Enter the formula shown above (Note: You can type in 				
5 Count of R	Project metric	15422 19508		formula or click on cells. Clicking will display <i>GETPIVOTDATA</i> function in formula bar. Result is the same.				
	Baseline value	% Derective 20.9%		 12. Use the <i>Decrease</i> <i>Decimal</i> button on the <i>Home</i> ribbon to format 13. Alternative: leave out the 100, format as a percentage 				
				percentage				

Exercise 23.1

All files are in the Data Sets folder.

a) Open *lot sampling*. Find the % failing. Save your work.

b) Open *old cars*. Assume that each row represents one automotive product recall, and the *make* column lists the brand of car involved in the recall. Create a Pareto chart of *make* by frequency of occurrence. Save your work.

443

% Defective from tabulated pass/fail data									
		A	В	С	D	E			
	1	Date	P/N	Tester	Tested	Failed			
	2	3/1/2006	690	3	166	12			
	3	3/1/2006	692	1	142	13			
	4	3/1/2006	692	2	183	34			
• Open Data Sets $\rightarrow ATE$ failure	5	3/1/2006	692	3	1	0			
accurrance tabulated	6	3/2/2006	690	1	155	20			
occurrence induinien	7	3/2/2006	690	2	168	12			
	8	3/2/2006	690	3	24	4			
	9	3/2/2006	692	3	107	14			
• Daily summaries, not part level	10	3/3/2006	690	1	87	10			
1.	11	3/3/2006	690	2	19	9			
data	12	3/3/2006	690	3	5	2			
	13	3/3/2006	692	2	54	8			
	14	3/3/2006	692	3	63	16			
	15	3/6/2006	690	1	109	24			
	16	3/6/2006	690	2	28	10			
	17	3/6/2006	690	3	152	42			
	18	3/6/2006	692	1	75	18			
	19	3/6/2006	692	2	125	23			
	20	3/7/2006	690	1	82	12			
	21	3/7/2006	690	3	138	50			
	22	3/7/2006	692	1	77	13			
	23	3/7/2006	692	2	164	29			
	24	3/7/2006	692	3	2	2			
	25	3/8/2006	690	1	194	37			
	26	3/8/2006	690	2	77	13			
	27	3/8/2006	690	3	59	13			
	28	3/8/2006	692	1	2	0			
	29	3/8/2006	692	2	100	16			
	30	3/9/2006	690	1	1	0			
	31	3/9/2006	690	2	162	22			
	32	3/9/2006	690	3	125	34			
	33	3/9/2006	692	1	136	12			

Pareto analysis from tabulated data									
		А	В	С	D	E			
	1	Date	P/N	Tester	Failure Reason	Freq			
• Open Data Sets \rightarrow ATE failure	2	3/1/2006	690	3	Backlight-LCD	4			
un an oran take late d	3	3/1/2006	690	3	Op curr out of range	2			
reasons tabulatea	4	3/1/2006	692	1	Backlight Test	3			
	5	3/1/2006	692	2	Backlight-LCD	10			
Della communication and most	6	3/1/2006	692	1	Battery Meas Cal	1			
• Daily summaries, not part	7	3/1/2006	692	2	Battery Meas Cal	1			
level data	8	3/1/2006	692	1	Com Test	1			
	9	3/1/2006	692	2	Com Test	2			
	10	3/1/2006	692	2	Final Config	1			
· European pumphon of foilungs for	11	3/1/2006	692	2	Op curr out of range	7			
• $rreq =$ number of failures for	12	3/1/2006	692	1	Op Curr Test	1			
each day. P/N. tester, and	13	3/1/2006	692	1	SIp curr out of range	4			
£-:1	14	3/1/2006	692	2	SureTemp Test	5			
failure reason	15	3/2/2006	690	1	Backlight-LCD	1			
	16	3/2/2006	690	2	Backlight-LCD	2			
	17	3/2/2006	690	1	Battery Meas Cal	2			
• The total number of tests for	18	3/2/2006	690	2	Battery Meas Cal	1			
angh day D/N and tastania	19	3/2/2006	690	1	Com Test	1			
each day, F/N, and tester is	20	3/2/2006	690	3	Com Test	1			
not given	21	3/2/2006	690	1	Op curr out of range	5			
e	22	3/2/2006	690	2	Op curr out of range	2			
	23	3/2/2006	690	1	Op Curr Test	4			
• This is yory common in	24	3/2/2006	690	2	Op Curr Test	4			
	25	3/2/2006	690	2	SIp curr out of range	1			
tabulated failure/defect data	26	3/2/2006	690	1	SureTemp Test	5			
	27	3/2/2006	690	2	SureTemp Test	1			
	28	3/2/2006	690	3	SureTemp Test	3			
	29	3/2/2006	692	3	Backlight Test	1			
	30	3/2/2006	692	3	Backlight-LCD	7			
	31	3/2/2006	692	3	Battery Meas Cal	1			

Pareto from tabulated data (cont'd)								
• Insert a pivot table	1 2 3 4	A Row Labels IT Slp curr out of range Darkhik to CD	B Sum of Freq 1486	С	PivotTable Fields Choose fields to add to report Search	: [×☆	
• Set it up as shown here	5 6 7 8 9	Backlight-LCD Battery Meas Cal SureTemp Test Op Curr Test Com Test	366 363 283 189		Date P/N Tester Failure Reason Freq		₽	
Sort the failure reasons in descending order by number of	10 11 12 13 14 15	Op curr out of range Event Log Size Final Config Backlight Test POST Test Display Test	144 78 56 52 41 38		More lables			
Occurrences The Pareto chart	16 17 18 19 20 21	Ambient too loud Beeper doesn't work Serial No & Model Serial Com Fail Grand Total	34 22 22 1 1 3 726		Drag fields between areas bel	ow:		
can be created the same as before	22 23 24 25 26 27 28			(E Rows Failure Reason	∑ Values Sum of Freq	>	
	29 30 31							

Exercise 23.2	449
All files are in the <i>Data Sets</i> folder.	
a) Open parts inspected & defective. Find the % defective. Save your work.	
b) Open <i>defects & types</i> . Create a Pareto chart of defect types by frequency of occurrence. Is it possible to obtain % defective from this data set? Explain you answer. Save your work.	ır
c) Open <i>out of box failures</i> . Find the % failing. Save your work.	

Basic statistical summary

- Open Data Sets \rightarrow DI water
- Measurements taken 3 times an hour for 8 days
- Y variable = *Resist* (higher is better)
- X variables = Day, Hour

						453	;
		A	В	С	D	E	
	1	Day	Hour	Resist			Γ
	2	1-Tu	10	1608.5			
	3	1-Tu	10	1832.0			
iter	4	1-Tu	10	1808.0			
	5	1-Tu	11	1714.0			
	6	1-Tu	11	1846.0			
nes an	7	1-Tu	11	1686.0			
	8	1-Tu	12	1558.5			
	9	1-Tu	12	1888.0			
	10	1-Tu	13	1592.0			
•	11	1-Tu	13	1752.0			
her is	12	1-Tu	13	1784.0			
	13	1-Tu	14	1442.5			
	14	1-Tu	14	1502.0			
	15	1-Tu	14	1700.0			
	16	1-Tu	15	1500.0			
r	17	1-Tu	15	1674.5			
	18	1-Tu	15	1707.0			
	19	1-Tu	16	1660.5			
	20	1-Tu	16	1804.0			
	21	1-Tu	16	1672.0			
	22	1-Tu	17	1728.0			
	23	1-Tu	17	1969.0			
	24	1-Tu	17	1606.0			
	25	1-Tu	18	1718.0			
	26	1-Tu	18	1824.5			
	27	1-Tu	18	1662.0			
	28	1-Tu	19	1830.0			
	29	1-Tu	19	1703.0			
	30	1-Tu	20	1717.0			

Basic statistical summary (cont'd)									
	А	В					А	В	
1	Resis	t				1	Resist		
2						2			
3	Mean	1628.758439				3	Mean	1628.8	
4	Standard Error	6.562900877				4	Standard Deviation	142.9	
5	Median	1625	• •	ait down		5	Minimum	1267	
6	Mode	1454	f	ew"		6	Maximum	2000	
7	Standard Deviation	142.8844659	'		7	Count	474		
8	Sample Variance	20415.97059	• (Correct the		8			
9	Kurtosis	-0.241369475	C	lefault		9			
10	Skewness	0.153084191	r	numerical		10			
11	Range	733	f	ormats	/	11			
12	Minimum	1267				12			
13	Maximum	2000				13			
14	Sum	772031.5				14			
15	Count	474				15			
	Project me			ric Average Resistivity			ity		
	Baseline v			e 1628.8					

Histogram Setup: $Data \rightarrow Data Analysis \rightarrow Histogram$										<mark>459</mark>		
	Α	В	С	D	E	F	G	Н		J	K	L
1	Day	Hour	Resist		-							
2	1-Tu	10	1608.5		Histogram					2	x D	
3	1-Tu	10	1832.0							-		
4	1-Tu	10	1808.0		Input					OK		
5	1-Tu	11	1714.0		Input Ra	nge:		\$C\$2:\$C\$475		UK		
6	1-Tu	11	1846.0		Die Dane					Cancel		
7	1-Tu	11	1686.0		Bin Rang	e:	L					
8	1-Tu	12	1558.5		Label	s				Help		
9	1-Tu	12	1888.0									
10	1-Tu	13	1592.0		Output of	ptions						
11	1-Tu	13	1752.0		Outpu	ut Range:			1			
12	1-Tu	13	1784.0	_	New 1	Worksheet Pl	v:					
13	1-Tu	14	1442.5		O Nam							
14	1-Tu	14	1502.0	_	O New	<u>vv</u> orkdook						
15	1-Tu	14	1700.0	_	Paret	o (sorted his	togram)					
16	1-Tu	15	1500.0		Cumu	lative Percer	ntage					
17	1-Tu	15	1674.5		Chart	Output						
18	1-Tu	15	1707.0									
19	1-Tu	16	1660.5						-	-		
20	1-Tu	16	1804.0									
21	1-Tu	16	1672.0									
22	1-Tu	17	1728.0									
23	1-Tu	17	1969.0			Grah	the	data n	nnoe c	nly		
24	1-Tu	17	1606.0			Orub	me	uururu	inge c	nuy		
25	1-Tu	18	1718.0		11000		. (+ -		مانين ما م			
26	1-Tu	18	1824.5		Use: C	Tri-Si	177- 🔻	To gr	ad wh	ole col	umh	
27	1-Tu	18	1662.0									
28	1-Tu	19	1830.0									
29	1-Tu	19	1703.0									
30	1-Tu	20	1717.0									

-	Day	HUUI	Resist	
2	1-Tu	10	1608.5	
3	1-Tu	10	1832.0	
4	1-Tu	10	1808.0	
5	1-Tu	11	1714.0	
6	1-Tu	11	1846.0	
7	1-Tu	11	1686.0	
8	1-Tu	12	1558.5	
9	1-Tu	12	1888.0	
10	1-Tu	13	1592.0	
11	1-Tu	13	1752.0	
12	1-Tu	13	1784.0	
13	1-Tu	14	1442.5	
14	1-Tu	14	1502.0	
15	1-Tu	14	1700.0	
16	1-Tu	15	1500.0	
17	1-Tu	15	1674.5	
18	1-Tu	15	1707.0	
19	1-Tu	16	1660.5	
20	1-Tu	16	1804.0	
21	1-Tu	16	1672.0	
22	1-Tu	17	1728.0	
23	1-Tu	17	1969.0	
24	1-Tu	17	1606.0	
25	1-Tu	18	1718.0	
26	1-Tu	18	1824.5	
27	1-Tu	18	1662.0	
28	1-Tu	19	1830.0	
29	1-Tu	19	1703.0	
30	1-Tu	20	1717.0	
31	1-Tu	20	1801.0	
32	1-Tu	20	1453.5	
33	1-Tu	21	1350.0	

• Averages are common project metrics for quantitative Y variables

463

- Averages are useful for statistical comparisons
- However, customers feel the *variation*, not the average
- The best metric for customer dissatisfaction is the % of parts or transactions that do not meet a requirement or expectation

D2 i X f_x =IF(C2>=1500, "Pass", "Fail") • Let's say the lower spec limit (LSL) for <i>Resist</i> is 1500. 1 Day Hour Resist $R>=1500$ - - - - - Let's say the lower spec limit (LSL) for <i>Resist</i> is 1500. -	404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t as ell ay id
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	')

Pe	Percent less than 1500 (cont'd) 465											
D2	٨	▼ : .	×	<i>f</i> ∗ =IF(C	^{I")} A Now we need to copy the formula							
1	Dav	Hour	Roeiet	R>=1500	L.							
2	1.Tu	10	1608.5	Pass			down to end of the column:					
3	1-Tu	10	1832.0	Pass								
4	1-Tu	10	1808.0	Pass			Click on D2					
5	1-Tu	11	1714.0	Pass								
6	1-Tu	11	1846.0	Pass			Devilite all all an the larger					
7	1-Tu	11	1686.0	Pass			• Double-click on the lower					
8	1-Tu	12	1558.5	Pass			right-hand corner of D2					
9	1-Tu	12	1888.0	Pass								
10	1-Tu	13	1592.0	Pass								
11	1-Tu	13	1752.0	Pass			• If there are blank cells, repeat					
12	1-Tu	13	1784.0	Pass			this process until you get					
13	1-Tu	14	1442.5	Fail			uns process until you get					
14	1-Tu	14	1502.0	Pass			down to the last row of data					
15	1-Tu	14	1700.0	Pass								
16	1-Tu	15	1500.0	Pass								
17	1-Tu	15	1674.5	Pass								
18	1-Tu	15	1707.0	Pass								
19	1-lu	16	1660.5	Pass								
20	1-lu	16	1804.0	Pass								
21	1-IU	16	16/2.0	Pass								
22	1-1U	17	1/28.0	Pass								
23	1-Tu 4 Tu	17	1969.0	Pass								
24	1-1U 1 Tu	1/	1719.0	Pass								
25	1-TU	10	17 10.0	Pass								

Percent less than 1500 (cont'd)												
 Run a pivot table on the new column Calculate the % less than 1500 												
	B6 🗸	<u>∱</u> =B5/E)5									
	A	В	С	D	E	F	G	Н				
1												
2												
3	Count of R >= 1500	R >= 1500 🖵										
4		Fail	Pass	Grand Total								
5	Total	92	382	474								
6		19.4%										
7												
8												
9												
10												
		F	c % < 15	500								
		E	Baseline valu	e 19.49	%							
				1								

Pe	Percent greater than 1800											
E2		•	× ✓	f _∞ =IF(0	C2<=1800,"Pass	5","Fail")		Let's pretend <i>Resist</i> has a US	SL			
	A	В	С	D	E	F		at 1900				
1	Day	Hour	Resist	R>=1500	R <= 1800		_	at 1800				
2	1-Tu	10	1608.5	Pass	Pass							
3	1-Tu	10	1832.0	Pass	Fail							
4	1-Tu	10	1808.0	Pass	Fail			Use the requirement to be m	ot			
5	1-Tu	11	1714.0	Pass	Pass			Use the requirement to be in				
6	1-lu	11	1846.0	Pass	Fail		_	as the name for a new colum	n			
1	1-lu	11	1686.0	Pass	Pass		_	(call E1)				
8	1-Tu	12	1558.5	Pass	Pass		_	(cell E1)				
9	1-lu	12	1888.0	Pass	Fail							
10	1-lu	13	1592.0	Pass	Pass		_					
11	1-lu	13	1752.0	Pass	Pass			We want the new column to	0.017			
12	1-lu	13	1/84.0	Pass	Pass			we want the new column to	say			
13	1-lu	14	1442.5	Fail	Pass		_	"Pass" when Resist ≤ 1800 a	ind			
14	1-lu	14	1502.0	Pass	Pass		_	·····································				
15	1-lu	14	1/00.0	Pass	Pass			"Fail" when $Resist > 1800$				
16	1-lu	15	1500.0	Pass	Pass		_					
1/	1-lu	15	1674.5	Pass	Pass		_					
18	1-1u	15	1/0/.0	Pass	Pass			Enter the company dime.				
19	1-1u	16	1660.5	Pass	Pass			Enter the corresponding IF				
20	1-1U	16	1804.0	Pass	Fail		_	statement into cell E2				
21	1-1U	16	16/2.0	Pass	Pass		_					
22	1-1U 4 Tu	1/	1/28.0	Pass	Pass		_					
23	1-1u	17	1969.0	Pass	Pail		_					
24	1-1U 4 Tu	1/	1505.0	Pass	Pass		-•	Copy the formula down to the	ne			
25	1-fu	18	1718.0	Pass	Pass			and of the date set				
								end of the data set				

		~ 4	
Lvar	000		1
г хег	CISE	74	- 1
	0.00	~	

Open *Data Sets* \rightarrow *number & size of defects. Max size* is the area of the largest weld repair on a casting.

469

- (a) Create a basic statistical summary for *Max size*.
- (b) Create a frequency histogram for *Max size*.
- (c) The customer will accept a casting only if *Max size* is less than or equal to 15. Find the percentage of castings that exceed 15.
- (d) Save your work.

Exercise 24.3	‡71
Open the file Data Sets \rightarrow MBDP current state.	
a) Create a basic statistical summary of PO-PD. Update the charter [*] by entering the average PO-PD as the baseline value.	
b) Create a frequency histogram of PO-PD.	
c) Find the % of orders for which PO-PD exceeds 30 days. Update the charter by entering this as the baseline value.	ý
d) Find the % of orders for which MFG is not happy. Update the charter by entering this as the baseline value.	
e) Save your work.	
* Student Files \rightarrow MBDP charter	

Example 1: Plotting quantitative data									
		А	В	С	D				
	1	Day	Hour	Resist					
	2	1-Tu	10	1608.5					
Data Sets \rightarrow DI water	3	1-Tu	10	1832.0					
	4	1-Tu	10	1808.0					
	5	1-Tu	11	1714.0					
	6	1-Tu	11	1846.0					
• De-ionized water is used in machining and	7	1-Tu	11	1686.0					
outting operations	8	1-Tu	12	1558.5					
cutting operations	9	1-Tu	12	1888.0					
	10	1-Tu	13	1592.0					
	11	1-Tu	13	1752.0					
• Y = electrical resistivity (<i>Resist</i>)	12	1-Tu	13	1784.0					
	13	1-Tu	14	1442.5					
	14	1-Tu	14	1502.0					
	15	1-Tu	14	1700.0					
• Want lower conductivity, so higher Y is better	16	1-Tu	15	1500.0					
• Want lower conductivity, so higher Y is better	17	1-Tu	15	1674.5					
	18	1-Tu	15	1707.0					
Pasalina data was collected over 8 days	19	1-Tu	16	1660.5					
• Dasenne data was confected over 8 days, 5	20	1-Tu	16	1804.0					
measurements per hour	21	1-Tu	16	1672.0					
	22	1-Tu	17	1728.0					
	23	1-Tu	17	1969.0					
TT 7	24	1-Tu	17	1606.0					
• Want to make a time plot	25	1-Tu	18	1718.0					
	26	1-Tu	18	1824.5					
	27	1-Tu	18	1662.0					
	28	1-Tu	19	1830.0					
	29	1-Tu	19	1703.0					
	30	1-Tu	20	1717.0					
	31	1-Tu	20	1801.0					
	32	1-Tu	20	1453.5					
	33	1-Tu	21	1350.0					

Example 2

• Can also plot summary statistics by time period

479

- Average, % too high, % too low, etc.
- May give a clearer picture of certain patterns of variation

E	Example 3 48												
	(Open D	ata S	$Sets \rightarrow qu$	iotation	proces	s current.	state					
	Α	В	С	D	E	F	G	Н	I	J			
1	Quote Num	AcctMgr	BU	Initial RFQ	Month	RFQ Cycles	Finance review	TAT	TAT<=3	PO			
2	6250012	19	6	02-Jun-03	2003.06	1	Yes	2	Pass	Yes			
3	7250022	5	7	02-Jun-03	2003.06	1	Yes	1	Pass	Yes			
4	7250023	5	7	02-Jun-03	2003.06	1	No	2	Pass	Yes			
5	5250039	8	5	03-Jun-03	2003.06	2	No	3	Pass	Yes			
6	5250040	8	5	03-Jun-03	2003.06	2	No	3	Pass	Yes			
7	7250011	10	7	03-Jun-03	2003.06	1	No	1	Pass	Yes			
8	6250014	19	6	04-Jun-03	2003.06	1	No	2	Pass	Yes			
9	6250015	15	6	04-Jun-03	2003.06	1	No	2	Pass	Yes			
10	7250025	14	7	04-Jun-03	2003.06	1	No	6	Fail	Yes			
11	5250044	8	5	05-Jun-03	2003.06	2	Yes	4	Fail	Yes			
12	3250033	3	3	06-Jun-03	2003.06	1	Yes	2	Pass	No			
13	3250035	3	3	09-Jun-03	2003.06	1	Yes	1	Pass	No			
14	7250024	15	7	09-Jun-03	2003.06	1	No	2	Pass	Yes			
15	5250045	8	5	10-Jun-03	2003.06	3	Yes	2	Pass	No			
16	8250009	11	8	10-Jun-03	2003.06	1	No	1	Pass	Yes			
17	8250010	12	8	10-Jun-03	2003.06	1	No	1	Pass	Yes			
18	8250011	11	8	10-Jun-03	2003.06	1	No	1	Pass	Yes			
19	8250012	12	8	10-Jun-03	2003.06	1	No	1	Pass	Yes			
		=YEAR	(D2)+M	ONTH(D2)/10	00	:	=IF(H2>3,"Fail"	,"Pass")/				

ample 4: plotting pass/fail data													
Open Data Sets \rightarrow ATE Mar & Apr													
	A	G											
1	Date	Time	P/N	S/N	Tester	Result	Failure Reason						
2	3/1/2006	6:02 AM	690	3457456	3	Pass							
3	3/1/2006	6:03 AM	692	4499441	1	Pass							
4	3/1/2006	6:05 AM	690	3457457	3	Fail	Backlight-LCD						
5	3/1/2006	6:06 AM	690	3457458	3	Pass							
6	3/1/2006	6:12 AM	690	3457442	3	Pass							
7	3/1/2006	6:12 AM	692	4499442	1	Pass							
8	3/1/2006	6:13 AM	692	4500377	2	Pass							
9	3/1/2006	6:15 AM	690	3457443	3	Fail	Op curr out of range						
10	3/1/2006	6:17 AM	692	4500378	2	Pass							
11	3/1/2006	6:18 AM	690	3457444	3	Fail	Backlight-LCD						
12	3/1/2006	6:18 AM	690	3457445	3	Fail	Op curr out of range						
13	3/1/2006	7				~							
14	3/1/2006	 Part lev 	'el data (not tabu	lated)								
15	3/1/2006												
16	3/1/2006	- X7			- ·1 - F								
17	3/1/2006	• Y varia	bles = 1	Result, F	'ailure R	leason							
18	3/1/2006						Slp curr out of range						
19	3/1/2006	• V vorio	hlag -	Data Ti	D/M	Testan	Switch Test						
20	3/1/2006	- A valla	bies - i	Duie, Ili	<i>me</i> , r /m,	resier	/						
21	3/1/2006	6:27 AM	692	4499446	1	Fail	Slp curr out of range						
22	3/1/2006	6:27 AM	690	3457449	3	Fail	Switch Test						
23	3/1/2006	6:27 AM	692	4500381	2	Pass							
24	3/1/2006	6:30 AM	690	3457451	3	Pass							
25	3/1/2006	6:30 AM	692	4499448	1	Pass							
26	3/1/2006	6:30 AM	692	4500382	2	Pass							
27	3/1/2006	6:32 AM	690	3457452	3	Pass							
00	014100000	0.00 414	000	1100110									

Example 4: (cont'd) 487												
	A	В	С	D	E	F	G					
1	Date	Time	P/N	S/N	Tester	Result	Failure Reason					
2	3/1/2006	6:02 AM	690	3457456	3	Pass						
3	3/1/2006	6:03 AM	692	4499441	1	Pass						
4	3/1/2006	6:05 AM	690	3457457	3	Fail	Backlight-LCD					
5	3/1/2006	6:06 AM	690	3457458	3	Pass						
6	3/1/2006	6:12 AM	690	3457442	3	Pass						
7	3/1/2006	6:12 AM	692	4499442	1	Pass						
8	3/1/2006	6:13 AM	692	4500377	2	Pass						
9	3/1/2006	6:15 AM	690	3457443	3	Fail	Op curr out of range					
10	3/1/2006	6:17 AM	692	4500378	2	Pass						
11	3/1/2006	6:18 AM	690	3457444	3	Fail	Backlight-LCD					
12	3/1/2006	6:18 AM	690	3457445	3	Fail	Op curr out of range					
13	3/1/2006					Pass						
14	3/1/2006	1. Select c	columns A	-G		Pass						
15	3/1/2006					Pass						
16	3/1/2006	2. Insert a	PivotTab	le (see ne	xt slide)	Pass						
17	3/1/2006	0.22 /10	052	4433444		Pass						
18	3/1/2006	6:24 AM	692	4499445	1	Fail	Slp curr out of range					
19	3/1/2006	6:24 AM	690	3457448	3	Fail	Switch Test					
20	3/1/2006	6:25 AM	692	4500380	2	Pass						
21	3/1/2006	6:27 AM	692	4499446	1	Fail	Slp curr out of range					
22	3/1/2006	6:27 AM	690	3457449	3	Fail	Switch Test					
23	3/1/2006	6:27 AM	692	4500381	2	Pass						
24	3/1/2006	6:30 AM	690	3457451	3	Pass						
25	3/1/2006	6:30 AM	692	4499448	1	Pass						
26	3/1/2006	6:30 AM	692	4500382	2	Pass						
27	3/1/2006	6:32 AM	690	3457452	3	Pass						
00	2/4/0000	0.00 414	000	1100110		-						

E	Example 4 (cont'd)			48	8
2					
3	Count of Result Column Labels 🚽]		PivotTable Field List	
4	Row Labels 💽 Fail	Pass	Grand Total		
5	3/1/2006 59	433	492	Choose fields to add to report:	
6	3/2/2006 50	404	454		
7	3/3/2006 45	183	228	VDate	
8	3/6/2006 116	372	488	Time	
9	3/7/2006 106	357	463		
10	3/8/2006 79	353	432	S/N	
11	3/9/2006 80	386	466	Tester	
12	3/10/2006 42	320	362	Result Y	
13	3/13/2006 77	356	433	Failure Reason	
14	3/14/2006 155	346	501		
15	3/15/2006 91	376	467		
16	3/16/2006 141	430	571		
17	3/17/2006 109	346	455		
18	3/18/2006 2	: 1	3		
19	3/20/2006 135	361	496	Drag fields between areas below:	
20	3/21/2006 151	408	559	V Report Filter Column Labels	
21	3/22/2006 170	392	562	Result	
22	3/23/2006 74	398	472		
23	3/24/2006 104	363	467		
24	3/27/2006 73	351	424	Dow Labels	
25	3/28/2006 63	392	455		
26	3/29/2006 92	369	461	Date Count of Result	
27	3/30/2006 113	460	573		
28	3/31/2006 150	326	476		
29	4/1/2006 71	134	205	Defer Layout Update Update	
30	4/3/2006 124	384	508		
31	4/4/2006 146	432	578		
32	4/5/2006 105	419	524	3 Set up as shown here	
33	4/6/2006 92	457	549	5. Set up as shown here	
34	4/7/2006 94	309	403	1 Go to the next slide	
35	4/8/2006 49	224	273	+. Of to the next since	
36	4/10/2006 105	375	480		

E	Example 4 (cont'd) 489											
	E5	\bullet (• f_x	=100*B	5/D5								
	A	В	С	D	E	F	G	Н	1	J		
1												
2												
3	Count of Result	Column Labels 🛃	j									
4	Row Labels 💌	Fail	Pass	Grand Total								
5	3/1/2006	59	433	492	12.0							
6	3/2/2006	50	404	454								
7	3/3/2006	45	183	228								
8	3/6/2006	116	372	488	5	Enter t	the for	rmula e	hown			
9	3/7/2006	106	357	463		Linter t			nown			
10	3/8/2006	79	353	432		above	into c	ell E5	(You			
11	3/9/2006	80	386	466		must t	vne it	all in_	_VOU			
12	3/10/2006	42	320	362		must <u>t</u>	<u>ype</u> n		-you			
13	3/13/2006	77	356	433		cannot	t highl	light ce	lls to			
14	3/14/2006	155	346	501		create	the ec	nustion)			
15	3/15/2006	91	376	467		create	the et	Juanon	.)			
16	3/16/2006	141	430	571	6	Comu	ha fa	مارىسى	1			
17	3/17/2006	109	346	455	0.	Сору і	ine io	rinula d	IOWII			
18	3/18/2006	2	1	3		to cell	E50					
19	3/20/2006	135	361	496								
20	3/21/2006	151	408	559	7	Leave	cells	$F5 \cdot F50$)			
21	3/22/2006	170	392	562	/.	Leave		LJ.LJ0	•			
22	3/23/2006	74	398	472		highlig	ghted	(Make	sure			
23	3/24/2006	104	363	467		E51 is	not h	iohlioh	ted!)			
24	3/27/2006	73	351	424		20115	not n	151111511				
25	3/28/2006	63	392	455	0	Coto	tha na	wt alide)		
26	3/29/2006	92	369	461	0.	00 10	the ne	Ext shae		/		
27	3/30/2006	113	460	573		_		_		1		
28	3/31/2006	150	326	476								
29	4/1/2006	71	134	205								

E	Example 4 (cont'd)											<mark>490</mark>
	A	В	С	D	E	F	G	Н		J	K	L
1												
2												
3	Count of Result	Count of Result Column Labels 2										
4	Row Labels Y Fail Pass Grand Total											
5	3/1/2006	55	433	492	12.0							
6	3/2/2006	50	404	454	11.0		9.	Insert	a line	chart)	
1	3/3/2006	45	5 183	228	19.7					1	••	
8	3/6/2006	110	3/2	488	23.8		_	("Line with Markers")				
9	3/7/2006	100	0 357	463	22.9		_				, í	
10	3/8/2006	13	353	432	18.3		10	D' 1/	1. 1 .	1.1	1	
12	3/9/2006	01	0 200	400	11.2		10.	0. Right-click in a blank				
12	3/10/2006	44	2 366	302	17.8		-	0100 0	f tha a	hort		
14	3/14/2006	15	346	400	30.9		-	area of the chart				
15	3/15/2006	91	376	467	19.5		-					
16	3/16/2006	14-	430	571	24.7		11	Salact	Salac	t Data		
17	3/17/2006	109	346	455	24.0		11.	Sciect	select	i Duiu		
18	3/18/2006		2 1	3	66.7		-					
19	3/20/2006	13	361	496	27.2		12	Select	$\Delta 5 \cdot \Delta$	50 (the	<u>د</u>	
20	3/21/2006	151	408	559	27.0		12.	dates) as the				
21	3/22/2006	170	392	562	30.2							
22	3/23/2006	74	398	472	15.7			\mathbf{H} : $(1/C)$				
23	3/24/2006	104	363	467	22.3			Horiz	ontal (Catego	ory)	
24	3/27/2006	73	351	424	17.2			Arie I	abole			
25	3/28/2006	63	392	455	13.8			ALIS L	aveis			
26	3/29/2006	92	2 369	461	20.0							
27	3/30/2006	113	3 460	573	19.7							
28	3/31/2006	150) 326	476	31.5							
29	4/1/2006	7	134	205	34.6							
30	4/3/2006	124	384	508	24.4							
31	4/4/2006	140	6 432	578	25.3							
32	4/5/2006	105	5 419 ACZ	524	20.0							
33	4/6/2006	92	457	549	16.8							
34	4/1/2006	94	309	403	23.3							
36	4/10/2006	4:	375	273	21.9							

Exercise 25.1

Open *Data Sets* \rightarrow *quotation process current state*. Create the following charts. Make them look the way they should.

- a) Monthly % TAT > 3.
- b) Monthly PO hit rate (% Yes).
- c) Close and save the data set.

493

497

C_{pl} and C_{pu} (cont'd)

The indices C_{pl} and C_{pu} , pronounced " C_p lower" and " C_p upper", were introduced to overcome the deficiency of C_p . They depend on both the mean and standard deviation of the process. If we know both C_{pl} and C_{pu} we can determine the first pass yield of the process.

504

Like the C_p index, C_{pl} and C_{pu} are defined so that "higher is better." In the example shown above, the main problem is on the high side, with C_{pk} less than 1.

 C_{pl} and C_{pu} (cont'd)506 C_{pk} is equal to 1 in the example above. If improvement is needed, the
opportunity is on the high side.Many people have asked what the k in C_{pk} stands for. To everyone's
great disappointment, the k seems to have been chosen arbitrarily and
may not stand for anything.There is, however, a bit of historical trivia that may give us a clue:
> C_{pk} was first popularized by a man named Victor Kane.> Is it possible Victor simply used the first letter of his last name?

- Use C_{pl} if you have only a lower spec limit
- Use C_{pu} if you have only an upper spec limit
- Use C_{pk} (smaller of C_{pl} and C_{pu}) if you have both lower and upper spec limits

- As noted previously, C_p indicates what C_{pk} would be if the process mean were equal to the midpoint of the spec range.
 - > If this is not the case, C_p represents a potential capability.
 - Centering a process at this midpoint may not always be desirable.

Exercise 26.1

(a) Calculate C_p and C_{pk} for a process with mean = 55, standard deviation = 1, USL = 60 and LSL = 50. Sketch the distribution. 511

(b) Calculate C_p and C_{pk} for a process with mean = 100.20, standard deviation = 0.20, USL = 101.00 and LSL = 100.00. Sketch the distribution.

What is "good" process capability?						
<u>Capability</u> C _p = 1.0	How good is this? Marginally capable	<u>Sigma Level</u> 3 sigma				
$C_{p} = 1.33$	Good	4 sigma				
C _p = 2.0	World-class	6 sigma				
 The indices C_p and C capability of the proc the data needs to b capture all regular <i>and</i> a sample size 	 The indices C_p and C_{pk} are assumed to be measures of the long-term capability of the process. Therefore, the data needs to be gathered over a long enough period of time to capture all regular contributors to process variation, <i>and</i> a sample size of at least 70 is needed, with 100 preferred. 					

Predicting defects

C _p , C _{pk} Value	C _P Fallout (centered)	C _{pk} Fallout (not centered)	
.5	133,620 PPM	66,810 PPM	
.6	71,860	35,930	
.7	35,720	17,860	
.8	16,400	8,200	
.9	6,940	3,470	
1.0	2,700	1,350	
1.1	966	483	
1.2	318	159	
1.3	96	48	
1.33	66	33	
1.4	26	13	
1.5	7	3	
1.6	2	800 PPB	
1.7	340 PPB	170	
1.8	60	30	DDM Darts Day Million
1.9	12	6	PPB = Parts Per Billion
2.0	2	1	Note: 1%=10,000 PPM

<mark>513</mark>

Comparing populations with quantitative Y				
Example Is there a difference between molding machines A and B respect to average diameter of molded parts?				
Required data	Diameters for representative samples of parts molded on machines A and B.			
Y variable	Diameter — quantitative			
X variable	Machine (A or B)			

Comparing popula	Comparing populations with categorical (pass/fail) Y					
Example Is there a difference between molding machines A and B respect to the percentage of parts with cosmetic defects?						
Required data Defective (yes/no) for representative samples of parts molded on machines A and B.						
Y variable	Defective (yes/no)					
X variable	Machine (A or B)					

Correlating quantitative Y and X variables						
Example	Example If we reduce our billing lead time, will we get paid soon					
Required data	Days in accounts receivable and billing lead times for a representative sample of invoices.	L				
Y variable	Days in accounts receivable					
X variable	Billing lead time					

The role of the X variable in significance testing						
X data type	Analysis type	The X column contains				
Categorical	Comparing populations	 Labels identifying logical subgroups (strata) within the current state data, or Labels distinguishing the current state data from the future state pilot data Each group must contain multiple rows (Y data values) 				
Quantitative	Correlating variables	 Quantitative measurements The data consists of (X, Y) pairs (values in the same row) Don't need to have multiple Y values for each X value 				

Excel tools for significance testing					
X data type	Y data type	Excel tool			
Categorical	Quantitative Quantitative Anova: Single Fact				
Categorical	Categorical Student Files (Pass/fail) calculator - chi square				
Quantitation	Quantitative	Data Analysis ↓ Regression			
Quantitative	Categorical (Pass/fail)	Logistic Regression (Not an Excel option and not covered in this course			

Exercise 27.1 522								
For questions (a) through (g) on the next three slides, identify the X and Y variables and their data types, then write the letter in the appropriate box.								
X data type	Y data type	Questions	Analysis tool					
Cotocoriad	Quantitative		Data Analysis ↓ Anova: Single Factor					
categorical	Categorical (Pass/fail)		Student Files ↓ calculator - chi square test					
Quantitative	Quantitative		Data Analysis ↓ Regression					

Exercise 27.1	(cont'd)
---------------	----------

- (a) We applied a functional test to circuit boards from the standard process and our new lead-free process. We counted the number that passed and failed for both processes and want to know if the failure rate is the same.
- (b) We sealed potato chip bags using various bonding pressures, then measured the bond strengths. Is bond strength correlated with pressure?
- (c) We conducted a Kaizen event in order processing. We measured lead times before and after the event. Is average lead time after the event shorter than it was before the event?

Exercise 27.1 (cont'd)

- f) Engineers complete change orders which are then sent back to the customer for approval. Each change order has been counted as being complete and accurate or not based on the customer's approval. Are there differences among the engineers in their change orders' "complete and accurate" rate?
- g) We use several different machines to seal potato chip bags. Do the machines give the same average bond strength?

Sig	Significance testing: example 1 526									
St	Comparing samples with quantitative Y Standard data matrix format \downarrow Data format required for Anova: Single Factor \downarrow									
	А	В	С	D	E	F	G	Н		
1	Molding machine	Part diams			Α	В				
2	Α	27.5			27.5	31.0				
3	Α	29.0			29.0	29.0				
4	Α	28.0			28.0	31.5				
5	Α	29.5			29.5	30.0				
6	В	31.0								
7	В	29.0								
8	В	31.5								
9	В	30.0								
10										
•	 Open <i>Data Sets</i> → <i>significance testing examples</i> We want to determine whether or not there a significant difference between machines A and B. Reformat the data into columns A and B, as shown, to perform ANOVA. 									

Si	Significance testing: example 1 (cont'd)									
	Default Excel output									
	A B C D E F G H									
1	Anova: Sin	gle Factor								
2										
3	SUMMARY	r								
4	Groups	Count	Sum	Average	Variance					
5	Α	4	114	28.5	0.833333					
6	В	4	121.5	30.375	1.229167					
7										
8										
9	ANOVA									
10	ce of Varic	SS	df	MS	F	P-value	F crit			
11	Between	7.03125	1	7.03125	6.818182	0.040058	5.987378			
12	Within Gr	6.1875	6	1.03125						
13										
14	Total	13.21875	7							
	Go to the next slide									

Si	Significance testing: example 1 (cont'd)									
	Cleaned up Excel output									
		Α	В	С	D	E	F	G	Н	
1	Anova:	Single Factor								
2										
3	SUMMA	RY								
4		Groups	Count	Average						
5	5 A 4 28.5									
6	В		4	30.4						
7										
8										
9	ANOVA									
10	Source	of Variation	SS	df	MS	F	P-value	←		
11	Betwee	n Groups	7.03	1	7.03	6.82	0.0401			
12	Within	Groups	6.19	6	1.03					
		The probab	ility that	the samp	le's mean	differen	ice would	l be this la	arge if	
they were from the same population						e				
Ρ	value	The probab diameter. T performanc	oility that he sampl ce.	machines le is used	A and B to infer a	produce differen	the same ce in the	e average machine'	s	

Się	gnificance testin	g: exa	mple 1 (conťd)				<mark>531</mark>
	А	В	С	D	E	F	G	Н
1	Anova: Single Factor							
2								
3	SUMMARY							
4	Groups	Count	Average					
5	Α	4	28.5	<u> </u>				
6	В	4	30.4					
7								
8								
9	ANOVA							
10	Source of Variation	SS	df	MS	F	P-value		
11	Between Groups	7.03	1	7.03	6.82	0.0401	←	
12	Within Groups	6.19	6	1.03				
13								

- In this example, the P value is 0.0401
- There is *strong evidence* of a difference between the samples
- Based on this analysis, we expect that parts molded on machine B will have larger diameters than parts molded on machine A

Notes on p-values, confidence, and false-positives (cont'd)

Sometimes people believe that a p-value of 0.05 means that there is only a 5% chance that their result is a false-positive. Here's an example to explain why that is dangerous.

533

Say you are working on a process that is having a quality problem. You have no idea what the source of the problem is so you decide to study all of the variables you can identify, and you come up with 20. When the analysis is finished, you identify 4 with a p-value of 0.05 or less. That seems really great, but remember, since you were looking for p-values of 0.05 or better, you would expect to get 0.05*20 = 1 significant variable by chance alone. Since you found 4 significant variables, you can expect a false positive rate of $\frac{1}{4} = 25\%$. If these variables are difficult, expensive, or risky to change, you'll want to know which one isn't real.

Key take-away If in doubt, always repeat your study with another sample set!

Significance testing: example 2

Comparing samples with pass/fail Y

537

• Our project objective was to reduce % defective by 50%

• Based on the data, it looks like we didn't quite make it

• But did we make a statistically significant improvement?

Process	Sample size	No. Failed	% Defective
Current state	500	147	29.4%
Future state pilot	50	8	16.0%

Interp	oreting	g P values - "Standard of Evidence"	539
	1.00	Evidence that samples are different or variables are correlated	Confidence level (CL)
	0.15	None	None
	0.15	Some	85% ≤ CL < 95%
P value	0.05	Strong	95% ≤ CL < 99%
C	0.01	Very strong	CL ≥ 99%

Signifi	can	се	testing	: exan	nple 3	(cont'd)				<mark>543</mark>	
SUMMARY	OUTP	UT									
Rearession	Statis	tics			~	^ E					
Multiple F	0.6	351			Default Excel output						
R Square	0.403	352									
Adjusted I	0.105	6028									
Standard I	0.365	377									
Observati		4									
ANOVA								This is	the		
	df		SS	MS	F	Significance F		p-val	ue		
Regressio		1	0.1805	0.1805	1.35206	0.364900043					
Residual		2	0.267	0.1335							
Total		3	0.4475								
0	oeffic	ients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	í	
Intercept	5	8.85	0.447493	131.5104	5.78E-05	56.92459295	60.77541	56.92459	60.77541		
Billing LT (0.19	0.163401	1.162781	0.3649	-0.513059249	0.893059	-0.51306	0.893059		
Durah		Th lar	e probab ge if ther	ility that e was tru	the slop ily no re	e of the line lationship (i.	for the sa e. if the r	ample wo real slope	ould be th e is zero)	iis	
P vali	Je	Th acc	e probab counts re	ility of n ceivable	o correla	ation between	n billing	lead time	e and day	s in	

Interpreting P values (a	ind othe	er stuff)			
SUMMARY OUTPUT					
Regression Statistics		• 1	n this examp	le only 1	0.5% of the
Adjusted R Square	0.1050		ariation in Y	is caused	bv variatio
Residual standard deviation	0.3654	~			
Observations	4	'I	his is one sta	andard de	viation of t
		V	anation abov	ve and bei	low the tref
ANOVA					
	df	SS	MS	F	P value
Regression	1	0.18	0.18	1.35	0.3649
	2	0.27	0.13		
Residual	2	0.27			

• There is no evidence of a correlation between billing lead time and days in AR

• The trend line is of no use when there is no evidence of a correlation

Exercise 27.3

Open *Data Sets* \rightarrow *defects per unit*. Is the average DPU for March the same as it was for February?

547

a) Identify the data types for the X and Y variables, then perform the appropriate analysis.

b) Give the P value and its interpretation in terms of standards of evidence.

c) Close and save the data set.

Exercise 27.5	<mark>549</mark>
Is there a significant difference in <i>Max size</i> between welders A and B?	
a) Identify the data types for the X and Y variables, then perform the appropr analysis.	iate
b) Give the P value and its interpretation in terms of standards of evidence.	
c) Close and save the data set.	

Based on the d defective?	ata given below	w, did our pi	oject achieve	a significar	nt reduction in
		Sample size	No. defective	% Defective	
	Current state	500	147	29.4%]
	Future state pilot	10	1	10.0%]
a) Perform th	e appropriate a	nalysis.		I	I
a) Perform th	e appropriate a	nalysis.]

Open *Data Sets* \rightarrow *computer chips*. Is Y correlated with X?

a) Identify the data types for the X and Y variables, then perform the appropriate analysis.

- b) Give the P value and its interpretation in terms of standards of evidence.
- c) Create an appropriate chart to illustrate the analysis.
- d) Close and save the data set.

551

2	8 Stra	atifica	atio	n Ana	lysis	Q	uantitat	ive	Y			<mark>553</mark>
	V bus Ope	Ve war iness u n <i>Data</i>	nt to units a Set	test fo (BUs) v $s \rightarrow un$	r signi vith re stacked	ficant spect d quote	differen to turnar ation prod	ces (ounc	amon d time <i>curr</i>	g the e (TA	e AT) tate	
FII	E HOME	INSERT	PAGE L	AYOUT FOR	MULAS D	ATA REVIE	W VIEW JIV	IP Ac	robat			
Past	Cut Copy +	Painter B	I <u>U</u> -	• 10 • A		= ≫ • = € +=	Wrap Text	Ge r + \$	neral • % •	▼ 0.0 0.0	Condi Format	≠ tional For tting + T
	Cipboard				1.1	Aligin	ilen.	1.1	Number			Styr
T28	Ψ.	\pm \times \neg	f_x									
	А	в	С	D	Е	F	G	н	L I I	J	К	1 1
1	Quote Num	AcctMgr	BU	Initial RFQ	Month	RFQ cycles	Finance review	TAT	TAT<=3	PO		
2	6250012	19	6	02-Jun-03	2003.06	1	Yes	2	Pass	Yes		
3	7250023	5	7	02-Jun-03	2003.06	1	No	2	Pass	Yes		
4	7250022	5	7	02-Jun-03	2003.06	1	Yes	1	Pass	Yes		
5	5250039	8	5	03-Jun-03	2003.06	2	No	3	Pass	Yes	_	
6	5250040	(-								
7	7250011			First, t	ne data	needs	to be reorg	anize	d			
8	6250014											
9	6250015			into t	he form	at regu	ired for AN	JOVA	۱.			
10	7250025				• • • • •							
11	5250044	EVT.	this	file has	heen so	rted by	Initial DE	O an	d Que	nte N	um	
12	3250033		1113	inc nus	5001 30	, ieu by		a un				
13	3250035	3	3	09-Jun-03	2003.06	1	Yes	1	Pass	No		
14	7250024	15	7	09-Jun-03	2003.06	1	No	2	Pass	Yes		
15	5250045	8	5	10-Jun-03	2003.06	3	Yes	2	Pass	No		
16	8250009	11	8	10-Jun-03	2003.06	1	No	1	Pass	Yes		
17	8250010	12	8	10-Jun-03	2003.06	1	No	1	Pass	Yes		

St	ratifi	catior	า with	quar	ntitativ	/e Y	(co	nťd)						<mark>554</mark>
1	. Cli yoi en	ck on t ur refe d of th	tab "T/ erence nis sect	AT by , instru tion.)	BU" to uctions	find for a	this crea	work ting ⁻	shee this u	et of r works	reorga heet c	nized d an be f	lata. (l ound d	⁼ or at the
2	. Go	to the	e next	slide										
FIL	E HO	DME INS	SERT PA	GE LAYOUT	FORM	ULAS	DATA	REVIE	V VI	IEW JN	1P Acro	obat		
From	n From ss Web	From From Text Sou Get Externa	n Other urces ▼ Co	Existing	Refresh All - Conr	Connection Properties , Edit Links	ons A Z Z	↓ <mark>Z A</mark> ↓ Sort	Filter	Clear Reap Adva	ply Te nced Col	ext to Flash umns Fill	Remove Duplicates	Data Validation + Data To
U28		• E ⊃	< 🗸	f _x										
	A	В	С	D	Е	F	G	i	Н	I.	J	К	L	М
1	BU 3	BU 5	BU 6	BU 7	BU 8									
2	2	3	2	2	1									
4	2	4	2	1	1									
5	2	2	3	6	1									
6	1	6	3	2	1									
7	1	2	9	3	4									
8	1	2	9	1	3									
9	1	5	2	1	2									
11	9	1	3	4	4									
12	4	1	1	2	11									
13	1	11	6	2	9									
14	2	4	6	1	4									
15	1	3	3	1	2									
16	11	1	3	1	1									
17	3	1	1	1	1									

S	tratific	cation	with	quan	titativ	eY(conť d)					<mark>556</mark>
	6. He 7. Go	re is ti to the	he une : next	dited slide f	defaul [.] or the	t outp clean	ut ed-up o	utput					
E	ile ho	ME INS	ERT PA	AGE LAYOUT	FORM	ULAS	DATA RE	VIEW	VIEW JM	P Acro	bat		
	From Access From Web From Text Ge	From Othe Sources +	r Existi Connec	ng Refre	Connectio	nections erties Links ns	$\begin{array}{c} 2 \downarrow \\ \hline Z \downarrow \\ \hline A \downarrow \\ \hline \end{array}$ Sort	Filter	Clear Reapply Advanced	Text to Columns	Flash R Fill Du	emove iplicates Vali	Data C Data C Data Too
U2	7	- : >	< </td <td>fx</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	fx									
	٨		0	- -	-	-	0				V		1 14
1 2 3	Anova: Sin SUMMAR\	gle Factor								5			IVI
4	Groups	Count	Sum	Average	Variance								
5	BU 3	245	570	2.326531	4.581465								
6	BU 5	211	648	3.07109	5.894922								
7	BU 6	210	256	3.506849	4.020521								
9	BLIS	210	530	3 422619	7.131701								
10	000	100	575	3.422013	7.131701							_	
11													
12	ANOVA												
13	rce of Varie	55	ď	MS	F	P-value	Fcrit						
14	Between C	186.3357	4	46.58392	8.625532	7.83E-07	7 2.3818						
15	Within Gro	4871.433	902	5.400702									
16	Total	E0E7 769	906						_				_
17	rutat	3037.700	306										
19													

St	tratification	with	quar	titativ	/e Y (conťd)				557
8.	Very stron	g evid	ence o	f diffe	erences	s among t	he five l	3Us with	respect	to TAT
9.	See next s	lide fo	or a co	lumn c	hart of	the ave	rages			
FIL	E HOME INSEF	RT PAG	E LAYOUT	FORMUL	AS DAT	A REVIEW	VIEW JM	P Acrobat		
Ca Fr Ca Fr Ca Fr	om Access om Web From Other om Text Sources *	Existing	Refresh	Conne	ctions ⊉↓ ties ∡↓	Sort Sort S	Clear Reapply Advanced	Text to Flash Columns Fill	Remove Duplicates Vi	Data Consoli alidation *
	Get External Data	3		Connections		Sort & Fi	iter			Data loois
115	×	J	e X							
	A	В	С	D	E	F				
1 A	nova: Single Factor									
2										
4	Groups	Count	Average	Variance	Std. dev.					
5 B	U 3	245	2.33	4.5815	2.14	=SQRT(D5)				
6 B	U 5	211	3.07	5.8949	2.43					
7 B	U 6	73	3.51	6.6979	2.59					
8 B	U 7	210	2.52	4.0305	2.01					
9 B	U 8	168	3.42	7.1317	2.67					
10										
11										
12 A	NOVA									
13	Source of Variation	SS	df	MS	F	P-value				
14 B	etween Groups	186.34	4	46.58	8.63	0.0000	← Formatte	d as a number	with 4 decin	nal places
15 V	Vithin Groups	4871.43	902	5.40						
16	-4-1	5057 77	000							
	อเล	5057.77	906							

Exercise 28.1

Open *Data Sets → alignment process*. Three alignment tools of the same type are used to attach orifice plates to chips. We want to know if there are significant differences among the three tools in terms of radial alignment error *R dev*.
(a) Test for significant differences in average *R dev* among the 3 aligners. (Data is arranged for ANOVA under tab *R dev by Aligner*.) Give the P value and its interpretation in terms of standards of evidence.
(b) Smaller *R dev* is better. Which aligner represents best practice? Describe the appropriate follow up action.
(c) Close and save the data set.

559

Exercise 28.2 560
Open <i>Data Sets</i> \rightarrow <i>casting dimensions</i> . Metal parts are cast from wax patterns molded on machines A or B. We want to know if there is a significant difference in average casting dimensions depending on which machine molded the pattern.
a) Test for a significant difference in average <i>length</i> between machines A and B. Give the P value and its interpretation in terms of standards of evidence.
b) The target value for <i>length</i> is 600. Which machine is closer to target?
c) Test for a significant difference in average <i>diam</i> between machines A and B. Give the P value and its interpretation in terms of standards of evidence.

Example: Unstacking Data using Filtering												<mark>562</mark>
For reference only: 3. Select Filter 1. Highlight BU column 4. Go to the next slide 2. Select the Data ribbon 1. Highlight BU column												
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW JMP Acrobat Image: Construction of the stress of the st										Data Data To		
S21	-	: × 、	f _x		_	-	0				14	
1			DU -		E Marth -		G Finance and d		TATA	J DC-		
2	6250012	ACCING *	C	02 lup 03	2003.06			2	Dace	Voc.		
3	7250023	5	7	02-Jun-03	2003.00	1	No	2	Page	Yes		
4	7250023	5	7	02-Jun-03	2003.00	1	Vac		Pace	Vac		
5	5250022	8	5	03- Jun-03	2003.00	2	No	3	Page	Yes		
6	5250030	8	5	03-Jun-03	2003.06	2	No	3	Pass	Yes		
7	7250011	10	7	03-Jun-03	2003.06	- 1	No	1	Pass	Yes		_
8	6250014	19	6	04-Jun-03	2003.06	1	No	2	Pass	Yes		
9	6250015	15	6	04-Jun-03	2003.06	1	No	2	Pass	Yes		
10	7250025	14	7	04-Jun-03	2003.06	1	No	6	Fail	Yes		
11	5250044	8	5	05-Jun-03	2003.06	2	Yes	4	Fail	Yes		
12	3250033	3	3	06-Jun-03	2003.06	1	Yes	2	Pass	No		
13	3250035	3	3	09-Jun-03	2003.06	1	Yes	1	Pass	No		
14	7250024	15	7	09-Jun-03	2003.06	1	No	2	Pass	Yes		
15	5250045	8	5	10-Jun-03	2003.06	3	Yes	2	Pass	No		
16	8250009	11	8	10-Jun-03	2003.06	1	No	1	Pass	Yes		
17	8250010	12	8	10-Jun-03	2003.06	1	No	1	Pass	Yes		

Example: Unstacking Data using Filtering (cont'd)													
F	or refer	rence or	ıly:			7	Decelect a	lbut	BUS		,		
E	L C alab		 		7.	7. Deserved all but BO $3 \rightarrow 0$ k							
9	. Highi	ignt the	2 IAI	column (8.	Right click	on the	e TAT	- colu	mn			
6	. Click o	n the a	rrowh	ead next	9.	Select Cop	y						
10 Go to the next slide													
FTI F	HOME	INSERT	PAGEI	AVOUT FC	RMULAS	ATA REVIE	W VIEW JN	IP Ac	robat				
From	From Fro	m From Othe	er Exist	ting Refresh	Connection	^{IS} 2↓ ZA Z↓ Sort	Filter	ply 1	Text to F	lash Re	move		
Acces	s Web lex	t Sources *	Conne	ctions All •	Contractions		Fast & Filter	liceu Ci	olumns	Fill Dup	olicates Vali		
	Get	External Data			connections		SOIL & FILLER						
H1	-	$:$ \times	$\sqrt{-f_x}$	'TAT									
	A	В	С	D	Е	F	G	ЧH		J	К		
1 (Quote Nu 👻	AcctMg -	BU T	Initial RF(-	Month 💌	RFQ cycl -	Finance revie *	TA1 -	TAT< 👻	PC -			
12	3250033	3	/ 3	06-Jun-03	2003.06	1	Yes	2	Pass	No			
13	3250035	3	/ 3	09-Jun-03	2003.06	1	Yes	1	Pass	No			
20	3250024	8	3	12-Jun-03	2003.06	1	Yes	2	Pass	Yes			
24	3250037	4	3	16-Jun-03	2003.06	1	No	2	Pass	Yes			
25	3250032	4	3	16-Jun-03	2003.06	1	No	1	Pass	No			
26	3250036	4	3	16-Jun-03	2003.06	1	No	1	Pass	Yes			
36	3250038	4	3	26-Jun-03	2003.06	1	No	1	Pass	No			
37	3250040	4	3	26-Jun-03	2003.06	1	No	1	Pass	Yes			
38	3250041	4	3	26-Jun-03	2003.06	1	No	1	Pass	Yes			
42	3250039	8	3	30-Jun-03	2003.06	1	Yes	9	Fail	Yes			
43	3250034	20	3	30-Jun-03	2003.06	1	Yes	4	Fail	No			
45	3250042	4	3	01-Jul-03	2003.07	1	No	1	Pass	Yes			
56	3250029	2	3	04-Jul-03	2003.07	1	No	2	Pass	Yes			
5/	1260043	11	4	U/- UI-03	2003.07	1	No		L Pace	Yee			

E	Example: Unstacking Data using Filtering (cont'd)												<mark>564</mark>
<u>F</u> 1 1	For reference only:11. Create a blank worksheet, Paste in cell A113. Repeat steps 7 through 1212. Change the header in cell A1 as shown belowfor BUs 5, 6, 7, and 8												
FIL	E HO	OME IN	SERT PA	AGE LAYOUT	FORM	IULAS D	ATA R	EVIEW V	IEW JM	IP Acro	bat		
From	n From ss Web	From From Text So Get Externa	m Other urces * Co al Data	Existing onnections	Refresh All - Con	Connection Properties Edit Links	ns 2↓ 7 ∡↓ S	ort Filte	r 🔀 Clear Reapp Advar	oly Te	dt to Flash Jumns Fill	Data (Validation + Data Too	
U28		• : :	X 🗸	$f_{\mathcal{K}}$									
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 11 7 17	A BU 3 2 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 3 3	8	C		E	F	G	H			K		M

2	9 Stra	atific	ation	Analy	sis —	- Pass	s/fail Y					<mark>565</mark>
,	We want	Ope to te	en <i>Da</i> st for	<i>ta Sets</i> significar r	$\rightarrow quo$ nt differ respect 1	<i>tation</i> rences a to PO hi	p <i>rocess c</i> mong the b t rate	<i>urre</i> ousine	ent st ess un	<i>ate</i> its (B	Us) n	vith
FI	LE HOME	INSER	T PAGE	LAYOUT FO	RMULAS D	ATA REVIE	W VIEW JN	IP Ad	robat			
ſ	Cut	A	rial	- 10 - A	, , , , , , , , , , , , , , , , , , ,	= **	F Wrap Text	Ge	neral	Ŧ		≠
Pas *	te 🎺 Format P	ainter	3 I <u>U</u> -	- 🖄 -	<u>▲</u> • ≡ ≡	≡∉∉	🗮 Merge & Cente	r • \$	• % •	00, 0, → 0.€ 00.	Condit Format	ional Fo ting ∗ T
	Clipboard	Fai		Font	F2	Alignr	nent	F3	Numbe	r G		Sty
T28	з т А	: ×	 ✓ f_x C 	D	E	F	G	Н	1	J	К	
1	Quote Num	AcctMgr	BU	Initial RFQ	Month	RFQ cycles	Finance review	TAT	TAT<=3	PO		
2	6250012	1	96	02-Jun-03	2003.06	1	Yes	2	Pass	Yes		
3	7250023		5 7	02-Jun-03	2003.06	1	No	2	Pass	Yes		
4	7250022		5 7	02-Jun-03	2003.06	1	Yes	1	Pass	Yes		
5	5250039		8 5	03-Jun-03	2003.06	2	No	3	Pass	Yes		
6	5250040		8 5	03-Jun-03	2003.06	2	No	3	Pass	Yes		
7	7250011	1	0 7	03-Jun-03	2003.06	1	No	1	Pass	Yes		
8	6250014	1	9 6	04-Jun-03	2003.06	1	No	2	Pass	Yes		
9	6250015	1	15 6	04-Jun-03	2003.06	1	No	2	Pass	Yes		
10	7250025	1	4 7	04-Jun-03	2003.06	1	No	6	Fail	Yes		
11	5250044		8 5	05-Jun-03	2003.06	2	Yes	4	Fail	Yes		
12	3250033		3 3	06-Jun-03	2003.06	1	Yes	2	Pass	No		
13	3250035		3 3	09-Jun-03	2003.06	1	Yes	1	Pass	No		
14	7250024	1	5 7	09-Jun-03	2003.06	1	No	2	Pass	Yes		
15	5250045		8 5	10-Jun-03	2003.06	3	Yes	2	Pass	No		
16	8250009	1	1 8	10-Jun-03	2003.06	1	No	1	Pass	Yes		
17	8250010	1	2 8	10-Jun-03	2003.06	1	No	1	Pass	Yes		

Stı	ratificat	ion with p	ass	s/fail Y	(con	ťd)									<mark>567</mark>
XI	رې دو 🗄	- Excel					P								
FILE	HOME	INSERT PAGE LAY	OUT	FORMULAS	DATA	REVIE	W	VIEW J	IMP	Acrol	bat	AN	ALYZE	DESIGN	1
	🔏 Cut	MS Sans Serif	- 10	• A A =	= =	87 -	F Wr	ap Text		Gener	al		Ŧ	ŧ	- Stat
Paste *	✓ Format Pain	ter BIU-	•	<u>∿</u> • <u>A</u> • ≡	≡≡	€₽	🔛 Me	erge & Cent	ter 👻	\$ -	%	•	.0 .00 →.0	Condition Formatting	al Formatas g⊤ Table⊤
_	Clipboard	Fa For	it	Fai		Align	ment		Fai		Numb	er	Fa		Styles
A3	· ·	$\times \checkmark f_x$	Count	t of PO											
	Α	В	С	D	E		F	G		н		1			< L
1							_	·							
3 Co	ount of PO	Column Labels 🔻					- P	lvotia	ble	Field	IS		•		
4 R	ow Labels 耳	No	Yes	Grand Total			CI	hoose field:	s to add	l to rep	ort:	\$	} −		
5 3 6 5	ſ	45	200	245				-				_			
7 6		15	58	73			- V	BU	-			1	r 📥 .		
8 7		42	168	210] Initial RFG	Q						
98		32	136	168				REO cycle	or						
10 Gr	and Total	180	727	907				Finance r	eview						
12															
13								TAT<=3							
14	5. Clic	k on the arr	owł	iead nex	t to		V PO								
15	Row	I Labels (or	Col	umn Lab	els)										
15	-	· · · · · · · · · · · · · · · · · · ·			,		D	rag fields b	etweer	areas b	elow:				
18	-		、				- L.	_		1					
19	6. Uncheck (blank) $\rightarrow OK$										COLUI	MNS			
20							_			PO			•		
21	7 60	to the next	slid	e											
23	7.00		2110	-				ROWS		Σ	VALUE	S			
24								BU	•	Co	unt of	PO	•		
25															

Str	atifica	tion with	pas	s/fail Y	(cont'd)						<mark>569</mark>
10.	Paste	in cell E3										
11.	The P with r	value is 0.9 espect to P	192. O hi	There i t rate.	s no evic	lence o	f dift	ference	es ar	nong t	he BU	S
FILE	HOME	INSERT PAGE L	AYOUT	FORMULAS	DATA REV	IEW VIEW	/ JMP	Acrobat				
ľ	K Cut	MS Sans Serif	- 10	• A* A* =	≡ _ ≫	F Wrap T	ext	General		-	i i	
Paste	✓ Format Pai	nter B I U -	· ·	💩 - 🛕 - 🔳	≡≡ € ₩	🗄 Merge	& Center	- \$-%	, , .	0.00 Cor →.0 Forn	nditional Form	matas Ce ible≖ Style
	Clipboard	rs F	ont	G.	Alig	nment		ra Nu	mber	Es .	Style	:s
S28	~ :	$\times \checkmark f_x$,							
1	A	В	С	D	E /	F	G	Н	1	J	К	L
2 3 Co 4 Bo	unt of PO	Column Labels	• Yes	Grand Total	% Defective	Null hypot	hesis alues	Contributio	ons to are	ChiSquare	P-value	
5 3		4	15 200	245	18.37	48.6	196.4	0.27	0.07	0.94	0.9192	
6 5		4	16 165 E E0	211	21.80	41.9	169.1	0.41	0.10			
8 7		4	5 50 12 168	210	20.00	41.7	168.3	0.02	0.00			
98		3	2 136	168	19.05	33.3	134.7	0.05	0.01			
10 Gr	and Total	18	0 727	907								
12.	Note: percen Close c	for this to tages of r	worł ow t ur w	<, your pi otals. orkbook	vot table	: has to	o cont	ain rav	ν coι	ints, n	ot	

Exercise 29.2

Open *Data Sets → supplier comparison*. This is pass/fail inspection of raw material lots from suppliers A and B.
a) Test for a difference in % failing between suppliers A and B. Give the P value and its interpretation in terms of standards of evidence.
b) Make a pivot table with *Supplier* as the *Column Label*, *Inspector* as the *Row label*, and either one in the *Values* area. There is something here that casts doubt on your conclusion in (a). What is it?
c) Close and save the data set.

Ex	ercise 29	.3 (cont'd)				573
1	A	В	С	D	PivotTable Fields	✓ ×
2		C (11 % C 11 1	C (11.15 11 1		Choose fields to add to report	· · · · · · · · · · · · · · · · · · ·
3		Sum of Units failed	Sum of Units snipped		Search	Q
4	A	/ 50	26344		Process	
c c		410	31042		Month	u
0	Crand Total	104	74810		Units shipped	
8	Granu Total	1550	14010		Units failed	
9					More lables	
10						
11						
12						
13						
14						
15						
16					Drag fields between areas bel	ow:
17					▼ Filters	III Columns
18						∑ Values ~
19						
20						
21						
22						
23					■ Rows	Σ Values
24					Process ~	Sum of Units failed ~
25						Samer of this shipped
26						
21						

Exercise 29.4 --Small group exercise

Open *Data Sets* \rightarrow *unstacked MBDP current state*. In your group, perform the stratification tests indicated in the table on the next slide:

- a) Determine the type of Y data (PO-PD and MFG happy)
- b) Determine the type of analysis for each. Find examples to follow.
- c) Do the first one, the Sales row, together. Make sure everyone in the group knows how to do the analysis for the two types of data.
- d) Assign one of the remaining rows to each group member.
- e) Each group member performs the analysis on their row. (The fastest in the group can help others or pick up one more row, as needed.)
- f) If there is a significant difference (P \leq 0.15), identify the process participant with best practice.
- g) Share results, so each person has a completed table of results.
- h) Discuss the results. Where would you focus your efforts to make improvements?

Exercise 29.4Small group exercise (cont.)						
		Avg. PO-PD (P value)	Best practice (Who)	% MFG (P value)	Best practio (Who)	ce
	Sales					
	PE					
	ME					
XŚ	QE					
	Drafter					
	Proto oper.					
	Baseline values:	29.5 days		49.4%		

Failure Modes and Effects Analysis (FMEA)

FMEA can be used in the Analyze Phase to prioritize x's

- It is used at the *beginning* of the Analyze Phase:
 - to identify the inputs that are likely to have a significant impact on the primary metric Y, and to remove from consideration those that are deemed trivial

581

- data collection and analysis are required for verification of those failure modes with high RPNs, to validate their significant impact on Y, as FMEA is an opinion-based tool
- · Actions for remedying failure modes with high RPNs are not discussed or taken in Analyze
- We will learn about FMEA in the Improve Phase, when it is used to evaluate risk and prevent problems before they occur in the proposed process, its original application.

Process Functions	Requirements	Failure Modes	Effects	SEV	Causes	осс	CN	Current Controls	DET	RPN	Actions Planned	Responsible	Due Date	Actions Taken
Reagent lot creation	New lot information distributed to OPS team	Printer malfunction	Delay in distribution to the OPS team	1	Electrical	1	1	One printer	1	1				
Reagent creation	New reagent created based on processing demand	Operator error during manufacture of reagent	Processing delay, wasted sub-reagents, time lost, labor money	5	Did not use trained witness	1	5	SOP requires trained witness for procedure	1	5				
Reagent storage	Storage of new reagent at point of use (laboratory)	Insufficent storage space in freezer or fridge	Reagent stock-out	4	Freezer space not reconciled	5	20	No control.	5	100				
	Stocking of materials and reagents in	Insufficient shelf space for materials.	Material stock-out	3	Too many items on shelving	3	9	Shelving units with four shelves	5	45				
Material storage	designated location within the functional laboratory	Staff is unclear where material items should be stored	Materials not stocked in designated location within the functional area	2	Insufficent labeling system to designate material and reagent locations	3	6	Labels on shelving only	3	18				
Material Distribution	Distribution of materials based on MIN/MAX forecasting	MIN/MAX values not accurate	Material shortage	2	Forecasting not accurate	3	6	Master Science Forecasting	5	30				

Second-Level Pareto Chart

The highest bar(s) from the first-level Pareto can be broken down further into a second-level Pareto Chart:

583

Getting to root cause with five whys					
"The number of accidents in the plant was way up last month"					
Do you know what caused the increase?	Workers are slipping and falling in Aisle 7 next to the molding machine.				
Why are workers slipping and falling?	There's a puddle of water on the floor.				
Where did the water on the floor come from?	It's dripping from the ceiling.				
What caused it to start dripping from the ceiling?	A pane of glass is broken in the skylight.				
How did the glass get broken?	A tree branch broke the glass during a storm.				
How did the tree branch manage to hit the skylight?	The tree it came from was close to the building.				

"There's too much scrap in the Coiling Department"					
What kinds of defects are causing the scrap?	The vast majority is due to bad welds.				
Why do we have so many bad welds?	The welders aren't very good.				
Why aren't they very good?	Well, they're hired off the street, and they don't get much training.				
You don't hire certified welders?	Are you kidding? We would have to pay them too much.				
In that case, why aren't your welders given more training?	I don't know. I guess there isn't enough time. This is the way we've always done it.				
Don't they get better as they become more experienced?	Well yeah, but they don't stay in this department long enough for that to help.				

(cont'd)	589
Why do they leave this department so soon?	There's another department where welders are used. As soon as there's an opening over there, everybody here applies for it.
Why are they so eager to work in the other department?	For one thing, the working conditions over there are much better. We have the highest accident rate in the company.
Is there another reason?	Over there they pay a dollar an hour more than here.

"I was late for work today."					
Why were you late for work today?	I overslept.				
Why did you oversleep?	My alarm didn't go off.				
Why didn't your alarm go off?	The power went out last night.				
Why did the power go out last night?	There was a thunderstorm.				
What is wrong with this 5 Whys path? If you get to a non-actionable root cause, back up and try to find a different path to an answer.					

Want to reduce turnaround time

Q "The turnaround time is significantly longer for some account managers than for others. What do you think causes that?"

593

- A "They don't all use the same quotation preparation process."
- **Q** "Why not?"
- A "There is no standard process. They have all developed their own way of doing it."

Q ...

Whenever observation can verify the root cause found through 5 Whys, that should be done

593

(co	nťd)	<mark>594</mark>
Q	"The turnaround time is significantly longer for some business units the for others. What do you think causes that?"	an
A	"Some of the business units aren't using the automated configuration to	ool."
Q	"Why not?"	
A		
Wh thr	nenever observation or data collection can verify the root cause found ough 5 Whys, that should be done.	

Developing solutions (cont'd)

Improvement ideas can come from many sources. Some ideas will contribute more to the success of the future state than others. The greater the number of ideas, the greater the probability of discovering successful solutions. The team should generate as many improvement ideas as possible.

599

The nature of this process is that the initial list gets shorter. Some ideas are discarded along the way, others are retained intact, still others are modified or combined. This process leads to a future state that is likely to be best available within the constraints of the project.

599

Solution categories (cont'd)

LSS projects address problems for which solutions are not known. Nevertheless, there are commonly occurring categories.

601

A common example of technology upgrade would be switching to a better measurement system.

We don't need a LSS project to tell us that Lean is good. But what if the organization lacks consensus on the benefits of these methods? A high priority LSS project that makes significant improvements by applying Lean solutions could help the organization recognize the value of Lean across the board.

The same applies for "just do it" solutions. Everyone knows what needs to be done, but it isn't getting done. A LSS project identifying and quantifying the need for the "just do it" solution might get some high level attention, cut through the lethargy, and stimulate action on the issue.

601

Instructions for prioritizing solutions

- 1. Open Student Files \rightarrow blank C&E matrix impact & feasibility.
- 2. In the Metrics sheet, change Impact metrics to Root causes.
- 3. List your prioritized root causes and relative weights (overall rankings).

603

- 4. List your feasibility metrics and relative weights.
- 5. Go to the Impact ratings sheet, change Items to be ranked to Solutions.
- 6. List the solutions you wish to rank.
- 7. Rate each solution for impact on each root cause.
- 8. Go to the *Feasibility ratings* sheet, rate each solution for each feasibility metric.
- 9. Go to the sheet Impact feasibility plot to evaluate the results.

603

Exercise 31.1

Open Student Files \rightarrow prioritizing solutions - exercise.

Use the root causes and solution ideas as provided. Note that the first row of each sheet is frozen for ease of use during ranking.

608

Use your knowledge and experience to complete the following tasks:

- a) Change the relative weights for the feasibility metrics as you see fit.
- b) Fill out the Impact ratings sheet using H, M, L or blank.
- c) Fill out the Feasibility ratings sheet using H, M, or L.
- d) Use your impact-feasibility plot to decide which solution ideas should be implemented sooner, which should be implemented later, and perhaps, which should not be implemented.

Commonly used Lean solutions	<mark>610</mark>
55	
Stop & fix	
Pull system	
Standardization	
Mistake proofing	
Reduce batch sizes	
Value stream teams	
Visual management	
Changeover reduction	
Work balancing (leveling)	

The 5S Vision

A Workplace that is:

- Clean, organized, orderly
- Safe
- Efficient and pleasant
- The foundation for all other improvement activities

Resulting In:

- Fewer accidents
- Improved efficiency

611

- Improved quality
- Workplace control

And therefore:

- Reduced waste
- Reduced cost

5S		<mark>612</mark>
•	Sort – Sort through and Sort out	
	 Reduce quantity of items to what is needed 	
•	 Set in Order – A place for everything and everything in its place Identify best location and relocate out-of-place items Make locations visually identified – easy to see missing items Set height, quantity, and size limits Organize for safety 	
•	 Shine – Shine and Inspect through cleaning Filthy work environments lead to poor morale Spills and debris are safety hazards Its easier to identify a maintenance need on clean equipment 	
•	 Standardize Build the framework for maintaining Sort, Set in Order, and Shine Clarity about what is and is not normal with simple action plans 	
•	SustainIncorporate 5S into the daily work cycle	

613

Using data to set max/min values

• Required inputs

✓ Time basis for usage data (hourly, each shift, daily, weekly, . . .)

617

- ✓ Average usage per time period
- ✓ Standard deviation of usage per time period
- ✓ Minimum order quantity
- ✓ Min. value (number of orders)
- ✓ Max. value (number of orders)

• Values calculated in the simulation

- ✓ Starting quantity for each period
- ✓ Quantity received during each period
- ✓ Quantity used during each period
- ✓ Ending quantity for each period
- ✓ Quantity ordered during each period

617

Examples of mistake-proofing (Poke Yoke)

• Designing connecting cables and ports so that a cable cannot be plugged into the wrong port

- Programming software so that the user cannot proceed unless necessary information is filled in
- Auto fill of previously entered information on electronic forms
- Pull down menus in computer programs especially for data entry
- · Using feedback control systems and alarms on equipment
- Fixturing to prevent incorrect placement and hold things in place

621

Reduce batch sizes (cont'd) 623 Of course, there can be a legitimate problem with reducing batch sizes: it increases the number of changeovers. Fortunately, this is a problem for which Lean has excellent solutions. Lean projects have reduced changeover times by 80% or more.

Future state	Future state: continuous flow 625					
3 operations 2 hours per transaction per operation						
Hours	1 to 8	9 to 16	17 to 24	25 to 32	33 to 40	41 to 48
Sort / collate	6666	0000	0000	0000	0000	0000
Coding	୭୭୭	0000	$\odot \odot \odot \odot$			
Billing	0	<u>ବ୍</u> ତ୍	0000	0000	0000	0000
Lead time = 6 hours (less than one day)						

Definitions	633
Available Working Time (AWT)	 The time a process is available to conduct work AWT excludes time when work isn't occurring such as time for breaks, meetings, lunch, preventative maintenance, estimates of unplanned downtime, change overs, etc.
Throughput (Tput)	 The average number of good parts or transactions completed over a period of time Typically measured as average over at least several days Throughput, lead time, and inventory are related through Little's Law

Definitions (cont'd)		
Lead time (LT)	 The total elapsed time to produce one defect free product or transaction The time difference between when a part or transaction enters and leaves a process 	
Customer Demand Rate (CDR)	• The number of parts or transactions that the customer desires over a period of time (usually a day, week, or month)	

Definitions (cont'd)		<mark>635</mark>
Takt time (TT)	 The pace at which an operation should complete product transactions in order to meet customer demand during th Available Working Time. Available working time during a period divided by the number of products or transactions <i>required</i> during that speriod 	s or e
Cycle time (CT)	 The fastest repeatable time between part or transaction completions using the current processes and resources Shows how a process is capable of performing Combines with AWT to determine capacity 	

Definitions (cont'd)		<mark>636</mark>
Process Cycle Efficiency (PCE)	• The percentage of time that WIP is being transformed by activities. In other words, the percentage of lead time th value added.	, VA at is
Work In Progress (WIP)	• Includes items waiting to be worked on and items active being worked on. WIP includes all of the inventory in the production system.	ly e

Improving work balance by cross training

• Teach Bob how to do B, teach Carol how to do A, have them both do A & B

- Process time for A & B = 9.0 + 2.2 = 11.2
- New cycle time for A + B = 5.6 mins
- Cycle time is once again 5.8 mins, and we didn't have to add a resource
- Where is the next best opportunity for cross training?

644

Exercise 32.1 Lean workshop

The Instructor will provide directions for this workshop.

645

645

TOC (cont'd)	649
TOC improvement cycle	Lean terminology
1. <i>Identify</i> the system constraint (the "drum")	Find the bottleneck ("pacemaker")
2. <i>Exploit</i> the identified constraint (includes establishing the "buffer")	 Move resources to the bottleneck Minimize NVA at the bottleneck Maintain needed level of "safety" WIP
3. <i>Subordinate</i> everything else to the constraint (establish the "rope")	Pull system synchronized with the takt time of the bottleneck
4. <i>Elevate</i> the constraint	Add enough resources to eliminate the bottleneck
5. Return to step #1	Find the new bottleneck, repeat same steps
649	

E>	ample: current	state	9					<mark>651</mark>
		Q	Front end 4 machines 4 operators	Q	Heat treat 1 machine 1 operator Max qty = 60	à	Back end 4 machines 4 operators	
	Lead time				120 mins			
	"process" time	0	4 min	0	90 mins (load change = 30 mins)	0	4 min	
	Cycle time		4 mins/4 pcs = 1 min		120/60 = 2 mins		4 mins/4 pcs = 1 min	
	Constrained cycle time		1 min		2 mins		2 mins	
			Blocked				Starved	

Fu	ture state #2:	impro	ove load o	hange pr	ocess			<mark>653</mark>
			Front end		Heat treat		Back end	
		Q	4 machines (1 idle) 3 operators	Q	1 machine 3 operators Max qty = 60	Q	4 machines (1 idle) 3 operators	
	Lead time				95 mins			
	"process" time	0	4 min	0	90 mins (load change = 5 mins)	0	4 min	
	Cycle time		4 mins/3 pcs = 1.33 mins		95/60 = 1.58 mins		4 mins/3 pcs = 1.33 mins	
	Constrained cycle time		1.33 mins		1.58 mins		1.58 mins	
		1			Even faster load change			

659

Examp	Example of a Severity rating						
L	evel	Description					
10	Hazardous, no warning	May endanger machine or assembly operator. Failure causes unsafe product operati noncompliance with government regulation. Failure will occur without warning.	ion or				
9	Hazardous, warning	May endanger machine or assembly operator. Failure causes unsafe product operation or noncompliance with government regulation. Failure will occur with warning.					
8 Very high		Major disruption to production line. 100% of product may have to be scrapped. Product is inoperable with loss of Primary Function.					
7	High	Minor disruption to production line. Product may have to be sorted and a portion scrapped. Product is operable but at a reduced level of performance.					
6	Moderate	Minor disruption to production line. A portion of the product may have to be scrapped (no sorting). Product is operable but comfort or convenience item(s) are inoperable.					
5	Low	Minor disruption to production line. 100% of the product may have to be reworked. Pris operable but comfort or convenience item(s) operate at a reduced level of performance item(s) operate at a reduced level of performance item (s) operate at a reduced level of	roduct ance.				
4	Very low	Minor disruption to production line. Product may have to be sorted and a portion rew Fit/finish or squeak/rattle item does not conform. Most customers notice defect.	orked.				
3	Minor	Minor disruption to production line. Some product may require rework on-line but out station. Fit/finish or squeak/rattle item does not conform. Average customers notice d	-of- lefect.				
2 Very minor		2 Very minor Minor disruption to production line. Some product may require rework on-line but in-station Fit/finish or squeak/rattle item does not conform. Discriminating customers notice defect.					
1	None	No effect.					

Example of an Occurrence rating								
Le	vel	Description	Failure Rate					
10	Very high	Eciluro is almost inovitable	$\geq \Box 1 \text{ in } 2$					
9	very nigh		1 in 3					
8	8	Generally associated with processes similar to	1 in 8					
7	підп	previous processes that have often failed.	1 in 20					
6	Moderate	Generally associated with processes similar to	1 in 80					
5		previous processes which have experienced	previous processes which have experienced	1 in 400				
4		occasional failures, but not in major proportions.	1 in 2000					
3	Low	Isolated failures associated with similar processes.	1 in 15,000					
2	Very low	Only isolated failures associated with almost identical processes.	1 in 150,000					
1	Remote	Failure is unlikely. No failures ever associated with almost identical processes.	≤ 1 in 1,500,000					

Exa	Example of a Detection rating						
	Level	Description					
10	Almost impossible	No known controls available to detect failure mode or cause.					
9	9 Very remote Very remote likelihood current controls will detect failure mode or cau						
8	8 Remote Remote likelihood current controls will detect failure mode or cause						
7	Very low	Very low likelihood current controls will detect failure mode or cause.					
6	Low	Low likelihood current controls will detect failure mode or cause.					
5	Moderate	Moderate likelihood current controls will detect failure mode or cause.					
4	Moderately high	Moderately high likelihood current controls will detect failure mode or o	cause.				
3	High	High likelihood current controls will detect failure mode or cause.					
2	Very high	Very high likelihood current controls will detect failure mode or cause.					
1	Almost certain	Current controls almost certain to detect failure mode or cause. Reliab detection controls are known with similar processes.	le				

665

Project example 666 **Problem statement** Operations staff within the Gene Expression Lab (GEL) are experiencing frequent material stock outs while performing procedures. They have to stop processing samples until the missing material is delivered. This increases process cycle time and reduces the quality of the data deliverables. Other labs directly affected by this problem are: ✓ Tissue Homogenization ✓ Experiment Processing ✓ Sample Processing Goal statement • Reduce frequency of stock outs by 50%. • Reduce time lost due to stock outs by 50%. Constraint No increase in labor cost. 666

Current	state data		6	67
	Average daily number of stock outs	2.1		
	Average time to fill material requests	4 hrs		
	Annualized direct labor cost	\$91,000		

FMEA step 1 f	FMEA step 1 for Proposed Future State Process						
Process Functions Requirements Failure Modes Effects				Sev			
Reagent lot creation	New lot information distributed to OPS team						
Reagent creation	New reagent created based on processing demand						
Reagent storage	Storage of new reagent at point of use (laboratory)						
Material storage Stocking of materials and reagents in designated location within the functional laboratory							
Material Distribution	Replenishment of materials based on MIN/MAX values						

F	MEA step 2				<mark>669</mark>
	Process Functions	Requirements	Failure Modes	Effects	Sev
	Reagent lot creation	New lot information distributed to OPS team	Printer malfunction		
	Reagent creation	New reagent created based on processing demand	Operator error during manufacturing of reagent		
	Reagent storage	Storage of new reagent at point of use (laboratory)	Insufficent storage space in freezer or fridge		
		Stocking of materials and	Insufficient shelf space for materials.		
	Material storage	reagents in designated location within the functional laboratory	Staff is unclear where material items should be stored		
	Material Distribution	Distribution of materials based on MIN/MAX forecasting	MIN/MAX values not accurate		

F	MEA step 3				<mark>670</mark>
	Process Functions	Requirements	Failure Modes	Effects	Sev
	Reagent lot creation	New lot information distributed to OPS team	Printer malfunction	Delay in distribution to the OPS team	5
	Reagent creation	New reagent created based on processing demand	Operator error during manufacturing of reagent	 Processing delay Wasted sub- reagents (3) Time lost Labor money 	10
	Reagent storage	Storage of new reagent at point of use (laboratory)	Insufficent storage space in freezer or fridge	Reagent stock-out	8
		Stocking of materials and	Insufficient shelf space for materials.	Material stock-out	5
	Material storage	reagents in designated location within the functional laboratory	Staff is unclear where material items should be stored	Materials not stocked in designated location within the functional area	5
	Material Distribution	Distribution of materials based on MIN/MAX forecasting	MIN/MAX values not accurate	Material shortage	5

FMEA step 4 671								
Effects	Sev	Causes	Occ	Current Controls	Det	RPN	Recommended Actions	
Delay in distribution to the OPS team	5	Electrical	1					
 Processing delay Wasted sub- reagents (3) Time lost Labor money 	10	Did not use trained witness	1					
Reagent stock-out	8	Freezer space not reconciled	10					
Material stock-out	5	Too many items on shelving	5					
Materials not stocked in designated location within the functional area	5	Insufficent labeling system to designate material and reagent locations	5					
Material shortage	5	Forecasting not accurate	5					

MEA step 5									
Failure Modes	Effects	Sev	Causes	Осс	Current Controls	Det	RPN		
Printer malfunction	Delay in distribution to the OPS team	5	Electrical	1	One printer	1			
Operator error during manufacturing of reagent	 Processing delay Wasted sub- reagents (3) Time lost Labor money 	10	Did not use trained witness	1	SOP requires trained witness for procedure	5			
Insufficent storage space in freezer or fridge	Reagent stock-out	8	Freezer space not reconciled	10	No control.	10			
Insufficient shelf space for materials.	Material stock-out	5	Too many items on shelving	5	Shelving units with four shelves	10			
Fisher staff is unclear where material items should be stored	Materials not stocked in designated location within the functional area	5	Insufficent labeling system to designate material and reagent locations	5	Labels on shelving only	5			
MIN/MAX values not accurate	Material shortage	5	Forecasting not accurate	5	Master Science Forecasting	10			

FMEA step 6 673								
Effects	Sev	Causes Occ Current Controls		Det	RPN	Recommended Actions		
Delay in distribution to the OPS team	5	Electrical	1	One printer	1	5		
 Processing delay Wasted sub- reagents (3) Time lost Labor money 	10	Did not use trained witness	1	SOP requires trained witness for procedure	5	50		
Reagent stock-out	8	Freezer space not reconciled	10	No control.	10	800		
Material stock-out	5	Too many items on shelving	5	Shelving units with four shelves	10	250		
Materials not stocked in designated location within the functional area	5	Insufficent labeling system to designate material and reagent locations	5	Labels on shelving only	5	125		
Material shortage	5	Forecasting not accurate	5	Master Science Forecasting	10	250		

FMEA step 7 675								
Effects	Sev Causes Occ Current Control		Current Controls	Det	RPN	Recommended Actions		
Delay in distribution to the OPS team	5	Electrical	1	One printer	1	5	Install back-up printer	
 Processing delay Wasted sub- reagents (3) Time lost Labor money 	10	Did not use trained witness	1	SOP requires trained witness for procedure	5	50	No further action required	
Reagent stock-out	8	Freezer space not reconciled	10	No control.	10	800	Frequent consolidation of freezer inventory	
Material stock-out	5	Too many items on shelving	5	Shelving units with four shelves	10	250	Add more shelves to accommodate additional materials	
Materials not stocked in designated location within the functional area	5	Insufficent labeling system to designate material and reagent locations	5	Labels on shelving only	5	125	Place labels on freezer canes and fridge shelves to designate locations	
Material shortage	5	Forecasting not accurate	5	Master Science Forecasting	10	250	Review MIN/MAX values quarterly for frequently used materials	

Results from pilot data			676
	Current state	Future state	Reduction
Average daily number of stock outs	2.1	0.02	99%
Average time to fill mat'l requests	4 hrs	2.3 hrs	42%
Annualized direct labor cost	\$91,000	\$1,000	99%

Benefits of piloting

- Identify unanticipated failure modes
- Identify unintended consequences
- Indicates whether or not improvement objectives will be met

679

• Reduces problems in full scale implementation

Example: quotation process pilot study								
	Sco	ope of the p	pilot: Bus	sines	s Unit 8			
		Metric	Baseline (B	BU 8)	Goal			
Std Dev = 3.3 days	Ave	erage TAT	3.6 days		1.5 days	DTD = 2.1 days		
	-	TAT > 3	37.9%	37.9%				
If you have more than one statistical metric, you must use the largest of the calculated		Y is a qua Sample siz Standa	antitative measure per population rd deviation of Y Desired DTD Actual DTD Confidence level		20 3.3 2.1 2.1000 95	Sample size for the pilot should be at least 20		
Sumple Sizes		Y IS P	ass/fail, yes/no					
		% Defectiv	/e - population A /e - population B		37.9 10			
		Sample siz	DTD e per population		27.9 18			

Exercise 35.1

Use the information given below to calculate the sample size for each metric for the MBDP pilot.

683

Metric	Baseline	Goal	DTD	Sample Size (n)
Average PO-PD*	29.5 days	50% reduction		
% PO-PD > 30	38.7%	50% reduction		
% MFG not happy	49.4%	50% reduction		
*Std Dev of PO-PI) = 19.5 day	S		

Exercise 35.2

Open *Data Sets* \rightarrow *MBDP current* & *future pilot*.

a) Test for a significant improvement in average PO–PD. Give the P value and its interpretation in terms of standards of evidence.

685

b) Did we achieve our goal of 50% reduction for average PO-PD?

- c) (Optional) Create a line chart showing the change in PO–PD from the current state to the future state pilot. (Include lines showing the two averages.)
- d) Test for a significant improvement in % PO–PD > 30. Give the P value and its interpretation in terms of standards of evidence.

685

Exercise 35.3 Open *Data Sets → quotation process current & future pilot.*a) Test for a significant improvement in average TAT. Give the P value and its interpretation in terms of standards of evidence. b) Did we achieve our goal of 1.5 days for average TAT? c) Optional: Create a line chart showing the change in TAT from the current state to the future state pilot. (Include lines showing the two averages.)

687

Margin of Error (MOE) calculation for a pilot study

• In Module 16 Data Collection, we explored the concept of the Margin of Error (MOE) and how to use it to calculate a sample size to estimate Current State population baselines for project metrics.

689

- We learned that the more precisely we wanted to estimate an overall percent defective or average, the more we had to "spend" in sample size.
- When we are analyzing results from a Future State pilot study, the resulting P value will be affected by the sample size.
 - If we get a P value of 0.05 or less, we have strong evidence of a difference. In this case, it may be helpful to get a prediction of how high an overall defect rate could go, or an upper and lower bound on the average for the Future State process.
 - If we get a P value of greater than 0.05, i.e., some or no evidence of a difference, and we suspect we didn't "spend" enough on our sample size, it could be helpful to get a prediction of whether a larger sample size would have made a difference.
- The *Student Files→ calculator margin of error* will give us these boundaries.

Exar	xample: pilot study MOE calculation — Pass/Fail									
Reference Exercise 27.6: Is there a significant reduction in % defective?										
Open Student Files \rightarrow calculator – margin of error \rightarrow % Defective										
	Sample size No. defective % Defective									
	Current state	500	14	17	29.4%					
	Future state pilot	10	1		10.0%					
						_				
		Sar	nple size	10)					
	Numb	per defective in the	e sample							
	Fracti	on defective in the	e sample	0.1000)					
		% Defective in the	e sample	10.00)					
	Upper bound	on population %	defective	39.4	<mark>95</mark> % Confide	ence level				
In Exe state % of diff	ercise 27.7, $p = 0$ 6 defective than erence. However	.18 — no evid the current sta ; we noted the	lence of ite basel e fact of	f differer line is an f the sma	ce. A highe other way c ll sample si	r upper boo of saying th ze for the p	und on the futur tere is no evider bilot.	re ice		

Student Files \rightarrow blank control plan								<mark>697</mark>	
Process name:									
Process owner:									
Revision date:									
Brocass stan	Control	Frequency	Data	Meas.	Metric to	Contro	l limits	Response plan	Response plan
riocess step	method	Trequency	variable	system	monitor	Lower	Upper	owner	location

Student Files \rightarrow tool development control plan									<mark>698</mark>
Process name: Tool Testing Process									
Process owner:	Testing Area Manager								
Revision date:									
				Maga		Contro	l limits	Response	Response
Process step	Control method	Frequency	Data variable	system	Metric to monitor	Lower	Upper	plan owner	plan location
Determine run conditions	Audit compliance with new procedure requiring special approval to change weight or line speed	Monthly, then Quarterly	Run conditions						
Determine run conditions	Disable weight and line speed controls on test line								
Release to manufacturing	Control chart	Weekly	Number of days in testing	Database	Average		TBD	Testing area manager	TBD
Release to manufacturing	Control chart	Weekly	Number of rework cycles	Database	Average		TBD	Testing area manager	TBD
Dimensional inspection	Install DVT gage and train testers to use it								
Dimensional inspection	Periodic gage R&R	TBD	Spec dimensions	DVT	% of Tolerance		TBD	Testing Engineer	TBD
	•						•		•

Common causes

- Random variation
- Inherent in the process as currently defined

- Many small fluctuations
- Outcomes are statistically predictable
- Causes for individual fluctuations cannot be determined

703

Assignable causes	<mark>704</mark>
Systematic variation	
• Mistakes, malfunctions, miscommunications, external factors	
• Relatively few large fluctuations	
• Outcomes are not predictable	
• Causes of individual fluctuations <i>can</i> be determined	

- Upper control limit (UCL) = $\mu + 3\sigma$
- Lower control limit (LCL) = $\mu 3\sigma$
- These are also called *three-sigma limits*
- Center Line (CL) = μ

705

Control Limits for Averages

If we repeatedly sample sets of N individual data

713

values from a population with mean μ and

standard deviation σ , and calculate

the average in each case, the

three-sigma limits for

the averages are:

UCL =
$$\mu + 3\frac{\sigma}{\sqrt{N}}$$

LCL = $\mu - 3\frac{\sigma}{\sqrt{N}}$

713

Establishing Control Limits 714 ٠ Control Limits are calculated using data representative of day-to-day process operation The exact calculation for three sigma limits depends on the type of control chart being used The type of control chart used depends on the type of data and the sampling • method At least 20 - 25 sample subgroups should be used to set control limits Data from a pilot run can be used to set control limits for the "future state" process, if the pilot is representative of the process that will be implemented. If not, run the "future state" process long enough to gather a sufficient ≻ sample. Control limits are not the same as specification limits!
Sampling for control charts

To detect process shifts, we need to take a *reasonable* sample of the process.

- Samples should estimate, or try to represent, the population.
- Samples need to be taken in the order of production and as soon as possible in an operation to get an early warning of defects.
- The chance of variation from assignable causes should be *minimized within* an individual sample set (pull parts for a sample close together in time).
- The chance of variation from assignable causes should be *maximized between* samples (time separation between samples).
- Pulling subgroups of parts at a predetermined interval works best.
 - > Do not pre-identify which parts will form the SPC sample before they are manufactured (avoid bias).
 - > Do not adjust the process during sampling.

Quantitative control charts

With quantitative control charts, we pull samples from the process and use them to estimate how the process as a whole is performing.

717

We can then answer two important questions using two graphs:

- 1. Is the process staying centered?
- 2. Is the process staying consistent?

uantita	tive cor	ntrol o	charts (cont'd)	
Control Chart	Statistics Plotted	Sample Size	Description	
X-bar & R	Average & Range	2–5	The X-bar and R chart was the first and most common quantitative control chart used in SPC, only because in the days before calculators and statistical software, Range was easier to calculate than Standard Deviation.	
			The X-bar and R chart can be useful for monitoring product, process or environmental characteristics when the sample size is fairly small (say 5 or less).	
			But given the prevalence of software tools available, it should really be replaced by the X-bar and s chart unless there is a particular need for spotting "outlier" range values.	
X-bar & s	Average & Standard Deviation	5–15	The X-bar and s chart is useful for monitoring product, process or environmental characteristics, especially when the sample size is larger (say, more than 5).	
		Deviation	Again, the standard deviation chart will be more robust than range because all data are used, not just the highest and lowest numbers.	
IX & MR	Individual & Moving Range	1	The IX and MR chart is used when the sample size is one. A single sample may need to be taken because:	
			 It is expensive to take samples. 	
			 The measurement method is destructive. 	
			 It is the only sample size that makes sense for that process. 	
			Because an average cannot be calculated for a sample size of one, the individual data points are used.	
			When there is only one number, standard deviation and range cannot be calculated. Instead, we use what is called the <i>Moving Range</i> .	

Monitoring frequency	Metric to monitor	Statistic(s) Needed	Control limits
Hourly	\overline{X} chart:	Average (µ)	UCL = $\mu + 3\frac{\sigma}{\sqrt{N}}$
Weekly Monthly	Average	Standard deviation (σ)	$CL = \mu$ $LCL = \mu - 3\frac{\sigma}{\sqrt{N}}$
Quarterly etc.	<i>s chart:</i> Standard Deviation	Standard deviation (σ)	UCL = $\overline{\sigma} + 3 \frac{\sigma}{\sqrt{2(N-1)}}$ CL = $\overline{\sigma}$ LCL = $\overline{\sigma} - 3 \frac{\sigma}{\sqrt{2(N-1)}}$

Exercise 37.2

We want to use \overline{X} and s control charts to monitor a critical dimension, diameter, of the parts we are producing. Open *Data Sets* \rightarrow *control chart diameter*. Does the baseline data appear to be adequate to represent process variation? Use Excel formulas for the following:

721

- a) Calculate the average (\bar{x}) and standard deviation (s) for each subgroup of five parts.
- b) Calculate the overall average, which will be the center line (CL) of the \bar{x} chart. There are two ways to do so: take the average of all the data points or take the average of the subgroup averages. The name given to the statistic from the second method is \overline{X} (X-double bar) or the Grand Average.
- c) Calculate the average of the subgroup standard deviations, (\overline{s}), which will be the Center Line (CL) for the standard deviation chart.

Exercise 37.2 (d	ont'd) 72
d) The estimates of distribution of the "3-sigma"	f the standard deviation of the distribution of averages and the tandard deviations have been calculated for you. They are used in uantities that are added to and subtracted from the Center Lines.
e) Use the number each chart.	found above to calculate the upper and lower control limits for
$UCL_{\bar{x}} =$	$UCL_s =$
$CL_{\bar{x}} =$	$CL_s =$
$LCL_{\bar{x}} =$	$LCL_s =$

Control limit calculations for Individual and Moving Range chart 726 **Individual Chart Control Limits:** UCL = $\bar{x} + 3\frac{\bar{MR}}{d_2}$ $MR = |x_i - x_{i-1}|$ $CL = \bar{x}$ $LCL = \bar{x} - 3 \frac{\overline{MR}}{d_2}$ The value of d_2 is 1.128 since the range is between two consecutive points. Moving Range Chart Control Limits: UCL = $D_4 \overline{MR} = 3.267 \overline{MR}$ $CL = \overline{MR}$ $LCL = D_3 \overline{MR} = 0$

Example: Individual and Moving Range chart calculator										
Excerpted data from <i>Data Sets</i> \rightarrow solution properties										
А	В	С	D	E	F	G	Н	I		
	Formulas	for n=2	Individual N	leasureme	nts Chart	Moving Range Chart				
Data	Moving Ranges	Average Moving Range	LCL	CL	UCL	LCL	CL	UCL		
0.9239		0.0006	0.9214	0.9230	0.9246	0.0000	0.0006	0.0019		
0.9233	0.0006									
0.9236	0.0003									
0.9224	0.0012									
0.9231	0.0007									
0.9224	0.0007									
0.9231	0.0007	(If Y ≥ 0 and LCL < 0, ignore LCL 							
0.9236	0.0005		 With MR calculations, the number of decimal places shown may need to be 							
0.9230	0.0006									
0.9233	0.0003									
0.9229	0.0004		increased							
0.9232	0.0003									
0.9225	0.0007									
0.9218	0.0007									

Exercise 37.3

We want to use IX and MR control charts to monitor radial deviation. This measurement requires special equipment and is very time-consuming, hence the sample size of one.

729

Open Data Sets \rightarrow control chart aligner

Open Student Files \rightarrow calculator - individual moving range chart

- a) Copy the R dev data into the calculator (Paste Values).
- b) Copy the calculation in cell B4 down Column B, in order to calculate the moving range for R dev. What is the average moving range?

 $\overline{MR} =$

Exercise 37.4

We want to use a percent defective (p) control chart to monitor the weekly defects per unit occurring during an in-process assembly inspection.

Open Data Sets \rightarrow control chart parts inspected & defective

Use Excel formulas for the following and during calculations, keep the numbers in "fraction defective" form vs percentage:

- a) The sample size varies each week, so we'll use an average sample size for calculating control limits. Calculate the average weekly sample size. What concerns might there be about using this number?
- b) Calculate the overall percent defective, \overline{p} . Hint: we determined this number in Exercise 23.2 a).

This number will be the center line (CL) for the p chart.

Other Shewhart control charts

Categorical classification:

• np chart: number (count) of defective items per sample with a fixed quantity

737

- u chart: count of defects per unit
- c chart: count of defects) per sample with a fixed quantity

For np, c and u charts, the control limit calculations and chart appearance are similar to the p chart.

Details of these and other specialized control charts are beyond the scope of this course. More information can be found in any basic statistical process control textbook or reference.

737

Interpreting control charts 738 Once the control chart is created, the most valuable work can begin — discerning what the chart is telling us about process variation. 9 • Is the process "in control" or "out?" 9 • Are there warning signs that the process may go out of control soon? 9 • What actions should be take in response to the control chart signals? 10 The rules we'll discuss for deciding whether a process is in or out of control work only for control limits — not for specification limits. 9 • Our concern with specification limits is whether an item conforms or not. 10 • Inspection and testing must be used to screen out bad parts, not control limits. 11

739

- > Are late deliveries "normal" for the organization?
- ➤ Are there inconsistencies between divisions for global KPI charts?

Additional tests for assignable causes (cont'd)					
Test 1	One point beyond A (This is the basic test & always used.)				
Test 2	9 points in a row on the same side of the average.				
Test 3	6 points in a row steadily increasing or decreasing.				
Test 4	14 points in a row alternating up and down.				
Test 5	Any 2 out of 3 points in a row in A or beyond.				
Test 6	Any 4 out of 5 points in B or beyond.				
Test 7	15 points in a row in C, above and below the center line.				
Test 8	8 points in a row on each side of the average with none in C.				

Tests most commonly used (and most useful)					
Test #1	One or more points outside the control				
Test #2	limits. Nine or more points in a row on one side of				
	the average.				

757

