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1 JMP menu map

Ll

-

Distribution £

| data points beyond given limits

Calculate basic statistics. create statistical graphics. find % of

Fit distribution models for regular quantitative data, evaluate
goodness of fit, predict % or PPM beyond given limits

FitY by X —[

Hypothesis testing, comparing populations, testing for
significant differences

Analyze |

Fit Model 4{

Correlating variables, modeling Y as a function of one X or
multiple Xs, prediction. optimization

B : Categorical MSA
Quality and < | Variability/Attribute Gauge Chart ‘{without B ]
Process “~
~| Pareto Plot
TR - Fit distribution models for life data
R::.’a blfl-ty I Di tl'.';e ti (time to failure), evaluate goodness of
ecibin ot L el il fit. predict failure probabilities

Notes




JMP menu map (cont'd)

Preferences

Summary

=

1 Subset —[ Extract a subset of a data table W

Platforms —[

Specify desired default settings
for IMP analysis platforms

Derive a smaller data table by calculating statistics over a
subset of a larger data table

Sort

{ Sort a data table by specified columns W

| Stack 4{ Stack values from multiple columns into a single column J

Split 4[ Unstack values from a single column into multiple columns J

File
g
Tables (-
\
DOE

Calculate the required sample size for a designed experiment |

Create the design matrix for a designed experiment ]

Graph

Overlay Plot

‘{ Plot one or more data series in time sequence }

Notes




2 Basic Statistics and Statistical Graphics

* Frequency histogram

» Cumulative distribution function
» Percentiles

* Box and whisker plot

« JMP distribution analysis

+ Data validation

* Distribution analysis options

* Plotting data in time sequence

» Saving analyses and data tables

Notes




Notes

Y variables are characteristics of parts or transactions that determine customer
satisfaction, or lack thereof. They provide the data from which project metrics are

computed. In sections 2 and 3 we focus on quantitative Y variables. Examples
include:

* Properties: physical, chemical, electrical, optical, . . .
* Distance, time, dimensions, cost, quantity

* Event counts (when there 1s not a discrete number of opportunities for the
event to occur)

JMP uses the term continuous for quantitative variables, and often uses the term
nominal for categorical variables.

Notes




Frequency histogram 5

LSSV2 data sets \ DI Water
Number of data points in each bin

Count

Q -

1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable

Notes




Cumulative percentage histogram | 6

Percentage of data points < upper limit of each bin

100 —

80

60

]
40 -

Percent less than

20 -
e -
i T T - T T T T T T T T T T T T T
1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable

Notes




Cumulative percentage histogram (cont'd)

Made the bins smaller

o)}
o
l

n

Percent less than
1

0 T ]
1200

T

.=

1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable

Notes




Cumulative distribution function (CDF)

* Bins are so small they isolate
individual data values

100+ » For small sample sizes, the CDF e
ji looks like a staircase with a /
802 step at each data value &
: -t
k= i
~ 60 —
w
@ i
@ J
S B N ey Py S P » About 40% are 1600 or less
% 40 ¢ /
@ g '
a . ) 5
4 : » About 5% are 1400 or less
20 - :
- I
- I
I
—(———-——-‘-‘---‘;pr?w |
1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable

Notes




Percentiles

A percentile is a value that divides a population or data
set into two groups, based on a stated percentage

10% are less than the 10" percentile, 90% are greater
25% are less than the 25th percentile, 75% are greater
50% are less than the 50 percentile, 50% are greater
75% are less than the 75™ percentile, 25% are greater

90% are less than the 90™ percentile, 10% are greater

Notes




Percentiles (cont'd)

.

Percent less than

[llustration of 20" and 95" percentiles

o

%

o

3
B

Notes




Common percentile-based data summary

100 —

uey) ss9| Jusoiad

Notes




Box-and-whisker plot

L)

“Inter-quartile range” (IQR)

| <]
{rs 7

“Whiskers” show the minimum and maximum data points,
not including outliers (see next slide)

Notes




Rule for plotting points separately

Investigate
for cause

!

I

Median

Y \4

Ends of whiskers are determined by the highest and lowest data points
that are inside the calculated ranges.

Points plotted separately are outliers, and should be investigated.

Notes




JMP distribution analysis

. . . *
File = Open — All Files — Data sets \ lead time 1 — Open — Import
[ 3] lead time 1 - IMP [2] [E=SEEET)
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
I:v lead time 1 N E =
v|Source = - Lead time
1 9.61
% Analyze
3 9.54
= Cotares (U0) o .
wi Lolumns . . .
dlsdtme 2o Distribution
7 9.55
g 942 »L
9 9.58 r— =
10 9.61 [&= Distribution - JMP [2] il
— — 11 9.87 | |The distribution of values in each column
[1 Rows - 12 9.93 || Select Columns Cast Selected Columns into Roles Action
All rows 15 13 9.81 ¥ 11 Columns Y. Columns| | « Lead time > OK
Exclode : 4 om b S 7 O
Excluded 0 15 9.04 | Weight || optione | Cancel |
Hidden 0 . z ————— e '
Labelled 0 HEtagyams QOnjy | Freq |
— —— |
- \ufomove.)
\ | Recall |
b 3 e ey
Needed only for Lbiep |
non-JMP files > 0w

Notes




Data validation

-
[== lead time 1 - Distribution of Lead time - JMP [2]

[E\@‘ﬂ

4 « Distributions

4 = Lead time

?\~

(later) T -<i:>-

]

4 ~ Summary Statistics |
Mean 15.343333

Frequency histogram

Std Dev 21.815551
N 15
Minimum 9.49
Maximum 942
=
0 A 20 40 60 80 100
> v
1
\
* Qutlier

* Not always visible in the histogram
* Click on 1t
* Look mn the data table

Notes




Data validation (cont'd) 16

r N
F3) lead time 1 - MP [2) b .
Eile Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
~leadtimel D) < v
I~ |Source B Lead time
1 9.61
2 9,71
3 9.54
e — 4 967
[~ Columns (1/0) | 5 975 |3 lead time 1-JMP 2] =)
Lead ti -
i LeaclGome 6 9.49 File Edit Tables Rows Cols DOE Analyze Graph Tgols View Window Help
7 9.55 v/leadtimel D)4 v
I o2 [T |E Lead time
9 9.58 1 9.61
10 9,61 - 971
11 9.87 3 9.54
= Row — m 4 67
B | 12 993 |[= Columns (1/0) | . 335
All rows 15 13 9.81 A Lead time 1 :
Selected 1 14 9.89 5 9.49
Excluded 0 7 9.55
Hidden 0 1 9.94 9.42
Labelled 0 0,58
10 9.61
/ 11 9.87
12 9.93
5 13 9.81
1 .
v" Data entry error 0 28 g
/ Hidden 0 15 9.94
v' Enter the correct value Labelled 0
v" Go to next slide L

Notes




Distribution analysis with data correction

17

-
[== lead time 1 - Distribution of Lead time - JMP [2]

(2| B e

4 « Distributions
4 « Lead time

94 95 96 9.7 98 99 10

4 ~ Summary Statistics

Mean 9.6913333
Std Dev 0.1671555

N 15
Minimum 942
Maximum 9.94

> B v

Note the change in the histogram and the summary statistics

Notes




Cleaning up the box plot (optional)

* Right click in this

space

» Select Customize

» Select Box Plot

* Uncheck
Confidence
Diamond and
Shortest Half —
OK

-
|= lead time 1 - Distribution of Lead time - JMP [2]

\ 4 = Distributions
4 + Lead time

— =+

7

94 95 956 9.7 98 99 10

4 v Summary Statistics

Mean

Std Dev

N
Minimum
Maximum

9.6913333
0.1671555
15

9.42

9.94

» What remains is the box and whisker plot

« JMP calls 1t Outlier Box Plot because 1ts main
purpose in this context is to show outliers

Notes




Distribution analysis options

.
[= lead time 1 - Distribution of Lead time - JMP [2] Lo | B et

4 = Distributions
4 « Lead time
4~ Summary Statistics

/ F——— [ —] Mean  9.6913333

StdDev  0.1671555
N 15
9.42

Minimum
Maximum 9.%4

94 95 96 9.7 98 ag 10

* Click on the red triangle next to Lead time while holding down the A/t key
* This will show the default analysis options for the Distribution platform

» See next slide

Notes




Default analysis options (cont'd)

% Select Options and click OK

]

Display Options
Quantiles
Set Quantile Incremen:]
Custom Quantiles
¥| Summary Statistics
Customize Summary Statistics
7| Horizontal Layout
Axes on Left
Histogram Options
#| Histogram
Shadowgram
Vertical
Std Error Bars
Set Bin Width|
Count Axis
Prob Axis
Density Axis

v

| Test Mean f
| Test Std Dev |

| Show Percents

Show Counts
Normal Quantile Plot
Qutlier Box Plot
Quantile Box Plot
Stem and Leaf

CDF Plot

-

Confidence Interval | 9,90

v

| Prediction Interval

Tolerance Interval
Capability Analysis

Just for practice:

Continuous Fit
Normal
LogNormal

| Weibull
Weibull with threshold
Extreme Value
Exponential
Gamma
Beta
Smooth Curve
Johnson Su
Johnson Sb
Johnson SI
Glog
All

Remove

| Save | Level Numbers

A

OK || Cancel |

Uncheck Summary Statistics and Qutlier Box Plot — Check CDF Plot — OK

This can also be done by just clicking on the red triangle, but requires more steps.

Notes




Cumulative distribution function (CDF plot)

r e N
&~ lead time 1 - Distribution of Lead time - JMP [2] = sl &l

| 4 ~ Distributions

4 « Lead time
: < CDF Plot
08
e = - 2 06
94 95 96 97 98 99 10 g
€
Y 04
02
94 95 96 97 98 99
Lead time
‘ A0 Elv |
L. = =  ———— = = = J

* Plots the proportion of data points < each value in the data set
» The step size at each data value 1s usually 1/N, where N 1s the sample size

* If the same value occurs twice in the data set, the step size there 1s 2/N

Notes




Modifying JMP plots 2
COF Plot 3 ‘
Double click on a number on the Y axis
by * change Increment to 0.1
» check Major Grid Lines
: » uncheck Minor Tick Mark
3 04 * Set Minimum to 0 and Maximum to 1
« OK
: CDF Plot
4 95 6 98
r 09
S 08
0.7 —H—
2. Double click on a number on 2 06
the X axis ‘é 05 m—
* check Major Grid Lines S 04
* uncheck Minor Tick Mark 03 —f~=
*« OK 02
0.1
94 95 96 9.7 98 99

Leadtime

Notes




Calculating percentages

23

&= lead time 1 - Distribution of Lead time - JMP [2] | M

:.4 ~ Distributions
| 4~ Lead time

/ 4 CDF Plot
/ 1 F 1| ‘ 09

08

06

05

04

03 :

02 ‘

Cum Prob

94 25 96 a7 98 o9
Lead time ‘

» Suppose we want to know the percentage of data points exceeding 9.8
* Click the Lead time red triangle — select Process Capability

» Enter 9.8 for the Upper Spec Limit — click OK

Notes




Percentages (cont'd)

4 ~ Lead time Capability
4 = Histogram

USL

.....
*® .

94 95 96 9.7 98 99
Lead time

4 Overall Sigma Capability
Index Estimate Lower95% Upper95%
Cpk 0.217 0.027 0.400
Cpu 0.217 0.027 0.400
4 Nonconformance
Expected Expected

Portion Observed % Within % Overall %
Above USL 33.3333  1548N 25.7816
Total Outside 33.3333  1548N 25.7816

Density
== = Overall

Nonconformance shows:

4 &

* Observed percent out-of-spec

» Expected (predicted), based on
the Normal distribution

Capability indices are calculated:

» Within Sigma Capability can be
used when small samples are
collected, such as for an Xbar-R
chart

* Turn this off by clicking on the
red triangle next to Lead time
Capability

* Tum off the Within curve on the
histogram by clicking on the
red triangle next to Histogram

We will cover distribution fitting in
the next section

Notes




Plotting data in time sequence E

Graph — Legacy — Overlay Plot

-
%> Overlay Plot - JMP (2] =&
The Plot of Y as X varies continuously
Select Columns Cast Selected Columns into Roles Action
* 1 Columns [y | emLeadtime | OK el
AL ead time B = - e '\
| | Left Scale/Right Scale | | Cancel |
Options Lo
-
o G Remove |
== v
X Log Scale lﬁiﬂﬂ)g\g USRS
Left Y Log Scale | By ‘ 1 R““L‘
| Right Y Log Scale = | Help |
|
| 20>

* You can have different left and right scales for plotting multiple
Y variables
o Cast both Y variables mto Y

o Select the one you want to display on the secondary (right) scale
o Click Left Scale/Right Scale.
o Arrows point to the Y-scale for each Y variable

A date, time, or other sequencing variable could be cast into X

Notes




Overlay plot (cont'd) l

= Graph Builder ¢ = Graph Builder
Lead time vs. Row Lead time vs. Row

* Modify the chart as follows:
* Double Click X-Axis: Minimum = 0, Maximum = 16, Increment = 1, Dec = 0
* Double Click on Y-Axis: Minimum = 9.4
* Right Click on Chart: Customize > Line > Line Color > Red

* Double Click on X-Axis Title: Change “Row” to “Time Sequence”

Notes




Overlay plot (cont'd)

ead time 1 - Overlay Plot of Lead time - IMP - =]

4+ Guaph Builder » Good way to look for assignable cause
T patterns versus their time sequence

» Same as a line chart in Excel

* Overlay plot can be used to display
different data sets on different Y-Axis

Lead time

g e 3 W
e % Overlay Plot - IMP - O X
The Plot of Y as X varies continuously
Select Columns Cast Selected Columns into Roles Action
S Coh v ox

Left Scale/Right Scale Cancel
Options X
Ly Grouping Remove
X Log Scale
2 By Recall
Left Y Log Scale
o Hel
{ Right Y Log Scale =0
1
> v

Notes




Saving your analyses and data table 28

= lead time 1 - Distribution of Lead time - JMP [2] =) 12) -
|4 ~ Distributions
~ Lead time
4 A= : :
x CDF Plot Capability Analysis
" Specification Value Portion % Actual
} 09 Lower Spec Limit Below LSL
Spec Target Above USL 333333
08 Upper Spec Limit 98 Total Outside  33.3333
07 Long Term Sigma
94 95 a5 97 98 99 10 Li; o
.05
S 04
03
02
01
94 9 96 9 98 99
Lead time
» v

* Click on the thumbnail for the distribution analysis at the
bottom of the data table

* Click the red triangle next to Distributions

*» Save Script — To Data Table — Name: Distribution — OK

Notes




Saving things (cont'd) o

r 1
¥- lead time 1 - Overlay Plot of Lead time - JIMP [2] LE-EL&

|4 = Overlay Plot

‘ 10

99 B
98 .

97 R

Lead time

96 -
95 .

94

93

O F 2 & TGS UG T8t M 209130132 1131414 41316
Time sequence

|
|
> B v ‘

&

* Click on the thumbnail for your overlay plot, click the red
triangle next to Overlay Plot

* Save Script — To Data Table — Name: Overlay Plot — OK

* Go to your data table

Notes




Saving things (cont'd)

o

Fle Edt Tables Rows Cols DOE Analyze Graph Tools View Window Help

w Cycle times

Notes C:\Documents and S¢

w Distribution
» Overlay Plot

» Columns (1/0)
A | eadtime

» Rows
All rows
Selected
Excluded
Hidden
Labelled

(= ===l

-

W~ O BWw N -

bW N - 0w

Lead time

961
9
954
967
9.75
949
955
942
9.58
961
987
993
981
9.89
9.94

Two scripts have been added to
the left panel

If you save the file (as JMP), the
scripts will be saved with it

The next time you open the file,
you can run the scripts to recreate
the analyses exactly as you left
them

Close and save your data table
now

“Use Save As to make sure you can find
the file next time you want to open it

Notes




Exercise 2.1 ITW

Open Data sets \ quotation process. Perform the following data analysis tasks for the
variable TAT (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on
the outlier box plot. This pattern 1s common with asymmetric “ski slope”
distributions that pile up near zero. These points are nof assignable causes, so they
would not be investigated or removed.

(b) Record the average, standard deviation, sample size, minimum, maximum and
median.

(c) Tumn off the outlier box plot.

(d) Find the % of data points exceeding 3.

(e) Tum off the Within Sigma Capability.

(f) Save your analysis script. Close and save the data table.

Notes




Exercise 2.2

Data sets \ DI water. Perform the following data analysis tasks for the variable
Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch
the graph if necessary). Use your mouse to draw a box around the suspicious data
points. Right click in an uninhabited area of the plot, select Row Hide and
Exclude.

(b) Run a distribution analysis. Record the average, standard deviation, sample size,
minimum, and maximum.

(c) Turn off the outlier box plot.

(d) Find the % of data pomts falling below 1500.

(e) Tum off the Within Sigma Capability.

(f) Save your analysis scripts. Close and save the data table.

Notes




3 Fitting and Using Distributions

Distribution curves

Checking goodness of fit

JMP examples

Fitting and using the Normal distribution
Fitting and using the Lognormal distribution
Finding the best fitting distribution(s)

Using the best fitting distributions(s)

Notes




Frequency histogram L_M ﬂ

|

A description of the data

0. .-

1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y variable

Notes




Distribution curves

Possible descriptions of the population

Continuous Y variable

Notes

*7-35




Distribution curves (cont'd) %

Area under the curve between y, and y,

= % of the population with y, <Y < y,

Y1 Y2

Continuous Y variable

Notes




Distribution curves (cont'd)

Area under the curve to the right of v,

= % of the population with Y >y,

0 Y3
Continuous Y variable

Notes




Fitting a distribution curve to the data

= g

Continuous Y variable

* The Normal curve depends only on p and ¢ (population mean and std. dev.)

* Plug the sample mean and std. dev. into the formula in place of p and &

Notes




Distribution curves allow us to extrapolate . . . 39

LSL

- ’“\
, N\

0.12% / \
(1165 ppm) 7
are predicted /| \

to fall on or // h
below 1200 -
-« e ———

1200 1300 1400 1500 1600 1700 1800 1900 2000

Minimum value in the datais 1267

Notes




. but only if the distribution matches the data!

oy M

3210123456789 1011121314 1516

Notes




Checking goodness of fit [ ol

N—

Data CDF
100 ‘ jwww.’
| P
80 d’
o=
©
E 4
» 60 -
(D 4
Q@
o 40 -
8 —
()]
a‘ -
20 -
0 —- o0 ° w;)&';fw
T . ! ; ' | | | | | l ‘ | ' ' ‘ '
1200 1400 1600 s -

*Cumulative Distribution Function

Notes




Checking

goodness of fit (cont'd)

Best fitting population CDF (assuming Normal)

Percent less than

T v ¥ T T T r T T T T T T T T
1200 1400 1600 1800 2000

Notes




Checking goodness of fit (cont'd)

Percent less than

Data and population CDFs should match

T T ' v T ’ ' Y T Y T T T T T T T
1200 1400 1600 1800 2000

Notes




|

Normal Quantile Plot (also known as Normal probability plot) Li’t

CDFs plotted on a Normal distribution scale

(=]
o
=]
| X
s

Population

LSL

Population

Percent less than

1200 1400 1600 1800 2000

Notes




JMP example: Normal data

File — Open — Data sets — DI water — Open — Import

Analyze — Distribution —>
Resistivity — — OK

V¥V Resistivity — Normal
Quantile Plot

Fit 1s good — the points form a
relatively straight line and stay
within the hyperbolic band

o It 1s common for the data to
curve up a little at the top and
down a little at the bottom of
the Normal Quantile Plot

o A curve throughout the graph
indicates non-normal data

Save the script to the data table
File save as — DI water.jmp
Leave the data table open

Resistivity

-0.67-

~L4LO=

/ -164-

'
N
.

-
~&I9%

1300 1400 1500 1600 1700 1800 1900 2000

0.98

0.93
0.86

0.7

045

0.2

0.1
0.05

0.01
0.002

Notes




JMP example: non-Normal data 46

File — Open — Data sets — quotation process — Open — Import

» Analyze — Distribution — TAT
. Columnd — 7AT — OK i
* Distributions — Stack ¥ - 233--0,99
I
g I !
* TAT — Normal Quantile Plot ™ 164--0.95
I 125409
» Fit i1s bad — the points do not l ! o671 0.8
follow the line and do not stay l )
inside the hyperbolic band I a0+ 0.55
» Save the script to the data table 0674 03
: 1014
» File save as — quotation '_‘;‘_' 0.07
rocess.jm i
¥ dei 1002
* Close the data table 0.004
43<-0.000¢

Notes




Is this data Normal?

47

2.33

1.64

1.28

0.67-

0.0

-0.67

-1.28

-1.64

15 20 25 30 35 40

- 0.99
- 0.98

L 0.95
£ 0.9

- 0.8
- 0.7

0.5
-0.3
-0.2
50.1
£ 0.05

-0.02
-2.334¢

50

Notes




Is this data Normal?

|

be oo ol

2.334

1.64-

1.281

0.67

0.04+

-0.67 -

-1.28 4

-1.64 -

-2.334

+0.99
+0.98

10.95

-

+0.9

+0.8

+0.7

+0.6
0.5
+0.4

0.3
+0.2

0.1
1 0.05

0.02
+0.01

10

15

20

25

30

Notes




Fitting and using the Normal distribution

Go to DI water;jmp L Lcbecortis.
File Edit Tables Rows Cols DOE Analyze Graph Tools
O . v | DI water Py 4 v
The values of Resistivity in rows o ) T I, —
205 to 214 are constant at 1454 4-F 9 13890
B 4-F 9 15520
4 4-F 9 16160
These are not true measurements, / 4 10 14540
so we use the red triangle to hide R " o Tex
and exclude the questionable ::ow_ 4 a-F 11 14540
e 4-F 11 14540
values aF 12 14540
4-F 12 14540
This reduces the sample size from :i i; 1:::‘;
474 to 464 4-F 13 14540
¥ Rows 4-F 14 16250
. All rows 474 4-F 14 15630
Next slide: Selected A-F 14 16425
- Analyze — Distribution Hidden i e L
YZ Labelled 4-F 15 15165
- Red Triangle — Continuous Fit = 3 il
— Fit Normal -

Notes




Normal distribution (cont'd)

o

4 ~ Resistivity

1300 1400 1500 1600 1700 1800 1900 2000

suonnquysiqg 21edwo)

4 ~ Summary Statistics 4, ~ Fitted Normal Distribution

Mean 1632,5248 arameter Estimate  Std Error
StdDev  142.06717 Location p 1632.5248 6.595303
N 464 Dispersion o 142.06717 0.3919007
Minimum 1267 Measures
Maximum 2000 -2*LogLikelihood 5915.2214
Median 162875 AlCc 5919.2474

BIC 5927.5011

Click on the Fitted Normal Distribution red triangle:

— Select Diagnostic Plots — QQ Plot

— Next slide

Lower 95% Upper 95%
1619.5982 16454513
14130114  142.65648

Notes




Normal distribution (cont'd)

- 51

4 = Fitted Normal Distribution
Estimate Std Error Lower 95% Upper 95%

Parameter

Location B 16325248

6.595303 1619.5982 1645.4513

Dispersion o 14206717 03919007 14130114 142.65648

Measures

-2*Loglikelihood 5915.2214

AlCc
BIC

4 QQ Plot
2100

Resistivity

/

1200

5919.2474
5927.5011

s

1300 1400

1500 1600 1700 1800 1900
Fitted Quantile

2000 2100

The QQ Plot 1s similar to the Normal
Quantile Plot

o When the distribution 1s a good
fit, the data will fall in a line on
the plot

Click on the Fitted Normal
Distribution red triangle again:

— Select Process Capability

— Enter 1200 for Lower Spec Limit
— OK

— Next slide

Notes




Normal distribution (cont'd)

=]

4 ~ Resistivity Capability
4 ~ Histogram

LSL

1200 1300 1400 1500 1600 1700 1800 1900 2000
Resistivity

4 Overall Sigma Capability

Index Estimate Lower95% Upper95%
Cpk 1.015 0.943 1.087
Cpl 1.015 0.943 1.087

4 Nonconformance
Expected Expected

Portion Observed % Within % Overall %
Below LSL 0.0000 0.0693 0.1165
Total Outside 0.0000 0.0693 0.1165

Density
=== Overall

» Observed % shows that none of the
measurements in the data set are less

than 1200

* Expected Overall % shows that 0.12%
are predicted to fall below 1200 in the
population (future production)

» Save script from the Distributions red
triangle

» Save and close the data table

Notes




What if the Normal distribution isn’t a good fit?

Steps for fitting a distribution to data:
L.

!u

(ol

Analyze — Distribution

Check Normal Quantile Plot—data in straight line indicates good fit
[f uncertain: Continuous Fit — Fit Normal

¥ Fitted Normal Distribution — Goodness of Fit

Anderson-Darling p-value > 0.05 indicates good fit

If Normal not a good fit: Continuous Fit — Fit Lognormal
W Fitted Lognormal Distribution — Diagnostic Plots — QQ Plot
Data in a relatively straight line on the QQ Plot indicates good fit
[f uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

If Lognormal is not a good fit: Continuous Fit — Fit All
Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense for the data.
Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.
JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)

Notes




Fitting and using the Lognormal distribution

* Data sets — number & size of 4 = Max size
defects

* Analyze — Distribution — Max
size

* Max size is not Normal

* The LogNormal distribution is the
most common alternative

* Red triangle Max Size

— Contmuous Fit — Fit LogNormal

« Red triangle Fitted Lognormal Dist

wn

— Diagnostic Plots — QQ Plot 0

0.98

£=-0.95
2-+-0.9

0.8
0.7
0.6

+0.5

04
0.3
0.2

é+-0.1

0.05

0.02

Notes

Normal Quantile Plot




. . . y
Lognormal distribution (cont'd) 55
Max size
\ Summary Statistics Fitted Lognormal Distribution
Mean 7.10625 Parameter Estimate Std Error Lower 95% Upper 95%
\ StdDev  5.6174654 Scale p 16799251 0.1096067 1.4607293  1.899121
T N 48 Shape c 07593775 00775036 0.6295191 0.9408779
B Minimum 09 Measures
Maximum -2"LogLikelihood 271.06631
.  Median AlCc 275.33208
0 5 10 15 20 25 30 BIC 278.80872
QQ Plot
30 -
25 //‘/'
20 @ 3 /)/
515 8’
: 0 o'.:}’/
: : At Yy Z
Click on the Fitted LogNormal Distribution /
red triangle ol
0 5 0 15 20 25 30

— Select Process Capability

— Enter 30 for the Upper Spec Limit

— 0K

Fitted Quantile

Notes
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Lognormal distribution (cont'd)

4 « Max size(Lognormal) Capability

Nonnormal capability indices calculated with the Percentiles method

4 '~ Histogram
usL

i
.
.
N

25

.

.

.

'

'

0

'

'

.

'

& L.
. 0
'

.

.

'

'

'

"

.

10 15 20

0 5
Max size

4 Parameter Estimates

4 Overall Sigma Capability

Index Estimate Parameter Estimate

Cpk 0.524 Scale p 1.6799251 .

Cpu 0.524 Shape o 07593775 production)

4 Nonconformance g y : v
T » Save script from the Distributions
Portion Observed % Overall % red trlang]e
Above USL 0.0000 1.1705
Total Outside 0.0000 11705
» Save and close the data table

Density
= ==Overall

* None of the measurements in the
data set are greater than 30

* 1.17% are predicted to exceed 30
in the population (future

Notes




Finding the best-fitting distribution(s)

4 40 Cols'™

D o~ | ANST | Xdav | Yoy | Rdav If neither the Normal or Lognormal are a good
1 1 -17 4 17.464249197 ” o
2 2 1 s ozesausya Mt to the data, you’ll need to find a better option.
3 3 -10 -21 23.259406699
4 2 0 -1 1 . )
St —stee—er|  * Data sets \ alignment process
ST D ewseis ° Three similar alignment tools are used to attach
8 2 a3 17 17262678502 orifice plates to computer chips. ¥ dev and X dev
o 5o NP pieaenee are the vertical and horizontal deviations from
10 2 -7 -8 10.630145813 4 =
11 T 6 12520964086 target 1 mils.
12 2 5 0 5 . . ’ ] .
13 2l 3 s seozizs2e7  * 1Lhe alignment specification applies to the radial
. 2 - ? ;:;2233??3; deviation calculated from X and Y. See shide
16 2] @ 4 894427191 below for the calculation of R dev.
17 3 -16 -12 20 s .
18 3 s -5 210071212 * Analyze — Distribution — R dev
19 1 -14 3 14317821063 ’
20 2 -8 s 11313708e09  * Remove:
21 3 -23 -2 23.086792761 . .
22 3 -19 -15 24207436874 v summar‘y STGTISTICS
23 2 -7 9 11401754251 v Ouflier BOX PIOT
24 2 -10 0 10
s 29 502311 e Red triangle (R Dev) — Continuous Fit — Fit
26 1 -8 -11 13.601470509
27 2 -8 -3 8.5440037453 A“
28 3 -16 0 16 .
= 1 a3 21 zaseeisr * Qo to slide 61 to see the results
30 3 -8 -4 8.94427191

Notes




Using the formula tool

Double click on the blank column header next to Y dev, click on Column 4,
rename as R dev. Click on Column Properties, select Formula, Edit Formula. Use

your mouse to create the formula for R dev as shown below.

8% Rdev - JMP [4] EHZ[

{ HX[ — AFqumns
4 Aligner

* Row * ||| 4 Xdev E

» Numeric y

» Transcendental AR dev

» Trigonometric

b Character =

» Comparison

» Conditional

» Probability | Table Variat v |

» Discrete Probability Notes

» Statistical

» Random

» Date Time v

\/ Xdev ° + vdev °

»

[ OK

|| Cancel || Apply ||

Help

23 41— s]

Notes




Best-fitting distributions (cont'd) -

4 = Distributions

4 = Rdev
4 Compare Distributions
Show Distribution AlCc~ AICcWeight 2 4.6 8 BIC  -2"Loglikelihood
F 2 o Weibull —— 4543338 0.9524 B0 45523585 45393200
‘ Johnson Sb 45502829 0.029 45683001 45422235
/ (] SHASH — 45514929 0.0161 | 4569.5101 45434335
(] Normal 3 Mixture —— 45560329 0.0017 45919708 45398176
(] Normal 2 Mixture —— 45508833 0.0002 45823898 45497341
0. 'S 10 15 ‘20 25 30 3% 40 ] Gamma — 4571173 0 45801935 45671552
1 Normal —— 45844949 0 45935154 45804771
] Lognormal —— 46767723 0 4685.7928 46727545
Cauchy — 482269 0 4831.7106 48186723
Exponential 5055,8802 0 5060.4024 5053.8832

* Distributions are ranked by AICc (*“Akaike
Information Criterion corrected” — will call it AICc
from now on)

f\ Double click N

* AICc i1s a measure of lack of fit

s
o It helps us compare fit of models -- fit of Eorinat
distributions 1n this case ¥

o Smaller values indicate better model fit Fixed Di‘:imal ©)

o AlICc 1s not a hypothesis test—it doesn’t tell you \_ OK J
how well a model fits, only which 1s better

Notes




Best-fitting distributions (cont'd)

3

4 ~ Rdev

4 Compare Distributions
Show Distribution
vl Weibull —_—
] Johnson Sb
] SHASH o
Normal 3 Mixture —
Normal 2 Mixture —
0 S5 10 15 20 25 30 35 40 ] Gamma —
Normal ¢
J Lognormal
Cauchy
] Exponential

* Distributions with the same AICc (rounded to the nearest tenth) have the same

lack of fit (or equivalently, the same goodness of fit)

* The distribution with the 4/Cc Weight closest to one i1s the better fit

AlCc~ AlCcWeight 2 4.6 .8

45433
45503
45515
45560
45599
45712
45845
46768
48227
50559

0.9524
0.029% |
0.0161 |
0.0017
0.0002

OO0 O0OO0OoO

Notes




Using the best-fitting distribution: Weibull 61 l

What % of future parts will have R dev > 40?

4 Compare Distributions 4 ~ Fitted Weibull Distribution
Show Distribution AlCc~ AlCcWeight .2 4.6 .8 BIC  -2"Loglikelihood arameter Estimate StdError Lower 95% Upper 95%
V]  Weibull 4543338 0.9524 [N 45523585 4539320/ Scale a 17.246152 0.3070044 16650713 17.855926
] Johnson Sb 45502829 0.0296 | 45683001 45422965  Shape 2.2716665 00672977 2.1415545 24053358
SHASH —— 45514929 0.0161 | 45695101 Measures
Normal 3 Mixture —— 45560329 0.0017 45919708 8176  -2"Loglikelihood 45393202
[ Normal 2 Mixture —— 4559.8833 0.0002 45823898 f49.7941  AlCc 4543338
C Gamma — 45713 0 4580.1935 567.1552  BIC 45523585
Normal — 45844949 0 45935154 45804771
] Lognormal —— 46767723 0 46857928 46727545
]  Cauchy — 482269 0 48317106 48186723
Exponential —— 5055.8892 0 5060.4024 50538832

* Click on the Fitted Weibull Distribution red triangle

* Select Process Capability
* Enter 40 for USL — OK

Notes




Weibull fit (cont'd) 62

4 '+ R dev(Weibull) Capability

Nonnormal capability indices calculated with the Percentiles method.

4 '~ Histogram 4 Process Summary
UstL Density USL 40
= = =Overall N 678

Sample Mean  15.28776
Sample Std Dev  7.097424

4 Overall Sigma Capability < Parameter Estimates

Index Estimate Parameter Estimate
Cpk 1.016 Scale a 17.246152
Cpu 1.016 Shape B 22716665  » (). ]15% of the data values exceed 40
4 Nonconformance

Expected 0 1 1
s et PP * 0.12% are predlcted to exceed.40 n
Above USL 0.1475  0.1158 the population (future production),
Total Outside 0.1475 0.1158

based on estimates made using the
Weibull distribution

Notes




What if we had assumed a Normal distribution? 63

4 '~ Rdev
e % 4~ Summary Statistics
z o
/ ‘2 3 8883 2 Mean 15.287761
’ 098 § StdDev  7.0974238
164095 & N 678
22--0.9 7; Minimum 1
- +0.8 g Maximum 40.804412
a7 = Median  14.422205
0.6
00--0.5
0A
.1-0.3
0.2
28--0.1
84--0.05
10.02
bt 1, * The curve throughout
. this Normal Quantile

Plot indicates that this
is not a good fit

Notes




What if we had assumed a Normal distribution? (cont'd)

4 « R dev Capability

4 '~ Histogram 4 Process Summary
usL Density usL 40
= == Overall N 678

Sample Mean 15.28776
Within Sigma  7.078084
Overall Sigma 7.097424
Stability Index 1.002732

Within sigma estimated by average moving range.

20 2
R dev We would have
e T underestimated the
4 Overall Sigma ili .
DA Capay future % defective:
Index Estimate Lower95% Upper95%
Cpk 1.161 1.0%4 1.227 Expected
1.161 1.094 1.227 ) i
Gl ' 0 % Defective
4 Nonconformance 2
Weibull 0.12%
Expected Expected
Portion Observed % Within % Overall % Normal 0.02%
Above USL 0.1475 0.0240 0.0249
Total Outside 0.1475 00240  0.0249

Notes




Steps for fitting a distribution to data

If the Normal or Lognormal is a good fit, use it!
L.

RS

(9%}

Analyze — Distribution
Check Normal Quantile Plot—data in straight line indicates good fit
If uncertain: Continuous Fit — Fit Normal
¥ Fitted Normal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

[f Normal not a good fit: Continuous Fit — Fit Lognormal
w Fitted Lognormal Distribution — Diagnostic Plots — QQ Plot
Data in straight line on the QQ Plot indicates good fit
If uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

If Lognormal is not a good fit: Continuous Fit — Fit All

»  Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense.
Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.
JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)

Notes




Exercise 3.1 fe—‘

Answer questions below. Save the analysis scripts, save and close the data tables.
[When opening files, make sure JMP is looking for “All files” not “All JMP files.”]

a) Data sets \ quotation process, variable TAT. What % of RFQs in the data set have
TAT > 157

b) What % (or PPM) of future RFQs will have TAT > 15?

c) Data sets \ solution properties, variable SG coded. What % of solution vials in the
data set have SG coded > 507

d) What % (or PPM) of future vials will have SG coded > 507

e) Data sets \ number and size of defects, vanable # Defects. What % of castings in
the data set have more than 50 defects?

Notes




Exercise 3.1 (contd) éﬂ

f) What % (or PPM) of future castings will have more than 50 defects?

g) Data sets \ casting dimensions, variable Length. What % of castings 1n the data set
have length outside the interval [598, 602]?

h) What % (or PPM) of future castings will have lengths outside this interval?

1) Data sets \ casting dimensions, variable Diam. What % of castings in the data set
have diameters outside the interval [49, 51]?

1) What % (or PPM) of future castings will have diameters outside this interval?

Notes




4 Introduction to Life Data P

Life = elapsed time until the occurrence of some event
* Failure of an item on test
* Planned end of test
* Unplanned end of test
* Failure of an item in service

* Scheduled downtime

Definitions of “time”
* Seconds, minutes, hours
* Days, weeks, months

* Usage cycles, number of moves, distance

Notes




Life data (cont'd)

Usually there is one event of primary interest

* Usually, failure of an item

Other events may preempt the event of primary interest
* Planned end of test

* Unplanned end of test
* These are called "suspensions”

* We say that the time to failure is "censored”

Notes




Data sets \ failures and suspensions.jmp

~
-

16

15+
14

34—
124
114

10

Label
o
|

0

10 20 30 40 50 60 70 80 90 100
Time

15 items were tested
12 failures (X)
3 suspensions ( [>-)

This “event plot™ distinguishes
suspensions from failures and
shows the event times

If we don’t distinguish
suspensions from failures, the
calculated failure probabilities
will be biased upwards

This will make our reliability
look worse than 1t really 1s

Notes




Cumulative distribution function (CDF)

72

1.0

0.9+

Each step height o S 0.067
0_7_ N -

A

i IEa
4 r

0.1

In this plot, all
events are treated
as failures

0.0

Time

A0 45 S0, 55 &0- 65 70 I

80 8 90 95

Notes




CDF distinguishing suspensions from failures 73

1.0
0.9
0.8
o7 Suspensions at times 58 and 71
0.6
2 «0.086
= 097
L
0.4
0.3
« This is the correct plot
0.2+
- It steps up only at failure times
0.1
- The step size increases after
0.0 : ; ; : ; ; : each suspension, because the

LRy AR R e TR R number of items remaining on

Time test decreases

Notes




Overlay of CDFs

CDF treating all times as failures

e CDF - distinguishing suspensions from failures

1.0

0.9

0.2

0.1+

Suspensions at times 58 and 71

After the first
suspension, the solid
line overstates the
failure probabilities

0.0

40

45 50 55 60 65 70 75 80 85 90 95
Time

Notes




Can'’t we just ignore the suspensions?

|

CDF ignoring the suspensions

CDF distinguishing suspensions from failures

1.0

0.9+

0.8+

0.7 1

Failing
o
w

0.3

0.2+

0.1+

Each step height =

.....

This intuitive idea is

actually worse than

treating all times as
failures

Time

9 95

Notes




5 Analyzing Life Data

r—

* The Exponential distribution

* The Weibull distribution

» Fitting life distributions in JMP

* Finding and using the best fitting life distribution

Notes




Failure curves for the Exponential distribution

78

1.0
0.9-
0.8
0.7-
0.6
0.5 /-
0.4-
0.3
0.2-
0.14//,

0.0 I I | 1 I I I I =
15 20 25

Time to failure

Failure probability

Notes




Notes 2 ﬂ

The Exponential distribution is the simplest life distribution. It has only one
parameter: the mean time between/before failure (MTBF). The Greek letter O (theta)
1s often used to denote the population value of the MTBF.

Shown above are the failure functions F(f) for three different Exponential
distributions. F(f) 1s the probability that an item will fail before time 7.

The reliability function 1s defined as R(f) = 1 — F(f). R(¢) 1s the probability that an
item will survive beyond time 7. The Exponential reliability function 1s given by R(?)
= exp(-1/0).

Notes




Failure curves for the Weibull distribution

Failure probability

frF(r):1—(,5("/”)B b

n = characteristic life

0.3
B = shape
0.2 & Ly
0.1
00 I 1 I I I I I T I
0 5 10 15 20 25 30 35 40 45

Time to failure

Notes




Notes

The Weibull distribution was introduced to the reliability engineering community in
the 1950s by a man named Waloddi Weibull. Prior to that, most reliability work was
based on the Exponential distribution. Due to its greater flexibility, the Weibull has
become one of the most widely-used life distributions.

The Weibull distribution has two parameters: the characteristic life n| (eta), and the
shape [3 (beta). The characteristic life (1) has the same qualitative interpretation as the
MTBF (0). The shape parameter (3) determines which of two distinct failure modes
are represented. When 3 < 1, we have a burn-in or infant-mortality faillure mode.
When 3 > 1, we have a wear-out failure mode. A Weibull distribution with 3 =1 1s
identical to an Exponential distribution with 6 = n.

Shown above are failure functions F(r) for four different Weibull distributions. F(7) 1s
the probability that an item will fail before time 7.

The Weibull reliability function (probability that an item will survive beyond time 7)
is given by R(f) = exp[-(#/n)F].

Notes




Fitting life distributions in JMP 5

Data sets \ failures and suspensions Analyze
\ .
5 failures and suspensions - JMP Lﬂ.&
file Edit Iables Rows Cols DOE Analyze Graph Tools View Window Help Reliability and Survival
4 2/0Ccks w J’
w 15/0 Time SUSPCIB‘OI\ - % o 'S
1 a2 0 Life Distribution
2 49 0 J’
3 54 0
4 55 0 Set up as shown below
5 58 1 \L
6 61 0 OK
7 r
: o |~ Life Distribution - JMP =X
9 71 I
2 e Life Distributi C G 5
T 81 ife Distribution = Compare Groups
12 87
13 89 Select Columns Cast Selected Columns into Roles Action
14 93 S s b
15 o4 2 Columns |Y, Time to Even [ OK
A Time ——— ¢ T —
A Suspension | Cancel
Censor Code: 1 & » S ’ o Moo
Select Confidence Interval Method ——— 'M
gl Y o BN | Failure Cause | (“Recall
(Wald | — b
l.freq ]| | Help
i Label I

Notes




- |

Fitting life distributions (cont'd) 53

4 = Life Distribution
> Event Plot

4 Compare Distributions
Distribution Scale
[v] Nonparametric @®
Lognormal
[ ] Weibull
[] Loglogistic
|| Frechet
[ ] Normal
[] Sev
| Logistic —

* . * <«—— Identifies
—, the times
— when
’ suspensions
08 — . occurred

o
o

Probability

04
* CDF plotting the /‘ i =
failures - :

*» Shows the corners of B
the steps, but not the 40 50 60 70 80 90
“staircase”

Notes




Fitting life distributions (cont'd)

| failures and suspensions - Life Distribution of Time - JMP

4 ~ Life Distribution
> Event Plot
4 Compare Distributions

Distribution  Scale
¥ Nonparametric @

Lognormal

Weibull

Loglogistic

Frechet

Normal

SEV

Logistic
LEV =2 - A

-

m

08

o
o

o
b8

j Probability

q 95% confidence
mtervals for failure 3 .

probabilities

] These mtervals are
“nonparametric”

40 50 60 70 80
Time

90

Notes




Notes

This analysis 1s referred to as nonparametric, meaning that it is not based on a
statistical model (such as the ones listed on the left.) This 1s a good thing, because
statistical models can be wrong. However, there are drawbacks:

a) The nonparametric CDF is discontinuous.

b) Large numbers of failures are required to get margins of error small enough
to be useful.

In practice, it is preferable to use a statistical model that fits the data well. This

provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the
menu produced by the red triangle next to Life Distribution.

Notes




Exponential fit — linear probability scale

Distribution
Loglogistic
Frechet
Normal
SEV
Logistic
LEV

v Exponential

LogGenGamma

GenGamma

Scale

4 Compare Distributions

m

Probability

08

o
o

04

02

95% confidence
interval for F(80)
based on the
Exponential
model

Bad fit — the Exponential failure curve doesn’t match the data

Notes




Exponential fit — Exponential probability scale o7

l4 Compare Distributions
Distribution  Scale

Loglogistic —_
Frechet —
Normal —
SEV —
Logistic —_
LEV =13 0.97
¥| Exponential ) —_
LogGenGamma —_
GenGamma —
0.94
>
_“§ 0.91
2
o
o 95% confidence
08 interval for F(80)
based on the
0.65 )
— Exponential
.y model
0.35 s
02 i
0.001 = —
40 50 60 70 80 90

Time

* The Scale button allows the failure curve to plot as a straight line

* This used to be the only way to plot failure curves

Notes




Weibull fit — linear probability scale

4 Compare Distributions

Distribution  Scale
¥| Nonparametric ©

Lognormal —
7| Weibull - -
Loglogistic —
Frechet —
Normal — 08
SEV — -
Logistic _
LEV —
' 06
=
3
el
Fel
©
a e
04
- /,,-
02 e
/’/‘
~
5
0 =Y
40 50 60 70
Time
A better fit

80

90

95% confidence
mterval for F(80)
based on the
Weibull model

Notes




Weibull fit — Weibull probability scale 89

4 Compare Distributions

Distribution  Scale
¥| Nonparametric

Lognormal -
7] Weibull o — ; P
Loglogistic p — e S 0
Frechet s [ o2 A 95% confidence
Normal —_— : B mterval for F(80)
= = 06 s based on the
Logistic -_ >
LEV S oA Sl Weibull model
2 026 s =
3 5o
2 018 -
s 7
(- /
01 A
0.06-|
.//
0.035
0.024
0.016
« D = ® 100
Time

* The Scale button allows the failure curve to plot as a straight line

* This used to be the only way to plot failure curves

Notes




Finding and using the best fitting distribution

» JMP plots the best
fitting model on the
corresponding
probability scale

* In this case,
Lognormal gives

the best fit

* See next slide

4 Compare Distributions

Distribution
¥| Nonparametnic
¥| Lognormal

Weibull

Loglogistic

Frechet

Normal

SEV

Logistic

LEV

 Statistics

Scale

]

| |

Probability

Click the Life Distribution red triangle — Fit All Nonnegative”

0.65

0.08

0.01

100

“You can't have a negative time to failure!

Notes




Best fitting distribution (cont'd)

4 Statistics

4 Model Comparisons
Distribution
Lognormal
Weibull
Loglogistic
Frechet
Generalized Gamma
Exponential

AlCc
1126
1128
1133
1138
1157
1334

T

-2Loglikelihood

107.57926
107.81732
108.33193
108.75681
107.51791
131.06658

BIC

112.99536
113.23342
113.74804
114.17291
115.64206
133.77463

* As before, models are ranked by AIC (smaller is better)

* As before, round the AIC values to the nearest tenth

* In this case, Lognormal gives the best fit

Notes




The distribution profiler o2 ]

~ Distribution Profiler

* F{(t) 1s the probability that an

item from this population will -

- ~ | <— Most
\ 08
fail before time t - iy
4 EO0adomL 05
. _ Eaae
* The middle curve is the most £ RO

2065542 04
likely value of F(t) F) s

02
* For example, the most likely 1 il
value of F(68) 1s 0.45 (45%) TN - TR TR
(shown in red on the left side Ti;’;e
of the profiler)
I—

* The reliability function R(?) is defined as 1 — F{(7)

* R(t) 1s the probability that an item from this population will not fail until after
time ¢

* For example, R(68)=0.55 (55%)

Notes




Distribution profiler (cont'd)

* The upper and lower curves
give 95% confidence intervals

= Distribution Profiler

1

08

L5 case
§ <— Best
- case

_— 4<— Worst

for F{(1) B 0449951 08
9 [0.25735 y
2065542 04 :
* The upper curve gives the ol 2 ;
worst case value of F(1)" 2
o |
* For example, the worst case & 8 R 8 8
value of F(68) i1s 0.655 =
(65.5%)
» The lower curve gives the best case value of F(f)""
* For example, the best case value of F(68)=0.257(2.57%)
“For Engineering. ““For Sales.

Notes




Distribution profiler (contd) 9

~ Distribution Profiler

1

S [0.457
€ 0.85634]
* Suppose we are interested in F(80)
* Change the value 68 to 80 (click and
edit) 31 @ E 8 I8
. : T'I'ime
* The most likely value of F(80) is 68.4

* The worst case value of F(¢) is 85.6%

* The best case value of F(80) is 45.7%

Notes




Exercise 5.1

Data sets \ print life. The “time” to failure is Pages.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What is the most likely value of F(10,000)?

¢) With 95% confidence, what is the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.

Notes




Exercise 5.2

- 96

e o]

Data sets \ probe reliability. The “time” to failure 1s Hifs.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What 1s the most likely value of F(200)?

¢) With 95% confidence, what 1s the worst-case value of F(200)?

d) Save the analysis scnipt, close and save the data table.

Notes




Exercise 5.3

—

Data sets \ field reliability. The time to failure 1s Days in field.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions.

b) What 1s the most likely value of F(365)?

¢) With 95% confidence, what 1s the worst-case value of F(365)?

d) Save the analysis scnipt, close and save the data table.

Notes




6 Categorical MSA Without Standards o0

It is preferable to base nominal MSA on a set of items whose
true status is known (standards)

« With standards, we can determine the probabilities of passing
bad items and failing good ones

* Creating standards can be difficult and time consuming

* Lacking standards, “% agreement within and between
appraisers’ can serve as a proxy for “% agreement with
standard”

Notes




Example 1

~msa pass-fail no stds

Notes C:\Documents and Se¢j

Data sets \ pass-fail no stds

~ Columns (5/0)
4 Session

. Part

ik Insp A

ik Insp B

th Insp C

~ Rows
|All rows

150

o~ s lwino]—

L L AL LS R I I LN ] Py ) S Py g g i) vy puiny pUy
NN E WN - O0OoO~NDN B WN —-O W

Session | Pﬂ | Insp A,,. Insp B | lnsp(; (L i
. P | i ' * 50 parts

» Appraisers A. B, C

* 3 inspections per part per
appraiser

T * Part is actually nominal, since
| part numbers are only
identifiers without a numerical
relationship. Change by:

*  Right click on 4next to
Part and Select Nominal, or

'

* Right click on field name
“Part” > Column Info >
Data Type = Character

*  Please be aware that IMP
1s occasionally inconsistent

| K in its terminology

1

MIRIRIEIE IR IR IR IR IR IR R IR IR IR RS R R R R IR IR IR IR

D AN = DN = WA = DN - W e WIN =W - WIN - N -
DWW O WMN~N YOO OOMSE & S WWWMNNN - - -
T M ™M MV OVTOVOVOOMODVTIOMMMMMMTM™M MO VDOV DO
tmmmo vl o MO MMM AMMAMMTMMT DO DO

—

Notes




Agreement within & between appraisers

ECSSUUNGEUS nsp A | Insp B | Insp C ‘

1 1|P P P
o * 100% agreement
3 1|P P P
4 1 2|P IP P
g ol alp e
6 3 2P P P
() | ) S
B[ 2l sfF IF IF
of s slF _IF_If
10 1 4F F L3
" 2] 4'F F |F
12 3 4\F F \F
13 1 5F F \F
14 2 5F F |F s . ’
T | | - * 36 opportunities for pairwise agreement
18 1 8[P P P
17 2 8lp P F . ;
I 16 pairwise agreements
18 1 7|P P |P 4
20 Y I ] (I I » Agreement = 16/36 = 0.444
21 3 p T Ip
22 11 8P [ [P
23 2l 8P P IP
24 3 spP [P P
25 | e JF IF
26 2| eoF |F IF
[ al gF  IF |
28 1] wlp PP
29 2 10 /P P P for S
o 3 we p P * 36 opportunities for pairwise agreement
3 1 1P P |P
e i ) « 8 pairwise disagreements
1 12|F F F
1 2 uf k| «Agreement = 28/36=0.778
3 12|F F F

Notes




Analyzing a categorical MSA without standards

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns Action
ASession OK
Pat |
‘[nsp A Cancel
thinsp B

‘ 3
| X,Grouping Recal

Help

Freq

By

Enter Raters as separate columns

Notes




I g |
Agreement report 103
| —
Gauge Attribute Chart
100 & o o = o T a9  §—o— g —o—aq paae 9§ s—a—a—a——a-a jo—a——a—a—a
T :a
S 1.2/ 3/4 5 6/7 891011121314 15/16 17 18 19/20/21 22 23|24 2526/ 2728 29|30 31|32/33 34 35/36 37 38/39 40 41 42|43 44 4546 47 4849 50
art

* Plot of the agreement percentages for
the items in the study

* It is helpful to rescale the vertical axis

* See next slide

Notes




Agreement report (cont'd) 104 ﬁ

Gauge Attribute Chart

% Agreement

1/2/3 4 5/6/7|8|9 10111/12/13 14 15/16/17/18/19)20(21,22/23/24 25/26 27 28|29 30/31|32 33 34/35/36/37/38 39 40 41/42/43/44/45 46/47 48 49,50

Part

* The horizontal dotted line marks the “"agreement grand mean”

* In this example, the agreement grand mean is a little over 90 (read off graph)
* Nowhere in the report is this number printed — bad JMP!

* If the agreement grand mean is too low, follow-up should focus on the items with
the lowest % agreement

* There are no recognized standards for the agreement grand mean. A lower bound
of 95% is fairly common. 99% is often used in applications involving safety.

Notes




Agreement report (cont'd)

96
94+
92
904
884
86
844
824

% Agreement

* These are the agreement percentages
for each appraiser

A

80

Insp A l Insp B ]ﬁspC

Rater

/ * The appraiser with the lowest
percentage represents the greatest
opportunity for improvement

* Sometimes the smallest % agreement
among the appraisers is used as the
metric

——Agreement between & withyh raters
Agreement Report

Rater
InspA
Insp B
InspC

Number Number
Inspected Matched

°
50 39 N% 64.758 * This should not be used as a metric

95% 95%
% Agreement ¥Lower CI Upper CI
91.4286) 89.5082 93.0248
91.9048| 90.0502 93.4388
89.8095) 87.6057 91.6588

0
t LowerCl

* Percentage of items for which
agreement was 100%

Notes




i i
Notes E

Save the script, close and save the data table.

Agreement Comparisons:
Each rater compared to all others, using Kappa statistics

K = 0.9 — Good measurement system
K < 0.7 - Bad measurement system
0.7 < K £ 0.9 - Marginal measurement system

Agreement across Categories:

Agreement 1n classification corrected for the amount of agreement which would be
expected by chance. Kappa assesses the agreement between a fixed number of raters
when classifying items.

When K= 1, perfect agreement exists.

When K = 0, agreement is the same as would be expected by chance.

When K< 0, agreement is weaker than expected by chance; this rarely occurs and
usually means that the appraisers have different definitions of the assigned
categories.

Notes




Example 2

Data sets \ application rating no stds

~ application rating no stds
Notes C\Documents and S¢

Application | Session | Appraiser iRatmg |

| /;/15 employment applicatior?\

1 1 1/Simpson | 5
2 1] 1 Montgomery | 5
=3 11 1 |Holmes | 5 .
4 1 1|Duncan 4 | 5 appraisers
5 1 1 Hayes 8|
B 2 1/Simpson | 2| ) . t- l t-
7 2| 1 | Montgomery | 2| mspections per application
8] 2 V|Homes | 2| er appraiser
9 2 1/Duncan 1 . o
= 1 2| 1jHayes | 2| . : c .
1 3| i'smpson | 4 | * Five point scale, higher 1s
= Columns (4/0) 12 3 1{Montgomery | 3] better
. Application 13 3 1 Holmes 3|
4 Session 4 3l 1 Duncan 3|
k. Appraiser 15 3 L Haves ———+ Change Rating to nominal
i Rating € 16 4 1/Simpson | 1]
17 4] 1/ Montgomery | 1 .
18 4] 1 Holmes 1| < For categorical MSA, we
o 4,1 Duncan "\ must unstack this data table
20 4 1 Hayes 1]
21 5 1/Simpson | 3] X
22 5/  1|Montgomery 3|
23 5 1 Holmes 3|
4] 5] 1/Duncan 2|
25 5! 1 Hayes 3]
S Rows 2!73 B 1|Simpson | 4
All rows 1504 z Bl 1 Mdnigomeny | 3

Notes




Unstacking a data table

Split - JMP

h Unstacks multiple rows for each 'Split Column' into multiple columns as

Tables — Split

identified by a 'Split By' column

Select Columns
~ AApplication
Asession

whAppraiser
ARating

Remaining columns
OKeep Al

®Drop Al

[Jselect

[CIkeep dialog open

Group ‘ Application
Session

QOutput table name

Action

(o)

Remove

Notes




Example 2 in required format

109

+ Untitled 12
= Source

= Columns (7/0)
il Application

4 Session

. Duncan

i Hayes

ik Holmes

il. Montgomery
. Simpson

» Rows
JAll rows

30

4

-

D~y bW -

NIRIRNININ IRNIN IR R = et | et |t |t | | | o | e |
W~ NN &KW =00~ L W - O

Application  Session |Duncan  Hayes Holmes Montgomery | Simpson |
1 1

I R e L R N el Bl el el el Bl et el el Bl B Bl el B

4

N = W =W bh b —=W=54L5800MN—= W= WLESLSEN—=W-—

'

5

‘mwumuhmhw—wumh;umwwmw‘mmbw—wu

]

Mw =N wo b w— b w—= bW b w—=wmn

5

W= s womodh W= snngbdnthw—=58R Wt & w-=wn

i W = b Wwoh o Wl—= 60 B s — BN Wwoh s Ww-—= 5

Notes




Example 2 (cont'd)

o

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns

th Application
ASession
thDuncan
hHayes
thHolmes

k. Montgomery
h Simpson

Chart Type
Attribute v,

Cast Selected Calugons into Roles

Standard

X Grouping

Freq

H
<

Enter Raters as separate columns

Action

Remove

JalINae

Reminder of how
data needs to be

formatted

Notes




Example 2 (cont'd)

11

Gauge Attribute Chart

100 1
95

90

85

80

75

70

65 " .
60

55

S0

45

40

35

% Agreement

1, 2/3 4/5/6|7|/8/9(10/11/12{13/14/15

Application

I~ ™0
oOwowmo

o
wn

Jreement

&N

% A
W o
o WS

B
w o

40

Duncan
Hayes
Holmes

Rater

Agreement between & within raters

Montgomery

Simpson

* The agreement grand mean is about 71

— way too low

* Follow-up: focus on application 1, 3 and

10

* Greatest opportunity for improvement:
further training of Duncan and Hayes

Agreement Report

Rater

% Agreement Lower CI Upper Ci

[

Duncan
Hayes

49.8039
69.0196

Holmes
Montgomery
Simpson

Number

Inspected Matched % e

15

79.2157
77.2549
74.9020

Number

4

95% 95%
27.2673 72.4205
439053 86.3784
53.9935 92.5247
51.9716 91.4246
495997 90.0500

95%
Lower CI
26. 10.897

95%
Upper Cl
51.950

Notes




Notes

12

Save the analysis script to the data table, close and save the data table as:

application rating no stds unstacked

Notes




Exercise 6.1 | ‘:ﬂ‘

Data sets \ print samples 1 no stds. In this study 3 appraisers mspected 18 print
samples 3 times each.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

¢) Which sample(s) would be most useful in follow-up?

d) Of the 3 appraisers, which has the highest % agreement? What 1s the highest %
agreement?

e) Save the script, close and save the data table as print samples 1 no stds unstacked.

Notes




Exercise 6.2 14 M

P — |

Data sets \ print samples 2 no stds. This 1s the follow-up study after the appraisers
received additional training.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

c) Of the 3 appraisers, which has the lowest % agreement? What 1s the lowest %
agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.

Notes




7 Comparing Populations — Continuous Y Lis)

* Example of comparing populations

* Analysis of variance (ANOVA) for comparing
populations

» Interpreting P-values

* Degrees of freedom for signal and noise

* ANOVA in JMP

Notes




Notes | 116

Y variables are characteristics of parts. products or transactions that determine
customer satisfaction, or lack thereof. They provide the data from which project
metrics can be computed.

Comparison of statistical populations is equivalent to Y = f(X) analysis where the X
variable 1s categorical. The distinct values of the X vaniable define the populations or
sub-populations to be compared.

JMP uses the term continuous for quantitative variables. Except in the DOE section.
JMP uses the term nominal for categorical variables.

Notes




Example of comparing populations

Data sets \ Anova 2 groups
Group | Data  Avg.| SD
A 2.8

26 * We have two groups of data
28 2.75 | 0.128

2.7 * Could be a before/afier comparison
3.1

29
3.3
2.8
3.2
3.0

* Could be a stratification analysis

3.05 | 0.187

WD D WL O[> > >

* The sample means for the two groups are different

* Is this enough to conclude that the population means are different?

Notes

=]




Example (cont'd)

Data

A A A A B B B B B B
Group

* Plotting the data 1s helpful, but it doesn’t give a definitive answer

* How far apart do the sample means have to be before we can say
the population means are different?

*» How do we take into account the scatter around the means?

Notes




ANOVA for comparing populations (1 of 6)

Group

(oo B o B v o B o B o o L o o S -~ - <

LSSV?2 student files \ ANOVA two groups

Data

28
26
29
2.7
3.1
29
3.3
28
3.2
3.0

Difference

-0.13
-0.33
-0.03
-0.23
0.17
-0.03
0.37
-0.13
0.27
0.07

J & M
Group Error
-0.18 0.05
-0.18 -0.15
-0.18 0.15
-0.18 -0.05
0.12 0.05
0.12 -0.15
0.12 0.25
0.12 -0.25
0.12 0.15
0.12 -0.05

Notes




ANOVA (1 of 6, cont'd) 120

This worksheet shows all the calculations used to determine, based on the data,
whether or not the population means are different.

The first step is to calculate the Difference column by subtracting the grand mean
from the Data column. The Difference 1s then decomposed into Group (the “signal™)
plus Error (the “noise™).

The Group column captures the portion of total variation caused by the difference
between the sample means.

The Error column captures the rest of the variation, variously called the residual,
unexplained, or noise variation.

Notes




ANOVA (2 of 6) E

LSSV2 student files \ ANOVA two groups
A B |C| D E F G H I J K L M
Grand
Group Data mean Difference Group Error
A 28 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 2.7 293 -0.23 -0.18 -0.05
B 31 - | 293 = 0.17 = | 012 | + | 005
B 29 293 -0.03 0.12 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -0.25
B 32 293 027 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 = 1 - 9 = 1 + 8

Notes




ANOVA (2 of 6, cont'd) Ei

The Data column consists of 10 mathematically independent quantities. We describe
this by saying it has 10 degrees of fieedom (DF).

The Grand mean column consists of 10 values, but they are all identical. This column
has 1 DF.

The Difference column contains 10 values, but they are mathematically constrained
to sum to 0. This column contains only 9 independent quantities, so 1t has 9 DF.

The Group column inherits the zero-sum constraint from the Difference column (it
must sum to zero), and it consists of only 2 distinct values. This column contains only
one independent quantity, so it has 1 DF.

The Error column has 8 DF, because DFs have to add up.

The DFs for Group and Error play a role in determining whether or not the
population means are different.

Notes




ANOVA (3 of 6) [B
LSSV?2 student files \ ANOVA two groups
A =8 et WD E CE G H | J K L M|
Grand
Group Data mean Difference Group Error
A 28 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 27 293 -0.23 -0.18 -0.05
B 3.1 - | 293 = 0.17 = | 012 | + | 0.05
B 29 293 -0.03 0.12 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 = 1 = 9 = 1 - 8
Sum of squares (SS) 8629 - 8585 = 0.441 = 0216 =+ 0225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028

Notes




ANOVA (3 of 6, cont'd)

The sum of squares (SS) i1s a measure of the magnitude of each column. It is the sum
of the squares of the values 1n a column.

The sums of squares for the Difference, Group, and Error columns are usually much
smaller than those of the Data and Grand mean columns.

The mean square (MS) is the statistically normalized measure (averaged, in a sense)
of the magnitude of each column. It i1s the SS for a column divided by the DF for that
column.

The mean squares for the Data and Grand mean columns play no role in determining
whether or not the population means are different, so the MS 1s usually calculated
only for the Difference, Group, and Error columns.

Notes




ANOVA (4 of 6) E
LSSV2 student files \ ANOVA two groups
A B C D E F G H | J L M
Grand
Group Data mean Difference Group Error
o~ 28 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 27 293 -0.23 -0.18 -0.05
B 31 - | 293 = 017 = | 0.12 0.05
B 29 293 -0.03 0.12 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 8
Sum of squares (SS) 8629 - 8585 = 0.441 = 0216 0.225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028
F ratio] (Group MS /Error MS) 7.680

Notes




ANOVA (4 of 6, cont'd) 126

The Group MS measures the magnitude of the variation caused by the difference
between the sample means.

The Error MS measures the magnitude of the variation caused by everything except
the difference between the sample means.

The F ratio 1s the Group MS divided by Error MS. It is a signal-to-noise ratio.

The larger the F ratio, the stronger the evidence of a difference between the
population means.

Notes




ANOVA (5 of 6)

127

A B C D ELL F G H | J K L
Grand
Group Data mean Difference Group Error
A 28 293 -0.13 -0.18 0.05
i 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 27 293 -0.23 -0.18 -0.05
B 3.1 - | 293 = 0.17 = | 012 | + | 0.05
B 29 293 -0.03 0.12 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -0.25
B 32 293 0.27 0.12 0.15
B 3.0 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 = 1 = 9 = 1 - 8
Sum of squares (SS) 8629 - 8585 = 0.441 = 0216 <+ 0225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028
F ratio| (Group MS/Error MS) 7.680
P value| (Probability of an F ratio this large by chance alone) 0.0242

Notes




ANOVA (5 of 6, cont'd)

~ 128

The P-value 1s a probability calculation based on the F ratio, the DF for the Group
column, and the DF for the Error column.

Notes




Interpreting P-values

———]

Evidence that populations are different Confidence level
or variables are correlated (CL)
1.00
None None
0.15
Some 85% < CL < 95%
o D05
=
> Strong 95% < CL<99%
A« 0.01
Very strong CL>99%
0.0001

Notes




P-values (cont'd)

As shown above, the P-value has fixed reference values for interpretation.

The P value 1s inversely related to the F ratio:

» The smaller the P-value, the stronger the evidence of a difference
between the population means.

If there are 3 or more groups, the interpretation 1s:

» The smaller the P-value, the stronger the evidence of one or more
differences among the population means.

Notes




ANOVA (6 of 6)

A B C D E{ F G H | J K L
Grand
Group Data mean Difference Group Error
A 28 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 2.7 293 -0.23 -0.18 -0.05
B 31 - | 293 = 0.17 = |[012 | + | 005
B 29 293 -0.03 0.12 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -0.25
B 3.2 293 0.27 0.12 0.15
B 30 293 0.07 0.12 -0.05
Degrees of freedom (DF) 10 = 1 = 9 = 1 - 8
Sum of squares (SS) 8629 - 8585 = 0.441 = 0216 + 0225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028
F ratio| (Group MS/Error MS) 7.680
P value| (Probability of an F ratio this large by chance alone) 0.0242
Root mean square (RMS)| (Square root of MS) 0.221 0.168

Notes




ANOVA (6 of 6, contd) 2

The Root Mean Square (RMS) for a column 1s the square root of the MS for that
column.

The RMS for the Difference column (0.221) 1s equal to the usual standard deviation
of the data (STDEV function in Excel).

The RMS for the Error column (0.168) 1s the standard deviation of the noise
vanation (error, residual, unexplained, etc.).

JMP uses the term Root Mean Square Error (RMSE) for the RMS of the Error

*
column.

“Given that Statistics is a body of knowledge dedicated to quantifying and reducing
variation, the variation in statistical terminology is appalling.

Notes




Degrees of freedom for comparing populations

\

number of groups being compared

(N

G

total sample size

G -1 = DF for the group column

Q—G

The Error DF is more important than the Group DF

1

DF for the error column //

[t determines the accuracy of the predicted values

L]

Larger is better, 10 1s OK, bare minimum is 5

When DF is mentioned without a qualifier, it always means Error DF

Notes




Exercise 7.1

LSSV2 student files \ ANOVA three groups. Enter the appropriate numbers and
formulas into the white cells to produce an ANOVA for the data shown here.

B A Bl ElwD Emil et Gaadlas Hisslagl J K L LML _N
1 Grand

y Group | Data mean Variance Group Error
; A 27

4 A 2.7

5 A 28

6 A 29

7 B 3.1

8 B 3 | = = = 3

9 B 33

10 B 33

11 C 26

12 C 27

13 C 27

14 Cc 28

15  Degrees of freedom (DF) - = = -

16 Sum of squares (SS) - = = -

17 Mean square (MS) (SS/DF)

18 F ratio (Group MS / Error MS)

19 P value (Probability of getting an F ratio this large by chance alone)

20 Root mean square (RMS) (Square root of MS)

Notes




ANOVA in JMP

File - New — Data Table — Enter (or copy-paste) data as shown

[3 Untitled 6- JMP

File Edit Tables Rows ols DOE ae

Graph Tools View Window Help
SRR | LHae e Be  Pe Dl =f B ¥, B B un 8 G
~ Untitied 6 P < > <
v Group Data
1A 27
2 A 27
wColumns (2/0) A &8
4 A 29
. Group
5B 31
4 Data 7
68 32 From Exercise 7.1
78 33
8 B 33
9 C 26
~/Rows 10 C 27
‘S*"'wgsd § 11.¢C 27
electe
Excluded 0 s .
Hidden 0
Labelled 0

Notes




ANOVA in JMP (cont'd)

Analyze — Fit Y by X — Set up as shown — OK

Distribution of Y for each X. Modeling types determine analysis.

Select Columns Cast Selected Columns into Roles
= i 'Y, Response 4Data
MData optiona

i Group

~r
Viia

ﬁ 000 l Block ||opriona
Bivariate | Oneway | Weight ]l_J
ﬂ - | Freq HJ numeric
Logistic |Contingency | By ‘c:;.'c."a

4 h 2

naway
4

il
i

Notes




Explanation of “mean diamonds”

Oneway Analysis of Data By Group

34
3.3 P
372_‘ - . —-
314 it
8 3 Flying saucers!
o - | __— Upper cockpit
281 L > -;L—"’:____._-—- Upper body
A o~ <
2.6 ~%__[[— Lower body
25 A . = . 2 Lower cockpit
Group

Population means are different A—N
(with 95% confidence) § Vv

P

¥

Saucers can fly horizontally

past each other with no contact

between their bodies

™

Notes




Mean diamonds (cont'd)

2]

Oneway Analysis of Data By Group

34
3.3
3.2
3.1

3-4
2.9
281=
274 i
2.6

Data

JC

25 T

Group

Approx. formula for “fly by” interval: ~ Sample mean + \/E(RMSE/\/E)

Approx. formula for 95% confidence interval:  Sample mean + 2(RMSE/\/§)

N = sample size for each group

“Fly by" interval
for comparing
population means

95% confidence
interval for a single
population mean

Notes




Analysis details

Oneway Anova

Summary of Fit + Standard deviation of the
Rsquare 0.895833 variation about the fitted
AdjRsquare 0.872685 line (error, residual, etc.)
RootMean SquareError  (0.091287 |>{RMSE}—>{ . smaller is better
Mean of Response 29 J : :
Observations (or Sum Wots) 12 Has units of the Y variable
Analysis of Variance
Sum of

Source DF Squares Mean Square FRatio Prob>F
2 064500000 0322500 387000 (<.0007)
Error 9 0.07500000 0.008333 L
C. Total 11 0.72000000 E\,;,ue

Y A4

(Regression] * Indicates whether any of

the model terms in the
regression are significant

Notes




Analysis details (cont'd)

O

neway Anova
Summary of Fit
Rsquare 0.895833
AdjRsquare 0.872685 Adjusted R?|
RootMean Square Error 0.091287
Mean of Response 29
Observations (or Sum Wats) 12
Analysis of Variance

Sum of
Source DF Squares Mean Square F(Ratio Prob>F
Group 2 0.64500000 0.322500 38.7000 <.0001*
Error 9 0.07500000 0.008333
C. Total 11 0.72000000

Y

* Proportion of the total variation in Y that is
caused by (“explained by") variation in X

* Larger is better

+ Unitless

Notes




How adjusted R? is calculated

Distributions

Data
Summary Statistics
Mean 29 e o
Std Dev (0.2558400 >| STDEV ]

N 12
v

] | I | I 1 I . .
2526272829 3 31323334 Total variation
in the data

RMSE ]2

( 0.091287
STDEV

] = 0.127315
0.2558409

Proportion of Y variation NOT caused by X = [

RMSE
STDEV

Proportion of Y variation CAUSED by X =1 - [ ] = 0.872685 = Adjusted R’

o

Notes




Exercise 7.2

Data sets \ number and size of defects. Max size 1s the area in square centimeters of
the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the
P value and interpret the result. (Ignore the 7 7est section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

¢) Give the value and the units of the RMSE 1n this example.

d) The RMSE i1s meaningful only if each group has roughly the same amount of
variation. Is this true in this case?

e) Save your analysis script to the data table, close and save the data table.

Notes




Exercise 7.3 143

Data sets \ quotation process. Supplier business units (BUs) receive requests for
quote (RFQs) from customers. Account managers develop and submit the quotes.

TAT 1s the turnaround around time in days. The shorter the TAT, the happier the
customer.

a) Is the modeling type for BU correct? If not, change 1t to what it should be.

b) Test for differences among the BUs. Give the P value and interpret the result.

c) Use the “flying saucers™ to determine which BUSs represent best practice.

d) What follow-up action should be taken?

e) Save your analysis script to the data table, close and save the data table.

Notes




Exercise 7.4 '»‘144!

Data sets \ alignment process. If the modeling type for 4/igner 1s incorrect, change it
to what 1t should be.

a) Test for differences among the three aligners with respect to R dev. Give the P-
value and interpret the results.

b) Use the “flying saucers™ to determme which aligner represents best practice.
(Smaller R dev 1s better.)

c) What follow-up action should be taken?

d) Save your analysis script to the data table, close and save the data table.

Notes




Exercise 7.5

Data sets \ casting dimensions. We want to reduce variation n the length of

cylindrical metal castings. The specification for Length is 600 = 1.5. The wax
patterns for these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Length. Give
the P-value and interpret the result.

b) Use the “flying saucers” to determine which machine represents best practice? (It
1s helpful to draw a reference line at the nominal value. Right click on one of the
numbers on the vertical axis, select 4xis Settings, use the Reference Lines tool. )

c) What follow-up action should be taken?

d) Save your analysis script to the data table, but don’t close the data table.

Notes
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Exercise 7.5 (cont'd) 146

We also want to reduce variation in the diameter of the castings. The specification for
Diam 1s 50 = 0.75.

d) Test for differences between the molding machines with respect to Diam. Give
the P-value and interpret the result.

e) Use the “flying saucers” to determine which machine represents best practice.
(Draw a reference line at the nominal value.)

f) What follow-up action should be taken?

g) For each of the vanables Length and Diam, a certain proportion of the total
variation 1s caused by the difference between the machines. For which variable 1s
this proportion highest?

h) Save your analysis script to the data table, close and save the data table.

Notes




8 Comparing Populations — Pass/fail Y | a7

Raw data  One part or transaction per row

Tabulated | Multiple parts or transactions
data | per row

Notes




Raw data example

We want to compare the account managers in terms of % late

Data sets \ quotation process

Analyze — Fit Y by X — set up as shown — OK

TAT

TAT<=3 PO
2 Pass Yes

(= )

w quotation process Py \/ Finance
Notes C:\Users\Russell Bef| i+ Quote Num AcctMgr BU Initial RFQ  Month RFQCycles review
1 6250012 19 6 06/02/2003 2003.06 1 Yes
3 7250022 - _—
4 5250039 Distribution of Y for each X. Modeling types determine analysis.
5 5250040/ | Select Columns Cast Selected Columns into Roles
6 7250011 | ~dQuote Num |Y, Response| | th TAT<=3
7 7250025 hAcctMgr S e :
8 6 ’ hBuU
Ve 1 50015 Ainitial RFQ
= Columns (10/0) Nominall )sousf|  vionn | X, Factor ||thAccthgr
A Quote Num 250033 :RFQ Cycles —— bona
W AcctMgr 12 7250024 Finance review
BU 13 as003s| (ATAT
4 Initial RFQ hTAT<=3
s 14| 5250045 &.ro | Block |
& RFQ Cycles 15 8250009 . [ Weight J
sk Finance review 16 8250010Contingency - ——
ATAT 17| 8250011l | .4 040 | Freq |
i TAT<=3 18 8250012 lé £ . =
& PO 19 3250024|f| |Bivariate | Oneway |
20 5250045tk q -
21 7250026 m
22 8250013 ‘ Logistic |Contingency|
23| 32500371l 4 @ ha -

Action
Lok |
\ Cancel |

| Remove |
| Recall |
| Help |

Notes




Pass

TAT<=3

“Mosaic plot” for pass/fail data

1.00
: 0.50
0.25
000 !- Lo i &

“ - ~ - o 2 = = - - .

AN

g = 5

AcctMgr = ;
Horizontal

- -

! Tests | dimension is
proportional
N DF 'LogLike quuare (U) to 5Qmp|e
size

837 21  32.411285 0.0687
Test ChiSquare Prob>ChiSq
Likelihood Ratio 64.823 <.0001*
Pearson 62.018 <.0001*

* Very strong evidence of differences among account managers

* Who represents best practice?

Notes




“Control chart” for pass/fail data ﬁ

* Red triangle (Contingency Analysis) — Analysis of Means for Proportions

Analysis of Means for Proportions

Upper
0.7+ = Detection
= /" Limit
b ‘ = /
0.5 : i e ———
S il == l Vertical
04 ~—{UDL g 5= il
s 1 'I ] dimension is
S 031 1 . inversely
o v v ’ . = 5 5 i
o 024] ¢ e . .= 1 | Avg=025| proportional
¢ ] to sample
~ 01 = =
= | LOL size
0.04 \ ' ol
-01 T — T ] i i i,
1 V" 3 li] 5'6'7'8'9'10 11'12'13'14"15'16'17'18" 19'20"' 21" 22 u Lower
Accthor Detection
Limit

* “Flying saucers™ are not available for pass/fail data

* Points outside the shaded region are significantly different from points inside
» AcctMgr 4 represents best practice (lowest failure rate)

* Find out what 4cctMgr 4 1s doing, make it the standard

* Save your analysis script to the data table, but don’t close the data table

Notes




Exercise 8.1 151

a) Analyze TAT<=3 as a function of BU. Give the P-value and interpret the result. Is
there best practice? If so, where 1s 1t?

b) Analyze PO as a function of BU. Give the P-value and interpret the result. Is there
best practice? If so, where is it?

¢) Right click on the PO header 1n the data table. Select Column Properties — Value
Ordering — Reverse — OK. This reverses the Yes and No positions on the PO
axis. Most people focus on the PO hit rate rather than the miss rate.

d) Analyze PO hit rate as a function of 747<=3 . Give the P-value and interpret the
result.

e) Save your scripts, close and save the data table.

Notes




Exercise 8.2 152

Data sets \ ATE data. If necessary, change the modeling types for part number (P/N)
and Tester.

a) Test for a difference between the part numbers (P/N) with respect to Result. Give
the P-value and interpret the results.

b) Test for differences among the testers with respect to Result. Give the P-value and
mterpret the results. If significant differences exist, describe them. If possible,
suggest causes of the differences.

c) Test for differences among the P/N-Tester groupings with respect to Result. Give
the P-value and interpret the results. If significant differences exist, describe them.
If possible, suggest causes of the differences.

d) Save your scripts, close and save the data table.

Notes




Tabulated passi/fail data

Il
|

="

S
o,
w

|| ——

Pass/fail data often comes in tabulated form

Each row may represent a
v' Production lot
v" Work order

v" Time period

v Machine

v Work center

v' Part number . . .

This format is perfect for plotting % defective

However, it is the wrong format for comparing
populations in JMP

Notes




Data sets \ out-of-box failures m

-
F3] out-of-box failures - IMP

P Io'rfinq °/o fCl” File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
] out-of-box fail... DJ 4 -
1. Create a new columncalled ||p source > Proces Month Total  Fail
i 5 1A 01/2003 3920 109 278
% Fail 2/A 02/2003 2667 70 262
3A 03/2003 2511 61 243
2. Define it by the formula 4 A 04/2003 2556 79 3.09
5 A 05/2003 1730 49 28
6 A 06/2003 219 71 S 23
Fail = Columns (5/1) 7 /A 07/2003 2190 68 311
«100 B Points 8 A 08/2003 2342 56 2.39
Total 4 Month 9A 09/2003 3261 98 301
A Total 10 A 10/2003 2971 97 326
4 fail 118 11/2003 2803 45 161
o RA ek 407 128 12/2003 4644 76 1.64
3. To edit decimal places: Right Tif S SR
click column — Column 148 02/2004 4160 s8 139
Info — Format to Fixed 1; Z 83"ﬁ ;zzi ij 2-32
. 1 4/ .
Decimal and Dec =2 ot Ly s =1
18 B 06/2004 2799 27 09
4. Use Graph — Legacy — 19 8 07/2004 1800 36 200
Overlay Plot to create the ~ Rows ek e D
: y 21/C 09/2004 4111 40 097
plot on the next slide ‘S‘e"l:::; 23 2 c 10/2008 3372 30 089
Excluded 0 23 C 1172004 4096 48 117
Hidden 0 24 C 12/2004 5245 36 069
Labelled 0

Notes
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Plotting % fail (cont'd)

Out-of-box failure rate by month

-S00Z/40
~¥00Z/z |
= ¥00Z/L 1
- ¥002/01
- ¥00Z/60
- v00Z/80
~¥00Z/L0
- ¥00Z/90
~¥002/50
- ¥00Zivo
- ¥o0zZ/c0
~¥00Z/20
~¥00Z/10
~E00Z/Z
E00Z/L L
-E00Z/0}
~E00Z/60
£00Z/e0
~E£002/20
E002Z/90
-E002Z/50
~E£002/¥0

~E00Z/ED
-£002/20
~E00Z/10

4.0

3.5

paled %

200Z/Z 1

o
o

Month

Notes




Reformatting for comparing populations

1. Create a new
column called Pass

defined by the
formula

Total - Fail

2. Go to Tables —
Stack

3. Use Fail and Pass
as the Stack

Columns

4. See next slide

r
5] out-of-box failures - JIMP

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
~ | out-of-box fail... P} 4 v
B =Soeiice = Process Month Total  Fail | % Fail
1A 01/2003 3920 109 278 3811
2|A 02/2003 2667 70 262 2597
3/A 03/2003 2511 61 243 2450
4 A 04/2003 2556 79 300 2477
5/A 05/2003 1730 49 283 1681
6/A 06/2003 2196 71| 33| 215
w Columns (6/1) 7 A 07/2003 2190 68 .11 2122
ik Process 8 A 08/2003 2342 56 239 2286
4 Month 9/A 09/2003 3261 98 301 3163
:::i"“' 10 A 10/2003 2071 97 326 2874
4% Fail & 118 11/2003 2803 45 161 2758
A% 12 B 12/2003 4644 76 164 4568
13 B 01/2004 4547 75 165 4472
14 8 02/2004 4160 5§ 139 4102
158 03/2004 3393 20 08 3364
16 B 04/2004 2283 17 074 2266
178 05/2004 2230 26 117 2204
188 06/2004 2799 27 096 2772
19 B 07/2004 1800 36 200 1764
;l ::’:: = 20 B 08/2004 2983 29 097 2954
oL o 21/C 09/2004 4111 40 097 4071
Excluded 0 2/¢C 10/2004 3372 30 089 3342
Hidden 0 23.C 11/2004 4096 48 117 4048
|Labelled 0 24.C 12/2004 5245 36 069 5209

Notes




Reformatting (cont'd)

157

6. Change the name of
the Data column to
Freq and the Label
column to Result

7. There are now two
rows for each month.
The Total and % Fail
columns are no longer
relevant, and may be
deleted.

8. Save the new data table
as out-of-box failures
stacked

~
E3) out-of-box failures stacked - JMP

DOE Analyze Graph Tgols

View Window Help

Eile Edit Tables Rows Cols
v |out-of-box fa... ] ¢ >
P Source v
1
2
3
4
5
6
w Columns (6/0) 7
ok Process 8
A Month 9
A Total
A % Fail 10
s Result 11
A Freq 12
13
14
15
16
17
18
19
20
21
22
a—
Selected 0 2
Excluded 0 25
Hidden 0 26

Process Month Total 9%Fail Result

W WwomWwwwEPPER>PE>P>>P5PE>PE>PRPE>PRDPRDPD>EPRPRPR>D B D

01/2003
01/2003
02/2003
02/2003
03/2003
03/2003
04/2003
04/2003
05/2003
05/2003
06/2003
06/2003
07/2003
07/2003
08/2003
08/2003
09/2003
09/2003
10/2003
10/2003
11/2003
11/2003
12/2003
12/2003
01/2004
01/2004

Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail
Pass
Fail

Freq

3811
109
2597
70
2450
61
2477
79
1681
49
2125

-
/

2122
68
2286
56
3163
98
2874
97
2758
45
4568
76
4472
75

Notes




Analyzing the data

Analyze — Fit Y by X — set up as shown — OK

—_—

ox FitY by X - Contextual - JMP Q=SS0 |
Distribution of Y for each X. Modeling types determine analysis. |
Select Columns Cast Selected Columns into Roles Action
~ Process Y, Response (s ResulD) Lok |
AMonth optiona
hResult &\S‘—]
PFeqg
ontingency (i Process) | Remove | |
‘ 7 |V . o
L2 ot |
\ S ‘ Help Y
Bivariate | Oneway ‘

la | Blockuss| [optiona
") [ | | Weight || optional numeric

‘Logistic |Contingency
e e ) Freq ‘ia'
V| " S—

Notes




Data analysis (cont'd)

Mosaic Plot
1.0075

0.75
=

>

L
o
Contingency Table

Result

Count Failled Passed

Row %

A 758 25586 26344
® 288 9712
2B 418 31224 31642
=] 132 9868
aic 154 16670 16824

092 9908
1330 73480 74810
Tests
(] DF  .LogLike RSquare (U)

74810 2 14117363 0.0211
Test ChiSquare Prob>ChiSg
Likelihood Ratio 282 347
Pearson 291.850 <gou1*

Very strong evidence that processes

A, B, and C do not all have the same

failure rate

The mosaic plot does not help us
determine where the differences are

Click on the red triangle at the top of

the analysis window

Select Analysis of Means for
Proportions

See next slide

Notes




Data analysis (cont'd)

Analysis of Means for Proportions

0.030
- Bl
2
= 0025'1
g 1
‘é 0.020+ e—t | L
2 Avg=0.01778
< 0015+ l LDL
2 1
@

0.0104

A : B : C
Process

a=0.05

* This plot shows that Processes B and C are significant improvements over Process A
+ It does not tell us whether or not C is a significant improvement over B
* Save your script, but don’t close the data table.

* You may prefer to display the Result as Proportion Passed: Click on Red Triangle by
Analysis of Means for Proportions and select Switch Response Level for Proportion

Notes




Exercise 8.3

a) Exclude the rows for process A.

b) Test for a difference between C and B. Give the P-value and interpret the result.

¢) Close and save the data table. (No need to save the script again.)

Notes




Exercise 8.4

Data sets \ molding process - stratification.

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables — Summary — use PN as the Group variable — use Machine as
the Subgroup variable — OK.

v |10/0 PN

GV0098
GVv0101
GV0119
GV0129
GV0132
GY0251
GY0298
GY0306
GY0325
KU0041

SOy B W N e

—
o W

N Rows
43
31
42
89
64
37
31
53
36
84

N(01)

oo
w

N(02)

o O o o

-0 O O o

N(03)
0

o

39

0O 0O 0O O O O O

N(09)
0
30

N(10)

O 0O O NMNO OO0 O O O

N(11)

O 0O O O O

17

27
34

N(13)

O O O O O

20

26

N(14)
11

o o

88

0O 00 O O O

N(15)
32

0O 0 OO0 O O = O =

c¢) Note that each part number runs on only one or two of the machines. A

comparison of part numbers could be biased by differences among the machines,

and a comparison of machines could be biased by differences among the part

numbers. Because of this, we should use the concatenated variable PN-Machine

as the X variable in the analysis.

Notes
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Exercise 8.4 (contd) '-.sj

d) Reformat the data for comparing populations (follow steps 1 through 7 in the
worked example).

e) Test for significant differences among the PN-Machine groupings with respect to
fraction defective. Give the P-value and interpret the results.

f) Which three PN-Machine groupings would be the best focus for an improvement
project? (Hint: highest fractions defective.)

g) Save your script, save the data table as molding process - stacked, then close it.

Notes




Appendix: Reformatting Data for Pareto Analysis

165 |

« Data on defect types or failure reasons often is available
only in tabulated form

* Each row may represent a production lot, work order, time
period, machine work center, part number,. . ., or some
combination thereof

* Common problem with tabulated data: wrong format for
Pareto analysis

Notes




Big example: molding process - Pareto

[Each row = Date, Machine, P/N, . .. J [Total parts run = Good + Bad J
A B c D E F G H I J
Primary Regrind  Parts Total
1 Date  Machine P/IN Primary material lot# Concentrate Concenlot# type palletized defective
2 | 03-Apr-06 9 LSGVD101 CHEIL VE-1877S DrkGry 121642 NA NA 25 120 7
3 | 03-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 300 17
4  03-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930 NA NA 8 372 18
5  04-Apr-06 2 LSGV0093 CHEIL VE-1877S DrkGry 121642 NA NA 25 288 6
6  04-Apr-06 9 LSGV0101 CHEIL VE-1877S DrkGry 121642 NA NA, 25 600 2
7  04-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 690 33
8 04-Apr-06 13 LSGY0307 CHEIL HF1690H LIGry 133232 NA NA NA 160 8
9  04-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930 NA NA 8 624 0
10 05-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 120 15
11 05-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 650 2
12 05-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 101200 NA NA NA 300 18
13 05-Apr-06 13 LSGY0307 CHEIL VE-1877S LtGry 133232 NA NA NA 160 0
14 05-Apr-06 14 LSGY0308 CHEIL HF1690H LtGry 133232 NA NA NA 240 25
15 05-Apr-06 15 LSGV0098 CHEIL HF1690H DrkGry 122930 NA NA 8 336 17
16 06-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 780 0
17 = 06-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 600 7
18 06-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 101200 NA NA NA 500 49
19 06-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122930 NA NA 8 108 34
20  06-Apr-06 15 LSGV0099 CHEIL HF1690H DrkGry 122930 NA NA 8 276 95
21 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 300 0
22 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 1020 5
23 07-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 360 6
24  07-Apr-06 13 LSGY0252 CHEIL VE-1877S Blk 387487 NA NA NA 200 16
25 07-Apr-06 13 LSGY0252 CHEIL VE-1877S Bk 387487 NA NA NA 700 7
26 07-Apr-06 14 LSGV0130 CHEIL HF1690H DrkGry 122930 NA NA 8 72 0
27 07-Apr-06 14 LSGV0131 CHEIL HF1690H DrkGry 122830 NA NA 8 120 17
28  07-Apr-06 15 LSGV0099 CHEIL HF1690H DrkGry 122830 NA NA 8 180 0

Notes




Big example (cont'd) 167
( Total defective x Cost per pc. J
K L M N (o] P Q R T U \' w X 5.4 Z AA
Cost per Total |[Start- Weld Flow Short Burn Gas Color/ Broken

1 pc. cost up Sink Flash line mark shot Warp marks Silver marks carbon Oil part  Scratches Bubbles
2 $2.89 $20.25 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0
3 $508 $8643 4 0 0 0 0 4 0 0 0 0 0 0 0 0 9
4 $11.10 $19976 0 0 0 0 0 6 0 0 12 0 0 0 0 0 0
5 $2.69 $16.12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 $2.89 $579 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
7 $508 $167.77 0 - 0 0 0 2 0 0 0 0 0 0 0 2 0
8 $3.55 $2844 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 $11.10 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 $4.13 $62.00 6 6 0 0 0 3 0 0 0 0 0 0 0 0 0
11 $508 $10676 0 17 0 0 0 3 0 0 0 0 0 0 0 0 1
12 $4.96 $89.28 g 0 0 0 0 0 0 0 0 Q 0 0 0 1 9
13 $3.55 0.00 0
2 B o Counts for each type of defect 0
15 $11.10 §18866 U T T T T TZ T U e T T U T 0 0
16 $4.13 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 $5.08 $3559 0 2 0 0 0 4 0 0 0 0 0 0 0 1 0
18 §496 324304 3 15 0 0 0 0 0 0 0 0 0 0 0 4 27
19 $1033 $351.07 8 0 0 0 0 14 0 0 12 0 0 0 0 0 0
20 $14.19 $1,347.62 56 30 0 0 0 0 0 0 9 0 0 0 0 0 0
21 $4.13 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 §4.13 $20.67 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 $5.08 $30.50 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2
24 $496 $7936 0 14 0 0 0 0 0 0 0 0 0 0 0 1 1
25 §496 $3472 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
26 $1033 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 $1515 825756 8 0 0 0 0 0 0 0 1 0 0 8 0 0 0
28 $1419 $0.00| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes




Notes ﬁ

One of the things we would want from a data set like this 1s a Pareto breakdown of
defect types by frequency of occurrence. For this, we need to calculate the total
number of defective parts for each defect type. With the format shown above, we
cannot do this by means of a pivot table. As an alternative, we could calculate the
totals for the columns representing the defect types. However, compared to a pivot
table, this method 1s extremely tedious for doing anything else, such as comparing
Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this 1s a Pareto breakdown of defect
types by total cost. It is not impossible to do this with the format shown above, but,
once again, it would be extremely tedious compared to a pivot table.

Notes




Small example

v 70 Cols
~ 3/0 Rows ‘Total defective‘Cost per pc,.Total costAStart-up‘Short shot | Silver ‘Bubbles_;
1 7| 3 21| 3 0| 4 0
2 17] 5 85| 4| 4| 0| 8
3 18] 11} 198; 0 6 12| 0

5 ik T | w40 Cols ~

This is what we have ~ 1200 % Cost per pc | Defect | Freq ‘Total cost |
1 3 Start-up | 3 9|
‘ 2 3 Short shot | 0| 0|
\ - A 3 Silver 4] 12|
B 3 |Bubbles 0 0
5 e ; 5 5/ Start-up | 4| 20|
This is what we need — | Al S[shotshat] 4| 2
7 sjsver | 0] 0
8 5/Bubbles | 8] 45|
——8 11 Start-up | 0 0
10 11 |Short shot | 6| 66
11 11 Siver 12| 132
— How do we get there? = ——s lladies ==t

Open molding process - small (in JMP)

Notes




Stacking a data table

Tables — Stack — Select the defect columns as the Stack Columns

& J Stack values from several columns into several rows in one

column.

Select Columns Action
ATotal defective  Stack Columns | | Start-up OK
ACost per pc Short shot
ATotal cost Remove | Sitver
AStart-up Bubbles
4 Short shot
‘Snver
ABubbles Output table name: | | [ Hep |

[] Muttiple series stack New Column Names

Stack By Row Stacked Data Column| Data

[J Eliminate missing rows Source Label Column | Label
["] Drop non-stacked columns ¥

Copy formula
[v] Suppress formula evaluation

] Keep dialog open

Notes




Editing the columns

[~/ Cols ~
120 Total defective Costper pc. | Totalcost| Label | Data |
1 11 3 21 Start-up | 3 2
2 1| 3| 21 Shotshot| 0] Total defective and Total cost are
3 7 3 21 Silver 4 .
% 71 3l 21|Bubbles | 0| now incorrect row by row
5 17] 5 85/Statup | 4
6 17] 5! 85 | Short shot | 4
7 17| 5 85 Silver | 0
8 17] 5 85/Bubbles | 9|
9 18/ 1" 198 Start-up | 0
10 18] 1) 198 ' Short shot | B
1 18] 1 198 Siver | 12|
= 8 1, 1Rt |0 |'@~I0CoB=T cogt per \ Total ; Defect
1. Right-click on Data [_L > 1200 pc. | cost | type Freq |
q 1 3| 9 Start-up 3]
2. Select Column Info —_—y 2 3| 0|Short shot 0|
3. Rename as Freq — OK 31 737[ __12/Siver | 4]
4 3] 0 |Bubbles 0|
4. Rename Label as Defect type 5 5/ 20 | Start-up 4
| | &hart A
5. Delete Total defective 6 Al QULShort Pk 4
B 7 5| 0lSiver 0|
6. Right-click on Total cost B8] 5/  45|Bubbles 9|
9 11| 0| Start-up 0
7. Select Formula — Cost per pc.*Fre — — L —r
perp 9 10 1] 68|Short shot 8|
8. Save as molding data small 11 11| 132 Silver 12|
stacked.xls 12 " 0 Bubbles 0

Notes




Pareto plot by frequency

Analyze — Quality and Process — Pareto Plot — set up as shown — OK

-
[ Pareto Plot - JMP

e

The Pareto Chart of Cause, optionally grouped by X

Select Columns Cast Selected Columns into Roles
& 4‘Cglumns Y, Cause ] th. Defect type
ost per pc. —
ATotal cost X, Grouping

WhDefect type
: Weight l optiona
[} Threshold of Combined Causes Freq

("1 Per Unit Analysis [ 8y |
(requires sample size)

{ Untitled 4 - Pareto Plot of Defect type - IMP i S jimbn
4 ~ Pareto Plot
Freq: Freq
4 Plots
20

Silver Shortshot  Bubbles Start-up
Defect type
>3 v

Notes




Pareto plot by total cost

B
I Pareto Plot - JMP

(=0 )

The Pareto Chart of Cause, optionally grouped by X
Select Columns

¥ 4 Columns I Y, Cause |

IX, Groupingl

[E] Threshoid of Combined Causes | |
{| Per Unit Analysis |
(requires sample size)

Cast Selected Columns into Role)

#h Defect type

[i.. Untitled 4 - Pareto Plot of Defect type 2 - IMP

=)

4 = Pareto Plot
Weight: Total cost
4 Plots

200

150

100

Count

In this case the two plots
are very similar

50

Silver

Short shot  Bubbles

Defect type

Start-up

Notes




Cost Pareto without calculating the total cost column

=)

=
[ Pareto Plot - IMP

The Pareto Chart of Cause, optionally grouped by X
Cast Selected Columns into Roles

fi_ Untitled 4 - Pareto Plot of Defect type 3 - JMP

=)

Select Columns
¥4 Columns | Y, Cause th Defect type

MCost per pc —_—
ATotal cost X, Grouping| optiona
thDefect type
AFfreq Weight y Cost per pc.

[] Threshold of Combined Causes Freq l Freg

|| Per Unit Analysis (uByaslostionsl |

(requires sample size)

4 '~ Pareto Plot
Weight: Cost per pc.
Freq: Freq

4 Plots

200

Freq

Shortshot  Bubbles
Defect type

Silver

Start-up

Notes




Exercise: Appendix 175

| —

Data sets \ molding process - Pareto.

Use the method described 1n this section to reformat the file for Pareto analysis. Save

the reformatted file as molding process - stacked. Create Pareto plots of defect types
by frequency of occurrence and total cost.

Notes
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1 Introduction to Regression L‘

Regression analysis is used to create an empirical model of the
relationship between process inputs (x’s) and outputs (y’s).

» 1t is the method for analyzing designed experiments.

» It can also be used with historical data to help identify some
factors for an experiment, or to develop an empirical model
with that data.

Topics:
* Terminology
* Purposes of regression analysis
* Data collection for use in regression analysis
* The line of best fit

* Simple Regression

Notes




Terminology

* The term correlation 1s often used any time we speak of relating one variable
to another

o Correlation 1s a measure of the relationship

o An mput/output relationship between the two variables 1s not required
(for example, two variables measured at the same point in a process)

o As aresult, unrelated things can be “correlated.” Remember,
correlation does not prove causation.

* Regression analysis yields a model equation of the input-output relationship,
Y = f(X), which can be useful n prediction

o In the dataset, a series of inputs and their resulting output measures
are aligned

o Regression 1s used to investigate and model the relationship

Notes




Purposes of regression analysis

The result of regression analysis is an empirical
model, created from the data/observations, that can
be used to:

* Understand and describe the relationship between Y
and X’s

* Predict Y from X’s
* Determine best setting for X’s (optimization)

» Reduce variation in Y by controlling X’s

Notes




Data collection for use in regression analysis

Regression analysis is only as good as the data used.

Three basic sources of data are:
« Historical data (data that exists in routine collection systems)

« An observational study (data collected from uncontrolled processes for a
specific purpose)

« A designed experiment (data from structured and controlled tests)

Regression analysis is a very big statistical topic and is commonly the
analysis type for data from all three sources listed above.

Designs of experiments (DOEs) is the best strategy for many problems we
are trying to solve as it is constructed to eliminate many of the problems that
exist with the first two sources. However, historical and observational data
is often easier to get and can still give powerful insights, although care must
be taken with the analysis and conclusions drawn.

Notes




Considerations when using historical data Q

Historical data is often plentiful and easily accessible.

« Itmay be useful in identifying some variables that are critical to our process

However, there are several potential issues in using it:

»  Some relevant data is not available, such as values of critical x’s that are not
recorded as part of the on-going process

« Relability of the data is often questionable, including data being missing or
lost
»  The nature of the data is not helpful in solving the problem, as in situations

when an x variable 1s controlled, so its impact cannot be seen in the
regression analysis

»  Often, data 1s used m ways that were not mntended, such as using available
data as a surrogate for what was really needed

Caution: We will not be able to cover the many aspects of creating and
validating regression models from historical data in this course. If you
choose to do this, proceed with caution! Better yet, get additional help.

Notes




Considerations when using an observational study @

In an observational study, we would observe the process,
with as little interaction or disturbance as possible, in order
to obtain the data.

With adequate planning, an observational study can yield accurate,
complete, reliable data

These studies can lead to ideas on what might be impacting the
process

« However, these studies often provide limited information about
specific relationships of interest, such as the impact of a variable that
is tightly controlled in normal operation

Notes




‘Simple” regression

Simple linear regression refers to the case when there is only
one regressor (variable) x used.

« Insimple regression, the model equation is for a best-fit line

« The form of the model equation created is:
Y = by + byx; + error

where b is the intercept and b, is the slope of the line.

«  This may remind you of your early algebra days, when you learned
the equation for a line between two points:

Y=mx+5b

« Because there is variation (and more than two points to create the
line), there will be scatter around the best-fit line determined by
regression analysis.

Notes




Simple regression (cont'd)

Intercept Slope
2

Y =0.8387+ 0.4891 X + “Error”

Notes




The line of best fit

The best-fitting line is the one that minimizes
the sum of the squared “errors”

0 20 40 60 80 100

Notes




The line of best fit (cont'd)

* “Errors” are the vertical distances between each Y data
value and the fitted line

* The line of best fit is the one that minimizes the sum of the
squared errors

 This is the simplest example of least-squares model fitting

* The fitted line is often referred to as the predicted Y value

Notes




Finding the line of best fit

&

W |0 N I O & (N -

SAh ] A
-

—
~n

L
w

14
15
16
17

LSSV2 student files\ ANOVA linear fit
Worksheet \ Prediction & error 1

A B._lclD E F G H [ J
X data Y data Prediction Error
8 6.16 27.90 2174
22 9.88 27.90 -18.02
35 14.35 27.90 -13.55
40 24.06 27.90 -3.84
57 3034 = | 2790| * 244
73 3217 27.90 427
78 4218 27.90 14.28
87 4323 27.90 1533
98 48.76 27.90 20.86
Sum of squares (SS) 89013 = 70074 + 18939
Degrees of freedom (DF) 9 = 1 + 8
Root mean square error (RMSE) 15.39

AverageY 2790
STDEVofY 15.39

KL M N 0 P

y =|27.9033|+|0.0000|Xx

Notes




[

Finding the line of best fit (cont'd) 12

| |

In this worksheet we ignore the X variable completely, and use the average
value of Y as the prediction. This is just the calculation of the mean and

standard deviation of the Y variable. (The values in cells 114 and E17 are the
same.)

40 60 80 100

The sum of the squared errors (cell [12) can be dramatically reduced by using
the X variable to “explain” more of the variation in the Y variable.

Notes




Finding the line of best fit (cont'd) B

Worksheet \ Prediction & error 2

A B.ICID E F G H I JolkILl M. INL. 0. [P
1
2 X data Y data Prediction Error Y = | 0.8387 l+ I 0.4891 |x
3 8 6.16 475 1.41
4 22 9.88 11.60 -1.72
5 35 14.35 17.96 -3.61
3 40 24 06 20.40 3.66
7 5T, 3034| = | 2872] * 1.62
8 73 32.17 36.54 -4.37
9 78 4218 38.99 3.19
10 87 43.23 43.39 -0.16
11 98 48.76 48.77 -0.01
12 Sum of squares (SS) 89013 = 88380 + 63.3
13 Degrees of freedom (DF) 9 = 2 + 7
14 Root mean square error (RMSE) 3.007
15
:s S_'F\E/)eEf\é;Qciz ?ggg /{ Proporf'ilon of fotal Y"variaﬁqn caused ]
+ Adjusted R square 0,962 by ("explained by") X variation

Notes




)
e d

14

|

Degrees of freedom for regression

" H )

total sample size

G = number of parameters in the equation
= DF for the prediction column
N -G = DF for the error column
& J

* The Error DF 1s more important than the Prediction DF

* It determines the accuracy of the predicted values

* When DF is mentioned without a qualifier, it usually means Error DF

Notes




Steps in Simple Regression

I. Run Analyze > Fit Model in JMP to investigate the
relationship between y and x

o

Check the p-value for the fit to determine whether the
regression is significant. If not, then no need to go further.

(VS

If the regression is significant, determine the strength of the
relationship, using the Adjusted R*

4. Check model adequacy by reviewing the residuals plots
» Residual Normal Quantile Plot
» Residual by Predicted Plot
» Studentized Residuals (in run order)

We’ll go through these steps and additional analysis details,
for simple regression in the following example.

Notes




Simple Regression in JMP

Open: Data sets \ simple regression - generic

w/simple regression - generic
I N K

r['_;l simple regression - g_: 1 | ESNEER

File Edit Tables Rows Cols DOE Analyze Graph Tools

View Window Help

-

= X

X
Ay

= Columns (2/0)

v/ Rows
All rows
Selected
Excluded
Hidden
Labelled

W 00 N OV & W N =

OO0 OO W

evaluations done

(=]

40
57
73
78
87

Y
6.16
9.88

14.35

24.06

3034

3217

4218

43.23

48.76

Notes




Simple Regression in JMP (cont'd)

Analyze — Fit Model — Set up as shown — Run

,
> o e i

4~ Model Specification

Select Columns Pick Role Variables
¥' 2 Columns |T

Ax

Ay

{:geight } tio

I Freq I

Constiyct Model Effects

D
[ Cross |

_ Nest |

[ Macros v |
Degree

Attributes ¥
Transform =

] No Intercept

L 5

Personality: | Standard Least Squares

Emphasis: | Minimal Report

Notes




Analysis details

=)
=3
—

ﬁhe Root Mean Square Errom
(RMSE) 1s the standard
deviation of Y caused by factors

other than X

* It can be thought of as the
standard deviation about the
fitted line (or model)

* Also known as the “error” or
“residual” standard deviation

Qmaller is better /
/

ResponseY

Regression Plot

50

45 e

40 p

35

o L
5. 30

25 .

20

15 .

10 .

5 .
X
Summary of Fit
RSquare 0.966581
RSquare Adj 0.961807
[ Root Mean Square Error 3.006984 }‘v
Mean of Response 27.90333
Observations (or Sum Wgts) G
Analysis of Variance
Sum of

Source DF Squares Mean Square
Model 1 1830.6557 183066
Error 7 63.2937 9.4
C. Total 8 1893.94%4

F Ratio
202.4624

4

(' P-value indicates
whether the regression
1s significant

* This low p-value shows
K that it 1s significant 1

Notes




Analysis details (cont'd)

Summary of Fit ( R2

RSquare 0.966581 > “Coefficient of
RSquare Adj 0.961807 Determination™
Root Mean Square Error 3.006984
Mean of Response 27.90333
Cbservations (or Sum Wgts) 9

Analysis of Variance

Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1830.6557 183066 202.4624
Error 7 63.2937 9.04 Prob>F
C. Total 8 1893.94%4 :

Y

K Proportion of the variation in Y that O
1s “explained by” variation in X.

» Varies from 0 to 1.

» Larger 1s better

* Unitless

Notes




Analysis details (cont'd)

Regression Plot

50 -
45 o
40 ’
35
" .
5> 30
25 .
20
15 .
10 .
S L]
= = = 32 @ 2
X
Summary of Fit
RSquare 0.966581
[ RSquare Adj 0.961807
Root Mean Square Error 3.006984
Mean of Response 27.90333
Observations (or Sum Wagts) 9
Analysis of Variance
Sum of
Source DF Squares MeanSquare F Ratio
Model 1 1830.6557 183066 202.4624
Error 7 63.2937 9.04 Prob>F
C. Total 8 1893.94%4

Adjusted R? also gives A

the proportion of Y variation
explained by the model (a
line 1n simple regression)
Varies from 0 to 1

Larger 1s better

Always use the Adjusted R?
value, not R2

Adjusted R? takes the
number of model terms into
account and penalizes for
including insignificant terms

In this example, the simple

regression model explains
much of the variation in y

Notes




How R? and R y; are calculated iﬂ

Distributions

Y
Summary Statistics
sl p— Standard Deviation (STDEV)
N l—u—}_) of the data set
Minimum 6.16
ﬂ Maximum 4876
Median 3034
5 10 15 20 25 30 35 40 45 50
R2 == SSErrm' §
SSTotal
2
RE. g SSETror/(n =i p) £ s RMSE
ad) SStotat/(m— 1) STDEV

p = number of terms n the model (including the intercept)
n = sample size (number of measurements in the data set)

SS1otar 18 the sum of squares of the data (measurements in the data set)

SSError 1 the sum of squares of the Errors or residuals

We saw the sum of squares calculations earlier, in the ANOVA

Notes




Why use Adjusted R2? 2

There is a potential problem with R*:
« R? always increases when terms are added to a model, even when the
terms are not significant

* This is particularly a problem in multiple regression, as it can lead
to “overfitting,” giving false confidence 1n using the model, especially
for prediction.

» Adjusted R? corrects for this by considering the number of terms in the
model

« Adjusted R? can actually decrease if non-significant terms are added to
a model

Adjusted R? is the recommended statistic for determining the
proportion of variation in Y explained by the model

Notes




P-values for the ANOVA and individual model parameters

El

Red triangle next to Response Y — Regression Reports — Parameter Estimates

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 1 1830.6557 183066 202.46
Error 7 63.2937 9.04| Prob> F
C. Total g 1893.94%4
Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|
Intercept 0.8386661 2.150023 0.39 0.7081
X 0.4891205 0.034375 14.23| -

In regression of Y on a single X,
the Analysis of Variance P-value
1s the same as the P-value for
the slope of the line.

The P-value for the slope of the
line indicates the evidence of a
correlation between Y and X.

Significance of individual
model terms are determined by
testing whether their regression
coefficient 1s equal to 0, using
the t statistic. Hypotheses are:
Ho: bi =0
Hl: bl = 0
This 1s a test of the contribution

of the model term. given the
other terms in the model.

Notes




P-values for individual model parameters

Parameter Estimates

. Term Estimate Std Error t Ratio Prob>|t
Estimates and P-values for Intercept [0.8386661] 2.150023  0.39 [0.7081
the slope and intercept X "|0.4891205 | 0.034375 14.23

Model: Y = 0.84 + 0.50X + error

* In this example, the P-value for the slope of the line indicates very strong
evidence of a correlation between Y and X.

* The P-value for the Intercept indicates that it is not significant.

» Best practice is to leave the Intercept in the model, whether or not the P-
value indicates that it is significant

o Regression equations are developed, and are only valid, over the region of the
regressor variables (x’s) contained in the data set

o Forcing the model to pass through (0, 0) by removing the intercept, can create
problems in the region being modeled

Notes




Using Adjusted R? and p-values

Both the Adjusted R? and the p-values must be considered,
in order to understandwhat has been learnedin the analysis.

When the resulting model has:

High Adjusted R? and significant model term p-values, this is ideal.
Factors driving the response have been identified and the variation 1s largely
explained. A decent model has been created.

Low Adjusted R? and significant model term p-values, more work must be
done. Some significant factors influencing the response have been identified,
but the low Adjusted R? indicates that other important factors exist. These need
to be found. for the model to be useful.

High R?and insignificant model terms, this is usually due to the data
violating the assumptions of the regression analysis. There 1s more information
on this scenario in upcoming slides.

Low Adjusted R? and insignificant model terms, no relationship between X
and Y variables have been found. Usually this means that new ideas about
which factors influence Y must be developed. although it can occasionally be
due to missing higher order terms.

25

Notes
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2 Checking Model Adequacy L |

3

In least squares fit regression (continuous Y), the analysis
methods used to calculate regressor coefficients and their
p-values, depend on certain assumptions being met.

Assumptions:

* Errors (residuals) are normally and independently
distributed with mean zero and constant variance (o ?)

» Observations are adequately described by the model

Whether performing regression from “file cabinet” data or
analyzing the results of a designed experiment,
these assumptions must be validated.

Notes




Checking Model Adequacy (cont'd) 20

S—

To validate that these assumptions have been met,
the residuals are examined:

1. Normal Probability Plot of Residuals
»  Validate that the residuals are normally distributed
» In JMP, this is the Residual Normal Quantile Plot

2. Residuals vs. Predicted (or Fitted) Values
» Validate constant variance and mean 0
* In JMP, this is the Residual by Predicted Plot

3. Residuals vs. Run Order

*  Verify independence of errors
»  There should be no patterns over the timeframe of the data
* In JMP, the best graph to use is Studentized Residuals

The JMP data table must be in run order for Studentized Residuals to
graph the residuals in run order

Notes




Residuals Review

Predicted value ¢

Predicted value

[ Pl.edlcted Y —_ bO e b1X

L]
)

Residual (+)

Notes




Notes E

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor varniables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value 1s the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual is the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contamn information about the magnitude and direction of variability in the

data relative to the fitted model.

* An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

» A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.

|
|

Notes
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Residual Analysis

L

Residual Normal Quantile Plot

4
o
o, B
3
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Normal Quantile

In viewing the Residual Normal Quantile Plot for the simple regression-generic,
we can see whether the residuals are normally distributed.

Notes




Notes

If residuals are normally distributed, the plot will be approximately a straight line.
Emphasis should be on the central values of the plot, rather than the ends

It is common for plots to bend upward at the high end and downward at the low
end.

Small sample sizes, such as from experiments, often appear more non-normal

Use the “Fat Pencil” Rule: If a “fat pencil” placed over the central points would
cover them on the plot, then the residuals are approximately normal (good
enough). Hyperbolic bands displayed in JMP plots give these bounds.

A curve throughout the plot is a strong indication of non-normality. In this case, a
transformation would be needed.

The plot above shows an error (residuals) distribution that 1s approximately
normal, so it is not concerning.

Notes




Residual Analysis (cont'd)

Residual by Predicted Plot

Y Residual

' o
NP W et O W
°

»

o

10 20 30 40 50
Y Predicted

In viewing the Residual by Predicted Plot for the simple regression-generic,
we can see whether the residuals have constant variance and mean 0.

Notes




Notes 34

Here the residuals are plotted against the predicted values. This 1s a good all-around
diagnostic plot.

“Healthy” residuals look like random scatter around 0. There should be no
obvious patterns. The amount of “scatter” or variance (how high and low the plot
goes) should be consistent across the graph. This verifies the assumption of constant
variance. If the vanance 1s increasing or decreasing across the graph, a transformation
1s needed.

Notes




Residual Analysis (cont'd)

Studentized Residuals
B 4
=
é 2 . .
-§ O » L ] . . = - -
§ -2 - .
% L
a4
0 2 4 6 B 0

Row Number

Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in
green.

In viewing the Studentized Residuals for the simple regression-generic,
the best form for checking residuals by run order,

we can see whether there are any patterns over the timeframe of the data.

Note that the data table must be in run order for this plot.

Notes




Notes

Again, on this graph, healthy residuals look like a random scatter around 0.

Runs (points in a row) of positive-negative-positive-negative residuals indicate
correlation between runs. This implies that the assumption of independence has
been violated. In designed experiments, randomization protects against this!
Do it every time!

This plot can also show a change in variance over the time span of the
experiment. This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc. This type of problem would show as
an increase or decrease in spread or “scatter” of the residuals across the graph.
Increasing or decreasing variance indicates the need for a transformation.

36
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Notes




3 Using the Model: RMSE and Prediction Profiler f; |

8

In this section, we’ll see how we can:

« Use the Root Mean Square Error (RMSE) in predicting our
future process variation,

« Use JMP’s Prediction Profiler to help us optimize our
process, and

« Estimate our future % defective, using the t distribution
calculator.

Notes




Using the Model (cont'd)

When Y is correlated with a controllable X variable,

wvn

o

0 10 20 30 40 50 o0 70 80 90 100110
X

how can we use the regression to improve the Y capability?

Notes




Using the Root Mean Square Error (RMSE) L300

LSL usL

an

0 10 20 30 40 50 60 70

Suppose we are not happy with our current process capability
Mean = 27.9, Stddev=15.4
Defective in the data: 33.3%
Predicted from distribution curve: 35.8%

Notes




RMSE (cont'd)

If we control X at 80, the mean will change from 27.9 to 40

70

60 UsL

50 &
L]

> 40— x Target
Current 30 b
mean .
20 LSL
10 . E
- ;
0 f
0 20 40 60 80 100 120 140 160

X

Notes
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RMSE (contd) o

LSL Target USL

/\ Mean = 40.0
Std dev=15.4
Defective in the data: 22.2%
Distribution curve: 15.9%

7 o

0 10 20 30 B 50 60 70 80

< O

* Moving mean Y to the center of the spec range does reduce % defective

* Is the mean the only thing that changes when we control X at 80?

Notes




RMSE (contd) "

By definition, RMSE is the standard deviation of Y
that would result from eliminating the variation in X

55
50 ’

45

N R o = RMSE
35 = 2.84

0 10 20 30 40 50 60 70 80 90 100 110

Notes




RMSE (cont'd) 43

When we control X at 80, we don't just move the mean from 27.9 to 40
— we also reduce the standard deviation from 15.4 to 2.84 !

60~ UsL

'N
> 40+ [/ Target

204 1 LSL

Notes




4. Introduction to the Prediction Profiler

JMP’s Prediction Profiler helps us use our regression model to
make predictions and optimize our process.

Prediction Profiler Follow these steps to access the
prediction profiler:
2
40 * Analyze > Fit Model > Y =Y,
7 7 %8 Model Effects = X > Run > Red
> 1€3.333, 55 Triangle > Factor Profiling >
27 20 Profiler
15
10
5

100

Notes




Introduction to the Prediction Profiler (cont'd)

JMP’s Prediction Profiler helps us use our regression model to

make predictions and optimize our process.

Prediction Profiler

50
45
40
27.90317 35

( Mean of Y

Interval

b b NI W
VMownownmo

Wi

[ Confidence

100

* Calculates predicted mean Y as a function of X

* Calculates confidence intervals for predicted means

Notes




Simple example of prediction of Mean Y

47
3

Continuing with the simple regression-generic data:
* Suppose we are interested in the predicted mean Y for X = 60

* Click on the 55.333, change it to 60

Prediction Profiler

80
100

X

* Predicted mean Y (based on the data)is 30.19

* With 95% confidence, the population mean lies between 27.79 and 32.59

Notes




Simple example of optimization n

» Suppose we want to find the X value that predicts a mean Y value of 25

* Red triangle next to Prediction Profiler — Optimization and Desirability —
Desirability Functions
.+ Double click in here (don't touch

Prediction Profiler .~ theline plot)
= ' * Modify the Response Goal dialog
4 as shown below
30 2
2 2 * Click OK
,
1 p——
£ 0.75 Match Targef -
80555193 05
a 0.25 Y Values Desirability
0 High: | |  oms3|
SN TR BTNER T [ . r —
‘ ¥ o o iddle: 25 1‘ |
X Desicabilty ! low [ »|[ oms {
il Importance: 7 1
I 0K ]\ Cancel || Help |

Notes




Optimization (cont'd) 49

—_

Prediction Profiler

50
a5
40
: 2500001 35
Red triangle St b
next to 33
Prediction Profiler 13
! 5
Optimization and Desirability 2z 0.75
! 1 05
Maximize Desirability a 0.25
0
=] = o Qo =] QO wn W W -

~ - (Ve [-=] Q ~N o ~

- = o o

X Desirability

* Predicted mean Y of 25 is achieved when X =49 4

* With 95% confidence, this population mean lies between 22.6 and 27.4

Notes




Confidence Intervals and Prediction Intervals E

» The 95% Confidence Interval on the Mean Response gives the
range which will contain the “true” mean, u, 95% of the time

For a sample, the confidence interval is calculated:

S A
= t.025,n—1 \/_ﬁ = u =Y+ t.025,n—1

« For a regression, calculation of the confidence interval is
similarly structured, but considerably more complicated,
involving matrix math.

« A 95% Prediction Interval gives the range which will contain
future individual response observations 95% of the time.
« The prediction interval is wider than the confidence interval,
because it is to contain individual measurements, not averages.

- Calculation of this interval is complicated, involving matrix
math.

Notes
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Exercise 4.1 l 51

r——

a) Continuing with simple regression-generic, find the X value that predicts a mean Y
value of 35. Give the confidence limits for the predicted mean.

b) The overall standard deviation of Y 1s 15.39. The RMSE from the regression is
2.84. Which of these would be the standard deviation of Y if we controlled X to a
constant value?

c) Save vour script, close and save the data table.

Notes




Exercise 4.2 E

Data sets \ production vs capacity.

(a) Fit aregression for Production gty as a function of Capacity utilized (%5) (using Fit
Model, of course). Is there a correlation? Give the appropriate P-value and strength
of evidence.

(b) For this exercise, we will not review the residuals plots. Use your model to find the
capacity utilization level that predicts a mean daily production quantity of 3500.
Give the confidence limits.

(c) The overall standard deviation of Production gty 1s 733.5 (not shown in Fit Model
output—calculated in Distribution Platform). The RMSE from the analysis in (a) 1s
409.732. Which of these would be the standard deviation if capacity utilization was
held constant?

(d) Save your scripts, close and save the data table.

Notes




Estimating Improved % Defective

Once we determine the level at which we want to control
our X, we can use the root mean square error (RMSE) and
other regression results to estimate the % defective in the
improved process.

Remember that by definition, the RMSE 1is the standard
deviation of the improved process, with x’s held at desired
levels.

The ¢ distribution calculator helps us calculate the future
% defective.

Notes




LSSV2 student files \ t distribution calculator

A B C D E F G H
1 1. Enter the quantities in the YELLOW cells.
2 2. The other values are calculated for you.
3
4 LSL 20 LSL USL Total
5 USL 60 Population % out of spec 0.015 0.015 0.029
6 Mean 40 Population PPM out of spec 145.1 145.1 290.2
7| Standard deviation| 3.006984 /
8 Degrees of freedom 7 PPM defective = 290
; Fi

These calculations can b?eé:siu've to round-off error. Don’t round off the mean

10 and standard d ion when you enter them into the calculator.

" y

L Error DF from the
13 Analysis of Variance
14
15

Analysis of Variance
Sum of
Source DF Squares
Model 1 1830.6557
63.2937
C. Tota 8 1893.949%4

Mean Square  F Ratio
183066 2024624
9.04 Prob>F

Notes




Exercise 4.3

Data sets \ production vs capacity.jmp.
In this process data, on 75% of the days production quantity fell below 3000.
Based on the best fit distribution, the Lognormal, the expected % of days that

production quantity will fall below 3000 1s 71.8%.

a) We found earlier that capacity utilization 52.1% gives a mean daily production
quantity of 3500. The RMSE was 409.7, the error degrees of freedom was 34.

Assuming 52.1% capacity utilization, use the ¢ distribution calculator to find the

predicted % of days on which production quantity will be less than 3000.

b) Save your scripts, close and save the data table.

55

|

Notes




Exercise 4.4 H

Open Data sets \ outgassing process. Current (the Y variable) 1s the current required
to heat a filament to a target temperature. Resist (the X variable) 1s the electrical
resistance of the filament. Machine 1s the processing unit. This example shows how to
reduce % defective by separate optimization of each machine.

a) For this process, the % of Current data values that fall outside the interval (1.9,
2.1) 1s 8.87%.

b) Fit a regression for Current as a function of Resist, using Machine as the By
variable. For each machine, give the RMSE, the error degrees of freedom, and
the resistance that predicts a mean current of 2.

Machine RMSE DF Resistance | % Outside
A
B
C

¢) Assuming we use the indicated resistance values, use the ¢ distribution calculator
to find for each machine the % of Current values predicted to fall outside the
mnterval (1.9, 2.1).

d) Save your scripts, close and save the data table.

Notes




5 Multiple Regression
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I

Multiple regression model

Examples

Fitting regression models

Interactive effects

Predicted values and uncertainty

Modeling and optimization

Notes




Multiple regression model 5818
{ Y=by+bX;, +b,X5+...+b X, + “error”]
Y W, ST R, £ b, Dys Bays s o510 “Error”
Dependent Independent Intercept Regression Residuals
variable variables coefficients
Mean =0
Response | Explanatory variables | Parameter Parameters Standard deviation = ¢

variable (RMSE)

Output Inputs

Predictors
Regressors

Factors (in DOE)

Distribution = Assumed to
be Normal

Notes




Model and error components, one X

130 —
120 —
110 —
100 —
Y
80 —
80 —

0 —

B0 —

M

[ Y = by+b,X + “error” }]

When X is
fixed, predicted

o of Y = RMSE

&
<

Predictedmean Y (X = 146)

150

| 1
160 170

Notes




Model and error components, two Xs

{ Y - bo +b1Xl +b2X2 s “eI‘I’OI'” ]

When X, and
X, are fixed.
851 | predictedo of
80 1 Y =RMSE

7 A - - /
. 7 /
; »,///,7 g "//‘% y= /'.7/ 7
i / 7

75 ‘7:7’/'“';; = ’Predicted mean Y (X, = 150,X,
7 4 : X . ,'

150 460 0
170
Xl 180

1.2)

Notes




Multiple regression examples 61
L
L_l 0k RPM Tool type Material Feed rate
cutting tool '
MPG spipce: Horsepower Weight
ment
Salary Education Experience | Performance | Seniority Gender
Vending Amount of Distance
machine product from truck to
service time stocked machine

Fill in examples of interest to you

Notes




Regression model equations

Displacement | Horsepower Weight
MPG i
(D) (H) (W)

MPG = b,+ b,D + b,H + b;W + error

Y X4 X, X, X4 X5
Bond Temperature | Dwell time " 3
strength (T) (D) Ll ¥ 2

Bond = b, + b,T + b,D + b,TD + b,T*> + b,D* + error

T

Response surface model (RSM) with two continuous Xs.

TD is the interaction term for T and D, T2 and D2 show curvature.

Notes




Linearizing nonlinear models

Nonlinear model Equivalent linear model

Y =b,(X,)"(X,)" | log(Y) =log(b, )+ b, log(X, )+ b, log(X,)

Yzbo(bl )K'(bz)Y3 log(Y) = log(b, )+ log(b, )X, +log(b, )X,

* In many cases, log(Y) transformations can successfully
linearize nonlinear regression models

* This greatly extends the application of standard multiple
regression models

Notes




Fitting regression models

Data sets \ teenage growth

X X X,
Height | Age | Gender

Weight | Age | Gender

[3] Teenage growth - IMP

A

‘Eilei E(Tt Tables Rows Cols DOE Analyze Graph Tgols View Window

 Teenage growth [

i['; Source >

w | Columns (5/0)
‘I. Name

‘ A Age

|ty Gender

| M Height

i‘ Weight

=
=,
Q
@
'S

|Selected
‘!Excluded
|Hidden
|Labelled

OO0 00O

-

W 00 N Oy B W N e

NN N N N b e e e e e et e e
£ W N - O WO YOOy B W N - O

Name
ALICE
AMY
BARBARA
CARCL
ELIZABETH
JACLYN
JANE
Jupy
KATIE
LESLIE
LILLIE
LINDA
LOUISE
MARION
MARTHA
MARY
PATTY
SUSAN
ALFRED
CHRIS
CLAY
DANNY
DAVID
EDWARD

Age
13
15
13
14
14
12
12
14
12
14
12
17
12
16
16
15
14
13
14
14
15
15
13
14

Gender Height Weight

F 61
F 64
F 60
F 63
F 62
F 66
F 55
F 61
F 59
F 65
F
F
3
F
F
F
F
F

-
<

62
61
60
65
62
62
56
M 64
M 64
M 66
M 66
M 59
M 68

107
112
112
84
91
145
81
95
142
64
116
123
115
112
92
85
67
99
99
105
106
79
112

Notes




Fitting models (cont'd)

r

>& Fit Model - JMP

(= | B -

Say we want to
model Height as

Select Columns

¥ 5 Columns

a function of th Name
4 Age
Age and Gender i Gender
A Height
4 Weight
Analyze
Fit Model

4 '~ Model Specification
Pick Role Variables

Gender

| 1
L Nest |
| Macros v |
Degree [2]

Attributes (w
Transform (»

| No Intercept

Personality: | Standard Least Squares v

Emphasis: | Minimal Report - v

| Help |

| Recall ||

| Remove |

Keep dialog open

Notes




How to change options (for Fit Model ) during analysis

?/J ~ Response Height
4 Regression Plot

~ Line of Fit for Gender{F]
~— Line of Fit for Gender[M]

70
* Alt-click on Response
Height red triangle (This 65
technique works for may ° o
i
JMP platforms)
55
» Set up as shown on next =
. . ~ m - ] o ~ «©
ge
> Residual by Predicted Plot
» Summary of Fit
4 Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 2 317.25956 158.630 15.2592
Error 37 384.64044 10.396 Prob> F
C. Total 39 701,90000
4 Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept  39.416521 4.945343 7.97
Age 1.6466542 0.352418 4.67
Gender[F] -1.214868 0.516246 -2.35

Notes




Default options for Fit Model (cont'd)

E%
Regression Reports (] Inverse Prediction Row Diagnostics
[v] Summary of Fit ("] Parameter Power (V] Plot Regression
[v] Analysis of Variance [ Correlation of Estimates Plot Actual by Predicted
Parameter Estimates Effect Screening [_] Plot Effect Leverage
Effect Tests [ ] Scaled Estimates Plot Residual by Predicted
[] Effect Details [ ] Normal Plot [_] Plot Residual by Row
[] Lack of Fit [_] Bayes Plot Plot Studentized Residuals
[ ] Show All Confidence Intervals [ ] Pareto Plot Plot Residual by Normal Quantiles
[] AlCc Factor Profiling [] Press
Estimates Profiler [ ] Durbin Watson Test
[ ] Show Prediction Expression [] Cube Plots
[] Sorted Estimates [ ] Box Cox Y Transformation .
[ ] Expanded Estimates (] Surface Profiler

[ ] Indicator Parameterization Estimates
[] Sequential Tests

[ ] Custom Test

(] Multiple Comparisons

In the last column on the
right (not shown), select
Effect Summary.

Notes




Handling categorical X variables in the model Eﬂ

4~ Response Height
4 Regression Plot
— Line of Fit for Gender{F]

“IndicaTor'" or‘ \\dummy" 70 ~ Line of Fit for Gender[M)
variables are used to g
represent categorical £
variables in regression. £ 60
55
Indicator variable e e e e e
representing the A s I
effect of Gender > Residual by Predicted Plot
in the equation PESBIRY (VN
4 Analysis of Variance
\ Sum of
Source DF Squares Mean Square  F Ratio
Model 2 317.25956 158.630 15.2592
Error 37 384.64044 10.396 Prob> F
C. Total 39 701.90000
4 Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|

Intercept  39.416521 4.945343 7.97
16466542 0.352418  4.67
-1.214868 0.516246 -2.35

Notes




1

[=2]
=]

Numeric coding for two-level categorical X

l

In JMP, two-level categorical factors are coded +1 and -1

+1 1if Gender 1s F

Gender(F] = 1 1f Gender 1s M

Height = b,+ b,Age + b,Gender[F]

b,+ b, + b,Age if Gender is F
b,— b, + b,Age if Gender is M

This results in one equation for Females and one equation for Males,
with equal slopes (b,) and different intercepts (b, + b, and b,— b,).

An additional indicator variable i1s added for each additional level of a
categorical variable.

Notes




Constructing the model equation

4 Regression Plot

70

65

Height

60

55

50

— ~ m < wy o
— — — - — —

Age

> Residual by Predicted Plot

~— Line of Fit for Gender{F]
== Line of Fit for Gender[M]

17
18

Height =
3821+165 Age 1if Gender=F
40.63+1.65 Age 1if Gender=M

Height =39.42 +1.65 Age —1.21 Gender[F]

P Summary of Fit
4 Analysis of Variance
Syrh of

Source DF es MeanSquare F Ratio
Model 2 7.25956 158,630 15.2592
Error 37 /384.64044 10.396 Prob> F
C. Total 39 / 701.90000

4 Parameter
Term td Error t Ratio Prob>|t]
Intercept| 39.416521 H.945343 7.97
Age 1.6466542 [0.352418 4.67 1
Gender{F 516246  -2.35 ) 240

If you want to verify the equation:
W Response Y— Estimates
— Show Prediction Expression




The need for interaction effects

4 Regression Plot

—— Line of Fit for Gender{F]
~= Line of Fit for Gender{M]

70
A » With this model, the growth curves
L
o
$ 60 are parallel
39 * This is an assumption of the model,
e not a result of the analysis (no
~ & 3 EAgeﬂ s~ & A interaction terms were included in
Fit Model
> Residual by Predicted Plot )
» Summary of Fit
4 Analysis of Variance * How do we test for parallel curves?
Sum of
Source DF Squares Mean Square F Ratio
Model 2 317.25956 158.630 15.2592
Error 37 384.64044 10.396 Prob> F
C. Total 39 701.90000

4 Parameter Estimates

Term Estimate
Intercept 39.416521
Age 1.6466542

Gender{F] -1.214868

Std Error  t Ratio Prob> |t|
4.945343 7.97
0.352418  4.67
0.516246 -2.35

Notes




Interaction effects (cont'd)

72

Height = b, +b,Age+b,Gender[F]

This product term allows different slopes for M and F

+b,Age* Gender|[F]|

Notes




Adding an interaction effect

4 = Model Specification

Select Columns Pick Role Variables Personality. |Standard Least Squares
hName A Height Emphasis: |Minimal Report v
‘ .

Height weht, Hl oot < | Hep | [ R |

A eight

(e ) Diesp aoen

o

a
<| |3 =<

1. Highlight )

Construct Model Effects

dd Age
-
¢ 2.Chek, Cross Age*Gender

2]
-

|
i

Macros ¥ ( 3. Interactive effect

- )

Attributes =
Transform =
[CINo Intercept

Notes




Non-parallel growth curves

4 Regression Plot
- Line of Fit for Gender{F]

70 - Line of Fit for Gender[M)]
The result is one model equation

65 for Females and one for Males,
E with different slopes and intercepts
£ 60

: _ 4662 + 104Age if Gender=F
55 . Height = .
3230 + 224Age if Gender=M

™ < n ot
— — — 4

w

o

11

12

17
\

Age

D

| Height =39.46+1.64 Age—1.23Gender F]- 0.60Gended F]* (Age—13.98)

> Analysis of Variance

4 Parameter Estimates To venify the equation:
Term io Prob>|t| vReSpQIlseY
Intercept y : 8.20 | — Estinates .
Age 4.77 — Show Prediction Expression
Gender{F] -1.2275¢ 3 ) 244  0.0196

Gender{F]*(Aqe-13.975)_-0. 0343014 -175 0.0883

Notes




Testing the interaction effect

4 ~ Response Height
> Actual by Predicted Plot
> Regression Plot

fettect Summary

LogWorth
4.518 [y
1.708 _':i|
1.054 ] :

Source

Age

Gender
Age*Gender

ET ik

» Residual by Predicted Plot
> Studentized Residuals

> Summary of Fit

> Analysis of Variance

4 Parameter Estimates

Term Estimate

Intercept 39.457057 4.812681
Gender({F] -1.227546 0.502444
Age 1.6360307 0.343014
(Age-13.975)"Gender[F] -0.600896 0.343014

Summary of Fit without Interaction

RSquare 0.452001
RSquare Adj 0.42238
RootMean Square Error 3.224234

Std Error  t Ratio Prob> |t|

-2.4

PValue
0.00003
0.01959
0.08832

8.20

477

175 (0083)

v' Adjusted R? went up
v' RMSE went down

The p-value for Gender*Age
indicates some evidence that
growth curves for girls and
boys have different slopes

* From now on we will use Effect
Summary to find P-values. It gives
the same information and allows
model modification.

Summary of Fit with Interaction

\ RSquare 0.495046
> RSquare Adj 0.452967
RootMean Square Error 3.137706

Notes




Residuals Review 76

[ Pl.edlcted Y —_ bO e b1X

L]
5

Residual (+)

Pradhictad vahte fece s car s s L p i u e ‘

Pradivted malie ko s s sl

Notes




1.
Notes E‘

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor varniables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value 1s the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual is the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contamn information about the magnitude and direction of variability in the

data relative to the fitted model.

* An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

» A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.

Notes




Residuals Review: Same thing for any number of X's

&

Predicted value

Notes




Same thing (cont'd)

= N W 5
o ARG - SR < D < (N = )

Residuals
s
=

Plot of residuals by predicted for any number of Xs

L]
™
e
®
™
Y .. ®
- .
™
@
@
e o ¥ L ]
[ ]
L]
] | ] | I
60 70 80 90 100 110

Lower left-hand
quadrant of the
(X4, X5) plane

Predicted Y values uUpper right-hand
quadrant of the

(X4, X3) plane

Notes




Checking model adequacy 80

Residual Normal Quantile Plot

5
.
o*
Jeenes
3 onsa®’
B
et -
3 B
£
o L1
] ®
T g
-5
.
o
-10
N oW - N M e WO~ © O W ®
= S S S.ds e S8 s S 9 9
S S o

Normal Quantile

We can see points on the hyperbolic bands here, but there 1s not an obvious
curve through the data. Given the small sample size, this 1s not too concerning.

Notes




Checking model adequacy (cont'd) L8

Residual by Predicted Plot

- -~
a R A - .
g o .
£ . a8 .
(- e o °* -
g -5
s .
.
-10
50 55 60 65 70

Height Predicted

In this plot, we can see that the variance in the residuals 1s decreasing as
height increases. This indicates the need for a transformation. We will see how
to do this a hittle later in the course.

Notes




Checking model adequacy (cont'd)

There are no obvious patterns in residuals in run order, and they scatter about zero.

(Points outside the red limits are considered outliers, and should be investigated.
Points outside the green limits but inside the red limits are possibly outliers, but

Studentized Residual

:ac)—-rdwli-

"R L |
B woro

Row Number

There 1s no concern here.

with less certainty.)

.
.
. e -
. @ . e .
. . 4 * snss . ot
. *ls L ] . L
.
0 5 10 15 20 25 30 35

Notes




Variance Inflation Factor (VIF) ﬂ,

When historical or observational data is used to generate a regression
model, an additional test is needed.:

« The variance inflation factor (VIF) must be checked

« The VIF indicates whether the regressors (i.e. Xs or predictors) are
correlated with each other
» VIF = 1: regressor is independent of all other regressors
~ 1= VIF = 5: regressor 1s moderately correlated to other regressors

» VIF > 5: regressor is highly correlated with other regressors

» VIFs in the final model need to be less than 5

When X variables are correlated (high VIFs), the analysis makes statistical
determinations based on the noise between the correlated variables. This
will often result in high R* values but insignificant p values.

VIFs are often lowered when insignificant terms are removed from the
model. and terms should be removed one at a time. The first term removed
should be the one with the highest p value unless theory implies removing a
different one.

High VIFs are not an 1ssue in designed experiments, as the designs prevent
high correlation between terms/regressors

Notes




VIFs (cont'd)

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| VIF
Intercept 39.457057 4.812681 820 - -
Gender(F) -1.227546 0.502444 -2.44 0.0196" 1.0154192
Age 1.6360307 0.343014 477 - 1.0155259

(Age-13.975)*Gender[F] -0.600896 0.343014 -1.75 0.0883 1.0004648

The variance inflation factors for all terms in the model are below 5.
There is no concerning level of correlation between model terms.

To display the VIFs, right click in the Parameter Estimates section, click
Columns, then VIF.

Notes




Predicted values and associated uncertainty

Prediction Profiler

51 1 4| 007

21596029,
62.635]

Height

Predicted avg. height in the population of 14 year old girls 61.12

95% confidence interval for avg. height of 14 year old girls [59:60, 62:64]

6192 %152

Notes




Notes

86

The model without interaction gave 61.25 + 1.55 (shghtly larger margin of error).

Notes




Steps in Multiple Regression (backward elimination method)

. Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

— 2. Check model adequacy by reviewing the residuals plots:
» Residual Normal Quantile Plot
» Residual by Predicted Plot

»  Studentized Residuals (in run order)

—— 3. Transform the data and resolve other issues, if needed.

4. Verify all VIFs < 5. Address the issue if any are over 5.

5. Remove insignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if a

higher order term of that variable remains in the model).

6. Use Adjusted R* to determine the amount of variation in Y that

is explained by the model.

Notes




Notes

88

Y our instructor will go through Exercise 5.4 as an example.

Notes




Exercise 5.1

Ll

a) In the table below, record the Adjusted R? and RMSE from the analysis of Height in
this section. Also, record the P-values from Effects Tests. Run the same analysis for

Weight and record the corresponding results.

P-values
Response Adj. R? RMSE Age Gender | Age*Gender
Height
Weight

b) Which variable (Height or Weight) has the greater proportion of variation explained

by Age and Gender?

b) Explain why it wouldn’t make sense to compare the two models 1n terms of RMSE.

Notes




Exercise 5.1 (contd) Lo

d) Both Age and Gender were statistically significant for predicting Height. Is this true
for Weight?

e) For Height we found evidence that the growth curves for girls and boys have
different slopes. Is this true for Weight as well? Give the P-value that is relevant to
this question and explain what it means.

f) Give the predicted average Weight in the population of 15-year-old boys. Give a
95% confidence interval for this average.

g) Save your scripts, close and save the data table.

Notes




Exercise 5.2

Data sets \ lead time 2.

a) Fit a model for Lead time including the terms
Process Step, Operator, and their interactive
effect. Be sure you have the correct modeling
type for Operator. (If you got the upper right
profiler, the modeling type for Operator 1s not
correct. The lower right profiler 1s correct.)

b) Note anything concerning in the residuals plots.
¢) Remove terms under Effect Summary with P-

values exceeding 0.15 (Remove button). Which
terms are left? Any issues with VIFs?

Prediction Profiler
225
20
15956 175
[18.14853, 15
19.76467) 125
10

Lead time

Prediction Profiler
225
20
17.5
[1872054, 15
21,27946] 125
10
75

Lead time

d) Based on the profiler, which factor has the larger effect on
lead time (steeper slope)? Does this correlate with the P-

values? Please explain.

e) Save your script, close and save the data table.

_ Assembly

Process
Step

_ Assembly

Process
Step

ATE

Operator

Operator

Notes




Exercise 5.3 E

Data sets \ number and size of defects.jmp.

a) Fit a model for Max size including the terms Welder, # Defects, their interactive
effect, and the quadratic effect for # Defects (cross 1t with itself). This 1s the
Response Surface Model (RSM) for one categorical factor and one continuous
factor.

b) Do you see anything concerning in the residuals plots?

¢) Using the Effect Summary, remove terms with P-values exceeding 0.15 (use the
Remove button). Which terms are left in the model? Do all remaining terms have
VIFs < 5?

d) Based on the profiler, which factor has the larger effect on Max size? Does this
correlate with the P-values? Please explain.

e) Save your script, close and save the data table.

Notes




Exercise 5.4 [Instructor to demonstrate] ﬂ

In this example you will analyze data from an optimization experiment concerning the
removal of excess metal from castings by belt grinding.

The belt supplier had been recommending that belts be discarded when they are “50%
used up.” This rule was based on tests conducted by the supplier to define the usage
point at which the total of labor and belt costs will be minimized. One of the grinders
thought the supplier’s rule caused grinders to discard belts too soon. Aside from being
suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s
tests did not take mnto account the time lost to belt changes.

This grinder developed a new standard under which belts would be discarded only
after they were “75% used up.” He wanted to do a comparative study to show that his

method was cheaper overall. After he explains the study with his fellow grinders, 3
additional factors are added to the experiment.

Each casting in the experiment was weighed before and after the grinding operation. A
technician kept track of how many belts were used and how long it took the grinder to
complete each casting. From this information the total cost per unit of metal removed
was calculated for each casting.

Data sets \ belt grinding.

Notes




Exercise 5.4 (contd) [Instructor to demonstrate] 94

* Y variable: cost per unit of metal removed

* X variables: > Contact wheel land-groove ratio (LGR): Low or High
» Contact wheel material (MATL): Steel or Rubber
> Belt usage limit (USAGE): "50%" or “75%"
» Belt grit size (GRIT): 30 or 50

* Run the Fit Model script provided in the left panel, by clicking on the green
triangle. This 1s the response surface model for 4 categorical X variables.

* Check the residuals plots. Any problems?

* Using the Effect Summary, remove insignificant terms not needed to maintain model
hierarchy, starting with the group of terms with P > 0.20, then one at a time. Which
terms are left in the model?

* Use the Prediction Profiler to find the minimum cost factor settings.

* What do you expect the mean and standard deviation of Cosf to be after
implementing the optimal factor settings?

» Save your script, close and save the data table.

Notes




Exercise 5.5

B

In this example you will analyze data from an optimization experiment concerning the
bond strength of potato chip bags.

Chips ‘R’ Us was receiving customer complaints about stale chips, especially from
customers on airplanes. They traced the problem to the bag sealing process. The
current process mvolved a temperature of 150°C, a pressure of 100 psi and a dwell
time of 1.1 secs. The current average bond strength was about 85 psi.

Process Engineer Chip Kettle ran an experiment to increase the bond strength.
Production Manager Justin Thyme reminded Chip that he would very much like to
avold an increase n the dwell time.

Justin 1s able to free up a bag sealer for only so much time each shift. Chip realizes he
will need two shifts to complete the experiment. He decides to include Shiff as an
additional variable in the analysis just in case there is an operator and/or equipment
effect.

Data sets \ heat sealing 1.

Notes




Exercise 5.5 (cont'd)

Y variable: bond strength

X variables and feasible ranges: - Temperature (TEMP): 120 to 180
~ Pressure (PRESS): 50 to 150
~ Dwell time (DWELL): 0.2 to 2.0
~ Shift: 1 or 2

Run the Fit Model script provided in the left panel. This is the response surface
model (RSM) for 3 continuous X’s. Is anything concerning in the residuals plots?

Remove from the model insignificant terms that are not needed to maintain model
hierarchy (P > 0.15), using the Effect Summary. Which terms are left?

Use the Prediction Profiler to maximize the average bond strength. If your solution
requires a long dwell time, manually move things around in the profiler to find
another solution with a short dwell time.

What do you expect the mean and standard deviation of hond to be after
implementing the optimal factor settings?

Save your script, close and save the data table.

Notes




Exercise 5.6 —ﬂ4

Data sets \ outgassing process. Current (the Y variable) 1s the electrical current
required to heat a filament to a specified temperature. Resist (one of the X variables)
is the electrical resistance of the filament. Machine (the other X variable) identifies
which of three processing units was used. We want to develop a model for Current as
a function of Resist and Machine.

a) Fit a response surface model for Current. (The terms will be Resist, Machine, the
interaction term Resist*Machine, and the quadratic term Resist*Resist. To get the
quadratic term, highlight Resist both under Select Columns and under Construct

Model Effects, then click Cross.)
b) Do you see anything concerning in the residuals plots?

¢) Remove any terms under Effect Summary with P value exceeding 0.15. (Use the
Remove button.) Record the RMSE.

d) Use the Prediction Profiler to find the predicted average Current for each
machine if we always use filaments with resistance 52.

Notes




Exercise 5.6 (cont'd)

e) The target value for Current is 2. For each machine, we want to find the

resistance for which the average current is 2. On the Prediction Profiler red

triangle, select Desirability Functions. It should look like this:

Prediction Profiler
215
f) Double click i the upper right hand < \\
- s i -
panel of the profiler. (Try to avoid FRoae S0 — |
the plotted line.) You should get the Lo
dialog shown below. 1
£ 0.75
B¢ Response Goal -g So633633 05 1 \
a 0.25
irﬁumize :\ 0
Current Values [r)o@sirabilityib - o Y 2R~A xA %3 °
High: [ 0'95197} Machine Rasist
Middle | 19875] 05| - .
low [ 185][ o] B Respone Goul e
Importance: | 1’; | @F@i
l LK ]{ Cancel J|__Help. | Current Values Desirability
S High: [ 205|[ oous3]
Modi i dind e i Middle: | 2l 3]
g) Modify the dialog as shown to the e s
right, then select OK. Proceed to the Importance: 1

next shide.

| oﬁ\ Cancel || Help |

s

Desirability

Notes




Exercise 5.6 (cont'd)

h) On the Prediction Profiler red | B Factor Settings
triangle, select Reset Factor Grid.
We want to lock the factor setting Zc:m o e i Rmts,,
for Machine, so check the Lock Minimum Setting: 4941
Factor Setting box as shown‘he:\ Maximum Setting: [ 5537
Number of Plotted Points: 41]
\« 8
1 Lock Factor Setting: VI O
o] [t
i) The vertical line for Machine should ~Preciction Profier
now be solid instead of dotted. This O§
will hold the machine setting in : 2004 e \
place during Maximize Desirability, 1
which allows you to optimize Resist - p
separately for each machine. On £ 071 N \
the Prediction Profiler red triangle, ?8645.5 f; \‘\..\. / \
select Maximize Desirability. 0 | N—
Proceed to the next slide. P s R B E A AT
Machine Resist Desirability

Notes




Exercise 5.6 (cont'd) ﬂ

1) The optimal resistance value for Fyacretion o
Machine A is 51.5. Drag the solid 13 : I
vertical line across to B, then click : : Lé : \ e
Maximize Desirability to find the ey 150 ['/

optimal resistance value for
Machine B. Do the same for
Machine C.

075

Desirability
—

n
~
o
Machine flesist Desirability

k) What will the average current be if
we always use the optimal resistance
values for each machine?

1)  What will the standard deviation of current be 1f we always use the optimal
resistance values?

m) Save your scripts, close and save the data table.

Notes
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6 Dealing with Model Adequacy Issues

In this section, we will cover the most common model adequacy
ISsues:

Outliers
Pattern in run order plot of residuals
Multicollinearity (VIFs over 5)

Unequal variance and non-normal residuals

Notes




]
|

Issue: Qutliers 102,

Outliers can easily be seen on the Residual by Predicted and
Studentized Residuals (residuals by run order) plots

4 Residual by Predicted Plot
10
8

Yield Residual

L]
N ON B O
.

10 20 30 40 50 60 70 80
Yield Predicted

Remember, healthy residuals look like random scatter about zero.

Here, it looks like there might be a suspicious data point.

Notes




Issue: Outliers (cont'd)

* Investigate the data point.

o Ifit turns out to be just a data entry error, we simply enter the correct
value, then all is well. Most of the time it’s not that simple.

* [If you have an outlier of unknown origin:
o Run the analysis with and without the questionable data point.

o Ifyou’re lucky, the results will be pretty much the same both ways,
hence no worries. Leave the data point in.

 [f excluding the outlier does make a significant difference in the
results, then you have a hard decision to make.

o The official rule is: leave the data point in unless you can identify
the cause. The idea is to throw it out only if you can demonstrate
that it does not come from the population you want to study. This is
the “pure” approach.

o This should be tempered with the following practical consideration:
you don’t want your results to be unduly influenced by one extreme
outlier, even if you can’t explain it.

Notes




Issue: Pattern in run order of residuals (104

== bl
"
3 5 .
;’: = . . . ™

: . @ . @ " @
T 02— oo o2 _anse " 20
g -1 * . . = -
2, . - K
g -2 -
2 .
B 3~ .

-4

0 5 0 15 20 25 30 35 40

Row Number

Remember, healthy residuals look like random scatter about zero.

There are no patterns of concern here.

Notes




Issue: Pattern in run order of residuals (cont'd)

L& ]

* Runs (points in a row) of positive-negative-positive-negative
residuals indicate correlation between runs in an experiment.
o This implies that the assumption of independence has been violated.
o Randomization of an experiment protects against this! Do it every
time!

* This plot can show changes in variance over the time span of the
experiment or data collection.

o This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc.

o This type of problem would show as an increase or decrease in spread
or “scatter” of the residuals across the graph.

o Ifthere is x data available to support it, one remedy is to add a factor
(time since tool change, number of hours of operator work, etc.)

o Increasing or decreasing variance can also indicate the need for a
transformation.

Notes




Issue: Multicollinearity (VIFs > 5)

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| VIF
Intercept 4868125 0.157585 3089 :
LGR[Low] 0.616875 0.157585 3.91 1
Material[Rubber] 1.145625 0.157585 7.27 1
Usage[50%] 1.054375 0.157585 6.69 1
Grit[30] -0.048125 0.157585 -0.31 0.7670 1
LGR[Low]*Gnit[30] -0.316875 0.157585 -2.01 0.0752 1
Usage[50%]*Gnit[30] 0.395625 0.157585 251 0,033 1
Parameter Estimates

Term Estimate Std Error tRatio Prob>|t] VIF
Intercept 14.044944 0291958 4811 ¢
Process Step[Assembly] 4.8792135 0.298829 16.33 1.0478749
Operator{1] 0.6713483 0.296556 2.26 1.0478749

Remember, VIF <5 is not concerning.

One aspect of factorial design
experiments (often called
DOEs) 1s that they are
orthogonal designs. This results
in the model terms being
completely uncorrelated.

Regressors that are completely
uncorrelated with others have
VIF =1.

High correlation 1s only a
potential issue when using
historical or observational data
In regression analysis.

Notes




Issue: Multicollinearity (cont'd) E;

Several strategies can be tried for resolving multicollinearity, but they may
not be satisfactory, especially if the model will be used for prediction.

« Collect additional data in a way that breaks up the multicollinearity.

Historical data may contain only certain combinations of x-variables,
for example, only low levels of x; when x, 1s at a low level and only
high levels of x; when x, 1s at a high level

Note: 1t may not be feasible or possible to collect this additional data.
In some cases, the factors (x’s) are inherently correlated, for example as
may be the case with household income and house size.

. Rcspccnfymg the model, can help.
If x; and x, are nearly linearly dependent, use one term, x = x; + X,,
which preserves the information content of the original variables
Try removing the term with the highest p-value, and look at that model.
Then, replace it and remove the term with the highest VIF. See which
gives the better model.

« Use ridge or principal-component regression (way beyond the scope of
this course)

Notes




Issue: Unequal variance and non-normal residuals

-
o
(]

L&

Remember, the variation in the residuals should be fairly constant across

Residual by Predicted Plot

4 .

3 .
= 2 . ~
3
T 0 - .
g -1
> -2 ’

-3 ~

| .

-5

0 10 20 30 40

¥ Predicted

the Residual by Predicted Plot. There is no issue here.

50

Notes




Issue: Unequal variance and non-normal residuals (cont'd)

4 Residual by Predicted Plot
L ]
60
ks "
40
= s =
=
R 5
é 20 . .
v o
B Ji °
:’2 0 ...; S s
o
< .
-
-20 .
.
<
-40
L
0 20 40 60 80 100

Actual Hrs Predicted

In this plot, we can see an issue.

oy proportional to mean Y — “sideways V"’

Notes




Basic model assumption: constant variance

- 110

o¢ is constant (does not depend on the X’s)

Notes




Most common violation of the basic assumption

111 |

o is proportional to mean Y

Notes
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Issue: Unequal variance and non-normal residuals (cont'd) 12,

Residual by Predicted Plot )
« Often, when there 1s

15

- o an 1ssue with
g s Wi . constant variance,
N [ o0 .
2 A e .t there is also the
'5? 5 . . veo, X
: . N3 issue of non-normal

0 5 10 15 20 25 30 residuals.

Max size Predicted

Residual Normal Quantile Plot « This can be seen in

5 * these two plots

10 4 « Fortunately, they
E usually both resolve
g s 0 with the same
- Py treatment—a
- S .

o transformation.
-5 3 ot
P -
-10
S o o O o000 O O o S S

Normal Quantile

Notes
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i |
Notes 113 ':E
S

The standard assumption in all comparison and correlation analyses involving a
quantitative Y vanable 1s that the noise (unexplained/error/residual) variation follows a
Normal distribution with mean 0 and a standard deviation that does not depend on the
X varnables.

This simple model has served us well. However, when Normality or constant G is
grossly violated, something must be done. The most common remedy i1s to use log(Y)
or sqrt(Y) as the dependent variable instead of Y. This is a transformation. This “trick
of the trade™ is simple and, in most cases, effective.

Notes




Transforming the Y variable

We want to see
how accurately
we can estimate
the time it takes
to do certain
tasks

Analyze

d
Fit Model

Data sets \ actual vs estimated

¥ Fit Model

b oel peccon

Select Columns

hTask
h.Resource
thFinish Date
AEstimated Hrs
Apctual Hrs

Pick Role Variables
:.v (@Al Hs

Macros v
Degree
Attributes =

Transform =
[] No Intercept

Personality. Standard Least Squares v
Emphasis: Minimal Report v

[Hep | [RunMocel]

Recal

Notes




Transforming Y (cont'd)

Response Actual Hrs Residual by Predicted Plot
Regression Plot 80

100
90
80
70
60
50
40
30 -
20 X " 204

60
40
20

R s s s T T SR

Actual Hrs
Actual Hrs
Residual

-40+

-60 T T T T T
0 10 20 30 40 50 60

Actual Hrs Predicted

Summary of Fit

RSquare 0.307347
RSquare Adj 0.296176

Root Mean Square Error 16.95281 "
Mean of Response 12.23828 Y=0.835+0.632X

Observations (or Sum Wgts) 64
Parameter Estimates

Variation
Imncreases

. . as average
Term Estimate Std Error t Ratio Actual Hrs

Intercept 0.8352064] 3.035
Estimated Hrs (0.6321871

0.120529 525 <.0001" mcreases

Notes




Transforming Y (cont'd)

Gy proportional tomeanY <

¥ ~ Model Specification

Select Columns Pick Role Vanables
th Task -y L og(Actual Hrs) BEFZSie :
s.  Minimal Report
hResource - tiona 2 P
ik Finish Date |
AEstimated Hrs e ‘ [ Hep | Run Mode
AActual Hrs M ol
Freq 5, . Recal
o

Construct Model Effects
Add Estimated Hrs
Cross

Nest

Macros v

Degree
Aftributes  ~
Transform ~
[ No Intercept

i

» O og(y) CONStant

£ ¥ Fit Model D@gl

‘ Personality: Standard Least Squares v lv R€Sp01‘lSC Actual HI‘S

> Model Dialog
~e Click on Actual Hrs

L+ Click on Transform
red triangle

» Select Log

* Run the model

Notes




Effects of log transformation

Response Log(Actual Hrs) Residual by Predicted Plot
Regression Plot
100 24
90 - 1
80 N !
— : -4
7] 70 g g 0... ,,,,,,,,,,,,,,, ' ,,,,,,,,,,,,
T 60 i) :
= < Q 4
o 50 = o'd 14
« £ 5E .
30‘ e 2_
204 ° « o hs?
1042y .. =
0 = i| = T T 1 T T T T
2R 389IBBIRES 3 4567890 20 304050 701
Estimated Hrs 10 100
- Actual Hrs Predicted
Summary of Fit
RSquare 0233276
RSquare Adj 022091
Root Mean Square Error 1.217933
Mean of Response 1.576584
Observations (or Sum Wats) 64
Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|
Intercept 0.8982207) 0218111 412 00001*
Estimated Hrs | 0.0376085) 0.008659 434 <0001* -
Nonlinear model for Y
Log(Y)=10.898 +0.038X > Y =exp(0.898 +0.038X) = e** (" | =2.45(1.04)

Notes




Note on JMP notation, and impacts of the Log transformation

JMPs notation regarding Logs requires some clarification:

* Although JMP expresses the logarithm as “Log™, 1t 1s actually base e, or the
natural log, which 1s usually written as Ln. It is not a base 10 loganthm.

» However, the plots that use a log transformed X-axis display use base 10 log
for the X-axis. This does not change the interpretation of the chart.

The impact of transformation on R? and p-values:

* In the previous example, a transformation was required because the
residuals variance wasn’t constant over the range of the predicted values.

« After the transformation. the R? value went down. This can lead to a belief
that the non-transformed model was “better”. However,

* Residuals showing this condition (heteroscedasticity) can cause p-values
and R? to be over or under stated.

*  When this condition occurs, the problem must be corrected. The resulting
model, even if R? is lower or p-values are higher, is the more “real” model.

Notes




Steps in Multiple Regression (backward elimination method)

. Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

— 2. Check model adequacy by reviewing the residuals plots:
» Residual Normal Quantile Plot
» Residual by Predicted Plot

»  Studentized Residuals (in run order)

—— 3. Transform the data and resolve other issues, if needed.

4. Verify all VIFs < 5. Address the issue if any are over 5.

5. Remove insignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if a

higher order term of that variable remains in the model).

6. Use Adjusted R* to determine the amount of variation in Y that

is explained by the model.

Notes




Exercise 6.1

Data sets \ number and size of defects.jmp

a) Fit a model for Max size including the terms
Welder, # Defects, their mteractive effect, and
the quadratic effect for # Defects (response
surface model for one continuous factor and
one categorical factor). You should see a
distinct sideways V. Do you see issues in any
other residuals plots?

b) Select Model Dialog on the Response red
triangle menu, apply a Log transformation to
Max size, re-run the model. The sideways V
1sn’t completely gone, but close enough. Did
other residuals plots improve?

c¢) Use Effect Summary to remove terms with P >
0.15.

Residual by Predicted Plot
15

10

Max size Residual
L]
.

5 75 10 125
Max size Predicted

Residual by Predicted Plot
15

10 -

3

3 051 e =g

= 00 -*-'-:-—‘ 2o t-

é WY LI 4

x -05 .. .

b3 .

2 -10 . o
-15
20 ’

/ Max size Predicted

Remember to change the x-
axis on the plot, as well.

Notes




Exercise 6.1 (cont'd)

d) Which terms are left in the

model?
Regression Plot

e) Now we have a log-linear simple
regression. _ 10 -
5 :
x e
o 4 L] .‘
< . 'o- .
When you use a Log or square 2 .
root transformation on Y, it is 1
helpful to use same scale for
© g

the Y axes of the plots

f) Save your script, close and save the data table.

40

50

Notes




Exercise 6.2

An aerospace manufacturer uses integral castings as structural components of jet
engines. Integral castings give design engineers more flexibility and simplify the
assembly process. Defect-free castings are known to have long cycle fatigue life, but
defects often arise in the casting process and must be weld repaired. The engine
manufacturer’s metallurgical team has proposed a finishing process of the following
type to ensure adequate cycle fatigue life of weld-repaired castings:

Heat Treat |—| Polish |——| Peen

The team wants to optimize the first two steps in this process to achieve maximum
cycle fatigue life. Also, though other applications of similar processes have included
peening, they would like to see if it can be omitted to reduce processing time and cost.

Due to project time constraints and limited availability of test fixtures, the team can
perform at most 12 cycle fatigue tests for their experiment.

Notes




Exercise 6.2 (cont'd) 123

» Y variable: Cycles (to failure)

* Xvariables: . Heat treat: Anneal or Solution/age
~ Polish: Chemical or Mechanical
~ Peen: Yes or No

* Data sets \ weldment fatigue.jmp.
* Run the Model script provided in the left panel, run the model.

* Notice the extreme sideways V on the Residual by Predicted Plot. Are there issues in
any of the other residuals plots? If yes, what are they?

* Rerun the model using a Log transformation on Cycles. Did residuals plots improve?

* Remove insignificant terms from the model (P > 0.15) that are not needed to
maintain model heirarchy.

* Use the Prediction Profiler to maximize the cycle fatigue life.

Notes




Exercise 6.3

|

124 |

A Black Belt wants to minimize the /eak rate n plastic containers ultrasonically
welded together. The X variables and ranges are:

~ Force: 70 to 150
~ Energy: 275 to 325

~ Amplitude: 70 to 90

* Data sets \ ultrasonic welding 1.jmp.
» Run the Model script provided 1n the left panel.

* What problems do you see in the residuals plots?

Notes




Exercise 6.3 (cont'd) 28

Rerun the model using the Log transformation on leak rate. (Be sure to change the
x-scale to Log on the Residual by Predicted Plot.)

Rerun the model using the Sqrt transformation on /eak rate. (Be sure to change the
x-scale to Sqrt on the Residual by Predicted Plot.)

Which set of residuals plots looks better? Use whichever transformation looks like
it worked better, going forward.

Remove insignificant term(s) from the model (P > 0.15), while maintaming model
hierarchy.

Use the Prediction Profiler to minimize the leak rate.

Notes




7 Simple Regression with Pass/Fail Y

— ]

E
127
L

8

When the response variable, Y, is binary (pass/fail, yes/no,
success/failure, etc.), the regression model used for a
continuous Y-variable cannot be used.

* A logistic response function must be used

« The resulting analysis yields an equation that allows us to calculate
event probability:

Pevent = f(xlvxz"“'xn)

« This equation is used to answer questions such as:
o What is the probability of being in spec (at various levels of x)?
o What is the probability of getting the contract?
o What is the probability of a defect?

Notes




Probability Function for Pass/Fail Y s

128

This probability function, the logistic response function, has a
much different behavior than a linear regression function:

Linear Regression

Event Probability

P event

T Gl 10
X

The y values of a linear regression .

The logistic response function is
can have any values

an S-shaped function that can only
have values between 0 and 1

To be useful in prediction, the logistic response function must be
transformed into an unbounded linear function

Notes
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Transforming the logistic response function (cont'd) 129

The logit transformation is used to linearize the model:

P
logit(Popent) = 1n< Ll ) = by + byX1+ ... +b,xy,
i= Pevent
Pevent = eb0+b1x1+ wtbnXxn
1=Pevent
1

Pevent = 1 + e-(bo+b1X1+ .+bpxy)

This 1s the form of the final equation in the regression analysis

*  The maximum likelihood method 1s used to estimate the parameters in this
probability equation . . . JMP does this work for us

We can use this equation (model) to predict the probability of an event for
various levels of x4, X5,...,X,

Notes




Using JMP for Simple Regression with Pass/Fail Y

We will see how to use JMP do the regression analysis when we
have:

a) Raw data — each row represents one part or transaction

b) Tabulated data — each row represents multiple parts or
transactions

Notes




Raw data

v 20Cols -
<250 - |Target speed | Result Data sets \ target practice
1 200 | Hit
2 205 | Hit .
3 210 Hit Fit Model
4 215 |Hit »L
5 220 | Hit
8 225 Miss Set up as shown
7 230 | Hit
8 235 |Hit
8 240 | Miss 4+ Model Specification
:? ggg :E Select Columns Pick Role- Variables Personality: ‘r;;nﬁfogmic
¥' 2 Columns | Y .‘l ’:ﬂb X
12 255 |Hit :’"9" speed P
13 260 | Hit = | ) e
14 265 Miss ‘% —;‘ Keep dialog open
15 270 Miss (o Foma.
16 275 | Hit s Bt
17 280 Mfss Construct Mode! Effeg
18 285 |Miss [ add ([Target speed
19 290 |Miss o
- ross |
20 285 Miss =
: [_Net |
21 300 | Hit T
22 305 | Miss i
23 310 | Miss o
- n es =
24 315 |Miss Transform =
25 320 Miss No Intercept

Notes




B
- _——

Analysis output

Logistic Plot
1.00
0.75 Miss
g 0.50 % A
Probability
of a hit
0.25 Hit
0.00
o o o o (= o o o o .
R el BRI SR S TR - » P-value for correlation
T t speed Y Jop
i (this is the one that
Parameter Estimates mattcrs)
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 12.5297022 4.7931154 6.83
Target speed -0.0476836 0.0181939 6.87 S Very strong evidence of
For log odds of Hit/Mi 3 .
el Kb s S a negative correlation
[ Effect Likelihood Ratio Tests |
T between the speed of the
Source Nparm DF ChiSquare Prob>ChiSq target and the
1 1 22 sy ¥ e .
e R ) probability of hitting it

Notes
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The prediction profiler 133
Prediction Profiler * Red Triangle — Profiler — Prediction Profiler
3 ~ red triangle — Optimization and Desirability —
Miss D.467 o 3 = =
= \ \ Desirability Functions
il B i Double-click in the blank area, enter 1 for Hif
; and 0 for Miss — OK — OK — next slide
z 0.75 |
205 05 Prediction Profiler
g 0.25
0
OO0 YYRSSO W w 1 o~ Miss D.467 2
SINYBRE[Y° 8 8 & =
Target &
speed Desirability }“lt 9533 o
1
= 0.75
3
£0.532945 05
o 0.25
0
OO0 000000 Wy (] w .
VONTORONT N o N
HANNNNN @AM o =
Target
speed Desirability

Notes




Prediction profiler (cont'd) E

Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability

Prediction Profil
cton Trotter ; * The target speed of 200 produces
A e the maximum hit probability of
5 \ | 0952
= * The corresponding miss probability
1 15 0.048
2 0.75 \
2 ’ .
£0.9522% 05 \ * The target speed of 320 produces
3 025 M the minimum hit probability of
: 0.061
oroeé * The corresponding miss probability
speed Desirability iS 0939

Notes




Exercise 7.1 135 |

Open Data sets \ quotation process_ jmp.

a) Fit PO by TAT. Which P-value in the output 1s the most reliable?

b) Does the PO hit rate increase or decrease as the TAT increases?

¢) Find the PO hit rates for 3 day and 15 day turnarounds.

d) Save your script, close and save the data table.

Notes




Tabulated data

Data sets \ cracking vs dwell time

'3 cracking vs dwell time - JMP

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

-

v cracking vs dwe... 1

B Source - Mins at temp Cracked Not cracked
1 2 0 100
w | Columns (3/0) 2 4 1 99
A Mins at temp 3 6 2 08
A Cracked ; =
4 Not cracked 2 - 2 =
5 10 7 93
R 6 12 G 91
¥ NOWS
7 4
All rows 9 : - Sf
Selected 0 8 16 13 87
Excluded 0 9 18 15 85
Hidden 0

1) Tables — Stack
2) Use Cracked and Not cracked as the stack columns
3) Change Label to Result, change Data to Freq — OK

4) Save as cracking vs dwell time stacked

Notes




Stacked format 137

'E;] cracking vs dwell time - stacked - JMP

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window

= cracking vs dw... D] < ~

B Source - Mins at temp  Result Freq
1 2 Cracked 0
2 2 Not cracked 100 Analyze
3 4 Cracked 1 Jr
4 4 Not cracked 99

, 5 6 Cracked 2 Fit Model

w Columns (3/0)

4 Mins at temp 6 6 Not cracked 98 l«

i, Result 7 8 Cracked 3 )

A Freq 8 8 Not cracked 97 See next slide
9 10 Cracked 7 ~L
10 10 Not cracked 93
11 12 Cracked 9 Set up as shown
12 12 Not cracked 91
13 14 Cracked 12

~ Rows 14 14 Not cracked 88

All rows 18 15 16 Cracked 13

Selected 0 16 16 Not cracked 87

Excluded 0 17 18 Cracked 15

[:g:ﬁ:d g 18 18 Not cracked 85

Notes




Fit Model

ke Fit Model - JMP [Dl@‘ﬁ

4~ Model Specification

Select Columns Pick Role Variables

¥ 3 Columns l Y

A Mins at temp

Personality: | Nominal Logistic v

th Result Target Level: | Cracked v
dFreq | Weight | s k. 3y
V — | Help | | Rup |
In this data set, instead ‘-_F_'i‘l- :
of a row for each —— | | IS Reep Shakig ppren

observation, the results | Remove |
are tabulated—there is | ~Construct Model Effects
a count of outcomes | [ add

for each level of the X

variable. L,—CIO“—J

| Nest |

Using the Freq values | | Macros v |
tells JIMP how many Degree | 2]
times to count each Attributes (v
TOW. Transform (=

No Intercept

Notes




Analysis output

Effect Likelihood Ratio Tests

L-R
Source Nparm DF ChiSquare Prob>ChiS
Mins at temp 1 1 415372498 [j

Very strong evidence of positive
correlation between dwell time

Prediction Profiler and probability of cracking

g\lot cracked P.951 Dwell time | Probability
4 : (mins) of cracking
5 0.020
10 0.049
S e . 15 0.114

Mins

at temp

Notes




8 Multiple Regression with Pass/Fail Y

v 500 Cols ~ | = |
e | ’ |
* Project to reduce clogged nozzles o e M ML o it N B
fegod) 2 = =k 1M 102 (Fail | 2]
tnipsint Heads o ila b2 fPass | s8]
3| _2/m  [Di [Fad | 1]
» Comparison of four types of 2 g:: gé 'EZHSS ?g
adhesive and two print head 8 3/A2 D2 [Pass | 47|
designs 7 4lar oz [Fal 1] |
8 4A D2 |Pass 49
, : 9 5/A3 D2 [Fal__| 4]
* Each lot = 60 print cartridges 10 5/A3 ‘D2 Pass 56 |
_ul slm Jon  [Fal | S|
o “Pass” — 4 Steridbi il 12 6/A4 DI |Pass | 55| |
ass” = no customer detectable 13 71A1 02 IFail 8|
print defects w4l 7m D2 [Pass | 52|
15 B|A2 D1 |Fail 3]
—— ”7., S - + — ————1*
i ’ 16 8 |A2 D1 |Pass 57|
* Data sets \ clogging pass-fail 17 9/A3 D2 TEa 1 1
18 9/A3 |D2 |Pass | 58]
: 19 10 A2 |D2 |Fail 13
. / 3 I o 3 i L e I
Rl.m the Model script. -If necessary, [ o2 D2 Pass | 41|
brlng the Model Spec;ﬁcarron to 71 11 A2 D1 IFail 1l
the front. 2 1A D1 |Pass | 58]
23 12l D1 |Fail | 1]
241 121 D1 [Pass | 58] |
25 13 A3 D1 {Fail | 7|

Notes




Example (cont'd)

r
>4 Fit Model - JMP

4 ~ Model Specification

| -~ Select Columns

¥ 5 Columns
4 Lot
h Adhesive
tk Print head
i Result
A Freg

Pick Role Variables Personality: (Nominal Logistic vJ
Target Level: (pacs o |
[ Weight | ==

Keep\dialog open

— { geip . |\ Run |
S () e
— Recall ‘

| Remove .
— Switch the

‘ A;! ” | Adhesive Targer
\ é,o : ‘ Zgzteziz?print head Le"e]. dom
— Failto
Lo Nest . | Pass, then
| Macros v | run the
Degree [ 2] model.
Attributes (v
Transform (v
No Intercept
-~ v

Notes




Example (cont'd)

Effect Summary

Source LogWorth

Adhesive*Print head 3.721

Print head 2.254

Adhesive 0.410 |1

Effect Likelihood Ratio Tests

L-R

Source Nparm DF ChiSquare Prob>ChiSq
Adhesive 3 3 3.01536048 0.3893
Print head 1 1 7.68556658
Adhesive*Print head 3 3 19.7623242

Prediction Profiler

Result

Pass P.975

- ~N ) < - o
< < < < (] (o]

Adhesive Print head

PValue
0.00019
0.00557 ~
0.38926 ~

* The Adhesive factor was
insignificant, but we left it in
the model to preserve model
hierarchy (Adhesive*Print head
1s significant)

* On the Prediction Profilerred
triangle select Optimization and
Desirability — Desirability
Functions

* See next slide

Notes




Example (cont'd) 4

Prediction Profiler

e .
;23355 D.975 o
* Double-click in
the blank area

1
z 0.75 * Enter 1 for Pass
§05 05 and 0 for Fail >
e s OK — OK

0

- ~N m 2.t g ~ o ) W W —
< o a qivgae
r o (=)

Adhesive Print head Desirability

Notes




Example (cont'd)

- 0
-
=
(5]
==

* Prediction Profiler red triangle — Optimization and Desirability — Maximize
Desirability

* The failure rate predicted from the optimization was 0.025 or 2.5% (current
state failure rate was 20% or more)

* Best combination was D1 with Al

Prediction Profiler

ve———aig5 2 s oss222s g q

Pass 0.975 o

Result

2 0.75
S
©0975 05
3 x
o 0.25
0
- ~N ~ - — ~N o Wy " W —
o Lt it i 0 o 25 R
Adhesive Print head Desirability

|

Notes




e

Exercise 8.1 146

A Black Belt wants to minimize the occurrence of bubbles and ripples in the urethane
coating on truck nameplates. The X variables and ranges are:

- Badge temp: 20 to 40
~ Mixing ratio:  92.6 to 94.6
~ Curing temp: 30 to 55

* Data sets \ urethane coating pass-fail

» Run the Model script 1n the left panel. In the Model Specification, switch the Target
Level from Fail to Pass, then run the model.

* Remove nsignificant terms from the Effect Summary (P> 0.15).
*» Use the Prediction Profiler to find a factor combination that maximizes the yield.

* The current state yield was about 95%. What 1s the predicted yield for the improved
process?

Notes
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1 Designed Experiments vs “File Cabinet” Data o

T}

| F——

All experiments are experiences, but not all experiences
are experiments. — R. A. Fisher

File cabinet data

DOE

Data sets

Data collection

Information provided

Interactive effects?

Time period covered

Larger, “messy”

Routine operation

Correlations

Maybe

Longer

Smaller, “clean”

Controlled conditions

Cause and effect

Definitely

Shorter

Notes




a

Ronald Fisher was an English geneticist and mathematician trying to increase crop
yields in the 1920s. There were limited numbers of plots available for field trials,
gradients 1in the soil, variable proximity to water sources, differing amounts of sunlight,
and long lead times. To solve these problems, Fisher developed a body of statistical
methods known as Design of Experiments (DOE).

During World War II, Fisher’s techniques were extended and applied to military
optimization problems. After the war, they were further extended and applied to
industrial problems like improving the quality and reliability of manufactured
products. For his lifelong contributions to science and statistics, Dr Ronald Fisher
eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between
observational studies (analysis of “file cabinet” data) and designed experiments. This
distinction is as important today in Six Sigma as it was a century ago in agriculture.
After all, both are concerning with increasing yields!

Notes




Case study: structural jet engine components

,,,,,

Typical
jet engine

Notes




Case Study: Typical structural component of jet engine B

* Back in the day: many small
pieces welded together

* Now: one piece casting
* 3 to 6 feet in diameter

» Stainless steel, nickel alloys,
titanium alloys

Notes




Case study (cont'd) »

* Value stream: investment casting of nickel alloy structural
components

* Process boundaries: shell making through backend processing

* Experiencing “orange peel” surface condition violating
customer smoothness requirements

* 12% scrap rate (big parts — big $9$)

* Y =f(X): analyze existing production data

Notes




Investment casting process

Notes




A big signal

Castings:
% with
‘orange peel

70—

60—

50—

40—

30—

Furnace the shells were baked in

Notes




Notes

The strongest correlation in the database involved one of the pre-heat furnaces used to
bake the ceramic shells before transfer to the casting fumace. Fumnace 2 was new and
had come online just about the same time orange peel started occurring. Almost
everyone agreed the new furnace was the problem.

The casting area manager refused to take Fumace #2 off-line. He needed all six pre-
heats to keep the casting furnace running nonstop so he could meet his production
quotas.

Process Engineer Dave (shown above) was skeptical that Furace 2 was causing the
problem. For one thing, the other pre-heats were also producing scrap castings. Also,
he had spent the better part of the past three months evaluating and qualifying the new
furnace.

Notes




Another big signal i’ l

==

Bake 40 —

R

20—

1 9 3 4 5 6

Furnace the shells were baked in

Notes




Notes n

Dave pointed out that the shell bake times were much longer for Fumace 2 than for the
other furnaces. There was a minimum required bake time, but no upper limit. Dave’s
theory was that orange peel was caused by long bake times.

Why did shells stay longer in Furnace 27

It turned out there wasn’t room to put the new furnace next to the original five, so it
had to be located further away from the casting furnace. The fork-lift operators
wouldn’t drive over there unless they had no shells ready from the closer fumaces, so
shells tended to sit in Furnace 2 for a long time.

Notes




Autopsy

* [t could not establish the cause of the defect

» The quantity of data was
not the problem

* The data lacked the
structure required to
determine cause and
effect

The file cabinet data suggested some plausible hypotheses

? <
= ?
Furnace #2 Others

Short
bake

Long
bake

Notes




Notes 12 I

There was lots of data in the upper right-hand and lower left-hand cells in the table
above, but virtually nothing in the other two cells. Making sure that data tables like the
one above are completely filled out is one of the basic principles of experimental
design.

Subsequently, engineers ran enough parts in the upper left-hand comer of the table to
determine that long bakes were indeed causing the problem. An upper limit on the bake
time was developed and put in place. Shells that exceeded this limit were scrapped.
This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange
peel problem go away.

Notes




The Role of DOE in Process Improvement

g

-
|

Y = £(X)

* DOE is an effective way to collect data for
identifying critical x’s, in a relatively short period
of time

analysis | In a Lean Six Sigma project, data collection in the
Measure phase may have produced little or no
useful information.
) * May have multiple potential improvement ideas on
Developing| the table
the future
state| * POE is an effective way to evaluate these ideas

prior to defining the future state

Notes




Example

* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

* Engineers developed a list of factors
for a DOE

Notes




Example (cont'd)

lrl_,
15
——

Current state

Possible future

Factor Levels Xvariable | state solution
Slurry for shell Batch 1 vs Batch2 v
Shell thickness 14 dips vs 18 dips v
Shell bake time 6 hrs vs 48 hrs v
Shell bake temp 1950° vs 2050° 4
Alloy grade Low $ vs High$ v
Alloy status New vs Revert v
Heat shield steel Mild vs SS v
2400 vs 3200 ¥,

Cooling fan speed

Notes




2 One Factor at a Time?

» In this approach, each factor is varied with all others held constant.
This way, it is felt, we can see the “pure effect” of each factor.

» This is one way to apply the scientific method, but it is not the only
way, and not the best way!

» For any proposed one at a time experiment, there is usually a
multifactor experiment providing:

v More information
v Better results

v'Same (or possibly smaller) total sample size

* One at a time trials are useful for determining feasible ranges for
factor in a DOE

Notes




Example: potato chip bags E
—

* The current average bond strength of our potato chip bags is 86 psi

* Based on customer complaints, we need to increase the bond strength

* The most important control factors in the bag sealing operation are
temperature and dwell time (see below)

» Secondary objective: decrease the dwell time if possible

Factor Current level | Feasible range

Temperature 150 120 to 180

Dwell time 1.0 secs 02to20

Notes




One-at-a-time experiment #1 19

Vary dwell time over its feasible range while holding temperature at 150

100 —

88
Bond 86
strength

60—

0.2 1.0 1.4 2.0
Dwell time

Notes




Notes

Our process engineer Chip Kettle first studies the effect of dwell time while holding
temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to

2.0. Chip finds he can increase the bond strength by 2 psi by increasing the dwell time
to 1.4.

Our production manager Justin Thyme 1s not pleased with the prospect of a 40%
increase in dwell time.

Notes




One-at-a-time experiment #2 2

L

Vary temperature over its feasible range while holding dwell time at 1.0

100

Bond ¥
strength  gg K

60

]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I

120 150 161 180

Temperature

Notes




Notes

Chip now studies the effect of temperature while holding dwell time constant. He seals
and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can
increase the bond strength by 2 psi by increasing the temperature to 161.

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will
increase the average bond strength by 4 psi (2 + 2). However, it 1s highly likely that
Justin will oppose the increase in dwell time, in which case the increase in average
bond strength will be only 2 psi.

Notes




The multi-factor approach

23 9

209 ® @
Dwell 4 & e " SSRPTOIPCI ST, ..} [
time
02 ¢ * ]
120 150 180
Temperature

v" 9 design points (e)

v' 2 bags sealed at
each point

v Total sample size:
N=18

Notes




Contour plot of predicted average bond strength Eﬂ

Chip's prediction of
90 psi at 161" and 1.4
secs was way of f

ZO-Q\\\\\\\-—)

Dwell
time 1.0

Bond strength
exceeding 90 psi
at 180° and 0.2
secs

®

120 150 180

Temperature

Notes




Why one-at-a-time doesn’t work

Bond

The 3D perspective

Notes




Notes o

When we experiment with all factors, but one held constant, we optimize sequentially
over one-dimensional profiles. The sequence of solutions generated by this process 1s
highly dependent on the starting point. It has very little chance of finding a global
optimum, and often fails to move a significant distance from the starting point.

Notes




3 DOE Terminology

Experimental unit
The outcome of a single application of the
process being studied

Sample size
The total number of experimental units
(“number of runs”)

Response variable
AY variable measured or inspected on each
experimental unit

Process

Notes




Notes = I

The experimental unit 1s often a part, lot, batch or single transaction of some kind. It
may also be a test specimen or sample of material. It i1s important to identify the
experimental unit—it provides the basis for counting sample size, and sample size 1s
critical in determining the statistical significance of the results.

The experimental unit is determined by the process on which we are experimenting,
not the measurement plan used to evaluate the results. For example, suppose we test
100 devices for product life. Suppose we measure a degradation parameter on each
device every 10 hours until the end of the test at 100 hours. The sample size for the
study 1s the number of units (100), not the number of measurements (1000).

Notes




Example

29

[pe———

* 11 silicon wafers were subjected to vapor deposition at various temperatures,

pressures, and Argon flow rates

* The thickness of the resulting layer was measured at 8 locations on each wafer

» What 1s the sample size?

Temp Press

180
180
180
160
160
160
160
200
200
200
200

0.3
0.3
0.3
0.4
0.4
0.2
0.2
0.4
0.2
0.2
0.4

Flow

30
30
30
10
50
50
10
10
10
50
50

Thickness

Notes




Example (cont'd)

30

[re———

* The sample size is the number of experimental units, not the total number of

measurements taken

* The response variables of interest may be statistical summaries of multiple
measurements on each unit

Temp Press

180 0.3
180 0.3
180 0.3
160 0.4
160 0.4
160 0.2
160 0.2
200 0.4
200 0.2
200 0.2
200 0.4

Flow

30
30
30
10
50
50
10
10
10
50
50

Avg.

Std. dev.

Notes




DOE terminology (cont'd)

B

Factor
An X variable controlled in an experiment,
varied on purpose to determine its effect
on the responses

Level
A particular value or setting of a factor to be
used in the experiment

Requirements
All levels of each factor must be logically
and physically compatible with all levels of
the other factors

g%
!

Temperature

Notes




f
Notes g !
Variables used as factors in a designed experiment may or may not be controlled in the

routine process. What matters is that they can be controlled for the purpose of
experimentation.

Notes




DOE terminology (cont'd)

Examples of continuous factors

Time
Temperature
Pressure
Energy
Voltage
Resistance
Concentration

Flow

Volume
Weight
Length
Width
Density
Rate
RPM

Intensity . . .

Notes




Notes u

* A factor 1s continuous if it can be varied within some range on a scale of
measurement

» It1s generally preferable to use 3 equally-spaced levels (low, medium, and high)
for continuous factors

* Even though only two or three levels of a continuous factor will be used in an
experiment, it is advantageous to identify it as continuous, rather than
categorical

* Even when some levels of a continuous factor would not be applied to the process
after the experiment, it is advantageous to still treat the factor as continuous in the
experimental design and analysis

— Example: After an experiment, we find that the optimal temperature
setting 1s 117.13°. We may choose to set the temperature to 115° or 120°.
We still treat temperature as a continuous factor in our experiment.

— Example: We know that if we determine that the optimal Introductory
Time Period for an offer 1s 3.37 months, it wouldn’t make sense to offer
that to our customers. We would offer them an Introductory Time Period
of 3 months. We still treat this factor as continuous in our experiment.

Notes




DOE terminology (cont'd)

;35 h

| [S——

Examples of categorical factors

Method
Tool set
Material
Supplier
Operator
Color

Size

Old or New

1,2 0r3

A,B,CorD

X,YorZ

Bob, Carol, Ted or Alice
Cyan, Magenta or Yellow

Small, Medium or Large

Notes




Notes

» A factor 1s caregorical if it 1s not possible to have it at all values on a measurement
scale

* Treating a factor as continuous implies that any value in the range can be used in
the process

+ If the levels used 1n the experiment are the only possible values, even when the
categories are described by numbers, the factor should be treated as categorical

— Example: Pizza pan sizes of 107, 127, 147, 16 (10.26” doesn’t exist)

— Example: A control parameters for certain electron microscopes has to be a
power of 2.

— Some JMP DOE platforms now have the option of Discrete Numeric, in
addition to continuous and categorical, to better handle these cases

Notes




DOE terminology (cont'd)

Categorical factors

Continuous factors

Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 2 - 3 levels

Region in factor space

Response surface modeling

Interpolate between design
points

Notes




DOE terminology (cont'd)

Control factors

Noise factors

Can be controlled in the
routine process

2
Type of material

Temperature
Pressure
Method

Time

Cannot be controlled in
the routine process

s
Ambient conditions
Raw materials
Operators
Suppliers
Batches
Setups
Shifts
Lots

Is it good practice to include noise factors in experiments?
Why or why not?

Notes




DOE terminology (cont'd)

Desion point

A particular combination of levels
of the factors.

Desion matrix

The set and sequence of design
points to be used in the experiment.

Full factorial
The set of all possible design points
for a given set of factors and levels.

Temp Press

120 50

120 150
180 50
180 150

v’ Full factorial

v 4 design points

v No repeats (replication)
v’ Sample size =4

syun [eyuawLadx

Notes




DOE terminology (cont'd)

Replicate run Temp Press
An experimental unit created independently 120 50
of other units at the same design point 120 150
Replicate 180 50
A set of replicate runs, one for each unit in 180 150

a given set (usually a replicate of a full
factorial) 120 50
120 150

False repeat

* Repeated or multiple measurements on 180 50
one unit 180 150

* Units in the same batch, when T s 2
optimizing a batch process for which S
. _ oo S v 4 design points
there is very little within-batch variation v 1 replicate
v' Sample size = 8

Notes

syun [eyuawnLadx A




Exercise 3.1

A bank wants to increase the yield of its credit card offers. It plans to collect VOC data
by means of a DOE mvolving the factors in the table below. The bank plans to send out
1000 offers for each combination of the factor levels. Based on the data, they will
determine the combination with the greatest % yield.

(a) What 1s the Y variable?

(b) What 1s the experimental unit? (Consider how Y will be measured)

(c) How many design points are in the full factorial?

(d) What 1s the sample size?

(e) For each factor, decide whether you would treat it as quantitative or categorical (give
your answers and reasons in the table below).

Notes




Exercise 3.1 (cont'd) £
Factor Levels Continuous or categorical?
Introductory APR 0,2.50r 5%

Introductory time
period

3, 6 or 9 months

Gift

iPhone, 1Pad,
microwave or
espresso machine

Notes




4 The Full-Factorial Design

/

/C

A

The full-factorial design contains all possible combinations of the
specified factor settings

Above is an image of a 23 full-factorial with center points (continuous factors)
* The full-factorial requires one run at each design point (8 for this 2%)

= 35 center points are recommended in a 2¥ design

* Total runs required for this full-factorial are 11-13

A 2% full-factorial design can estimate main effects and interactions

Notes




Full-Factorial Design (cont'd)

L . ] 'y
L ® .
B ; . 4
» : . ,l’é
A

Above is an image of a 3% full-factorial

* The full-factorial requires one run at each design point

* “Centerpoints” are part of the design points (the middle level of the factors)

* Total runs required for this 3% full-factorial is 27

* This type of design is usetul when some factors are continuous, and some are
categorical (there could be 3-level categorical factors in the picture above)

A three-level full-factorial (3"' ) design can estimate main effects,
interactions and quadratic effects, but is an inefficient design.

Notes




Main Effect of a Factor in a Factorial Design

High (+) <

Factor B

Low (-)

Low High
-) (+)
Factor A

Main Ef fect of A = Avg Response A (High) — Avg Response A (Low)

Main Ef fect A
2

Coefficient A= B, =

Notes




Example: Main Effect of a Factor

y 5 2

High (+) + O ¢

Factor B
Low () =T 41 60
i %

Low High

-) (+)

Factor A

Main Ef fect of B = Avg Response B (High) — Avg Response B (Low)

_ 50472 40460 _ 122 100 _ .,
2 2 2 2

What is the Main Effect of Factor A in this example?

Notes




Example: Coefficient of a Factor

High (+) 1 50 72
Factor B

Low () =T 41 60

i %
Low High
(-) (+)
Factor A
= Main EffectB 11
Coefficient B = pB; = =—=25.5

2 2

What is the coefficient for Factor A in this example?

Notes




Example: Interaction Effect

Factor B

High (+)

Low (-) <

50 72
" 40 60
1 |
| |
Low High
(-) (+)
Factor A

A*B Interaction Effect = Avg Response A « B (High) — Avg Response A x B (Low)

A-B Interaction Effect =

72+40 _ 50460 _ 112 _ 110 _ 4

2 2

Notes




Example: Interaction Effect

it can be helpful to refer to the experimental design matrix.

To determine which values are for A*B High and Low,

Multiply the + and — in the A and B columns in the design matrix
to get the + and — for the A*B column.

Factors
Run | A B | A*B | Response
1 - - + 40
2 - + - 50
3 + - 60
4 + + 72

Notes




Example: Interaction Effect

2
High (+) + *° &
Factor B

LOw () =T 4 50

l |

T T
Low High

(-) (+)
Factor A

What is the A-B Interaction Effectin this example?

Factors

Run A B | A*B |Response
1 : =
2 - +
3 .
4 +

Notes




Interaction Plots

Interaction Plots graphically show interaction

« B+

70+ 3
60+ ~~ _a»B-
Shicte e
04+

L l

| |

- +

Factor A

Interaction Plot for the first
example

No interaction—slopes of
lines are approximately equal

601+ o
50 4 e & B -
40+ /
304 wBiF
1 1
] 1
Factor A

Interaction Plot for the data
on the previous slide

Interaction present—Iines
have different slopes

Notes




Creating a Full Factorial Design

DOE — Classical — Full Factorial Design

1. Define responses, factors, numerical ranges for continuous factors, and levels for
categorical factors.

~ Full Factorial Design

4 Responses
|Add Response v| [ Remove | [Number of Responses..
Besponse Name ~Soal Lower Limit Upper Limit Importance
([Maximize ] 1. T T
4 Factors
EContinuous | |Categorical v} | rRemove_} Add N Factors 1
Name Role alyes
A Intro APR Continuous 0 2.5 5
A Time Period Continuous o
ik Gift Categorical None |iPhone [iPad |Espresso
Specify Factors

Add a Continuous or Categorical factor by clicking its button. Double click
on a factor name or level to edit it.

Notes




Creating a full factorial (cont'd)

- : #
2. If desired, add extra center points , request one
o %k %k E
or more replicates  and/or pre-sort the matrix.
For a 2 full-factorial, center runs are

recommended. When you are ready, click Make
Table.

3x3x4 Factorial
Output Options

Run Order: Randomize v

Number of Runs: 36

Number of Center Points: 0 \>

Replicates: 0
Make Taﬁtlle
Back |

e

x
Each center point = one additional row (run)

xx
Each "replicate” = one additional set of 36 rows

SO W muWwE WwN

Pattern Intro APR

312
124

232
231
134

322

332

N

win i owmrw

coinooinw

5
0
0
0
5
5
0

hihowowuvmwminhownhuwnm

Time Period

O O WO WO W W

TN - TR

[PPRRT- - - - - Y

O WV WeW O WO W W

O oo W W

Gift
iPhone
iPhone
Espresso
Pad
iPhone
None
Espresso
iPhone
iPhone
Espresso
None
None
iPad

3 Espresso

iPad
None
iPad
Espresso
iPhone
None
iPhone
None
iPad
iPad
None
None
iPhone
Espresso
iPad
Espresso
Pad
Espresso
iPad
Espresso
iPhone

None

% Yes

Notes




Simulating response data (so we can see how analysis works)

- ! b4
3. Create two new columns called Sl |Pattern |iotroAPR |Touc Porind | Gt | ves | Somt
' 1312 5 3 iPhone « 1000 .
Sent and Returned. 315 2 S 50 :
3124 0 6 Espresso s 1000 »
) 4113 0 3 Pad « 1000 .
4. Click on the Sent header — 5 232 25 3 iPhone « 1000 :
o 6231 25 9 Neone * 1000 .
double-click on the Sent header 7114 0 9 Espresso . 1000 .
v 8 322 5 6 iPhone « 1000 .
Column Properties— select 91332 5 3 iPhone . 1000 .
10214 25 3 Espresso * 1000 .
Formula — enter the value 1000 ]33 3 3 e . 1000 :
in the little box — OK — OK b >3 2 Loone L :
14 314 5 3 Espresso s 1000 .
] 151323 5 6 iPad * 1000 .
S. The Returned column 1s where we 16 321 5 § None « 1000 .
17 1123 0 6 iPad * 1000 .
would enter the number of offers 18 324 5 3 . 1000 -
3 19 132 0 9 iPhon « 1000 .
accepted. To simulate the data, 20 211 25 e . 1000 -
= 21222 25 6 iPhon « 1000 .
double-click on the header and e > S e v
name the column — Column e = i g i :
Properties — Formula — Edit s ) ° 3 Vone . 3;3 y
FO"’"’Ila 27 212 25 3 iPhone « 1000 .
28 224 25 6 Espresso « 1000 .
29 313 S 3 iPad e 1000 .
30 334 5 9 Espress: e 1000 .
6. Enter the commands shown on T % P ) S
= i [ 32 14 0 3 Espresso s 1000 .
the next slide, then click OK. s = s o3 !
34 234 25 9 Espresso « 1000 .
35 122 0 6 iPhone « 1000 .
36 13 0 9 None e 1000 .

Notes




Simulating response data (cont'd)

w|3x3x4 Factorial

v

FOITI'IUlaZ Design  3x3x4 Factorial
P Model
P Evaluate Design
Random > DOE Dialog

\

Random Integer[nl]

Random Integer[50]
OK — OK ~ ! Columns (7/1)

ik Pattern @
7. Define % Yes ety
. h Gift 3k
with the formula Aved ¥
A Sentp
A Returmned
Returned
—— [*100
Sent
8. Run the Model
script provided
in the left panel. SR
rows
(Click on the iz )
. Hidden
green triangle) Labelled

w

oo oo

-

1(312 5 3
2(112 0 3
3124 0 6
4[113 0 3
5/232 25 9
6231 25 9
7134 0 9
8 (322 5 6
9332 5 9
10 214 25 3
11331 5 9
12121 0 6
13223 25 6
14 314 5 3
15323 5 6
16 321 5 6
17123 0 6
18 324 5 6
19132 0 9
20121 25 3
21222 25 6
22 5 3
23 25 3
24 5 9
25 0 3
262 25 6
27 25 3
28 25 6
29 5 3
30 5 9
31233 25 9
32114 0 3
33 133 0 9
34 234 25 9
35 122 0 6
36 131 0 9

Pattern Intro APR Time Period

Gift
iPhone
iPhone
Espresso
iPad
iPhone
None
Espresso
iPhone
iPhone
Espresso
None
None
iPad
Espresso
iPad
None
iPad
Espresso
iPhone
None
iPhone
None
iPad
iPad
None
None
iPhone
Espresso
iPad
Espresso
iPad
Espresso
iPad
Espresso
iPhone
None

41
07
16
39
29
44
11
11
1.7
32
1.7
38

19
33
45
44
42
44
35
25

03
1.6
1.7
21
25
05
06
46
21
05
46

1.6

Sent
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

Returned
41
16
39
29
44

Notes




Analyzing the simulated data

4 ~ Model Specification
Select Columns

¥ 7 Columns

i Pattern

4 Intro APR

A Time Pericd

i Gift

K
A Sent

4 Returned

Pick Role Variables

; _y_ | A% Yes

[ Weight |

| Freq |

T

Construct Model Effects

1 Add 1 I.'?tro APR
—————— | Time Period

[ Cross it

e Intro APR*Time Period
[==xNest™ »—:] Intro APR*Gift

A:ja(ros :J Time Period*Gift

Degree | 2|

K|
Attributes v
Transform =

[] No Intercept

Personality:

Emphasis:

[ Help_]
[ Recall |

[Remave ]

Standard Least Squares v

Minimal Report Y

[_Run
(] Keep dialm

When you click Run, JMP will use regression to create a “model” for the
process, that includes the terms under Construct Model Effects.

Notes




Getting to “yes”

*» Point and click to find the combination with the highest % Yes

* Because it i1s simulated data:
o vyour profiler won’t look exactly like this one

o don’t be alarmed if your “best” combination doesn’t make sense

~ Prediction Profiler

5
ST
> (208973, 3
* 406583 2
1
0

o - ~ m < nm €€ n O N~ © O o < o (=]

[=4 c o v

S 8 & g

pd & ®

3

Intro APR Time Period Gift

Notes




5 Statistical Assumptions 59

| —

Average Y as a function of X has no jumps or corners
(assumption of smoothness)

Continuous
Y

Continuous X

Notes




Notes n

A hypothetical smooth response function.

We never know the true response function, but often we have information about its
general properties. For continuous X and Y, smoothness of the Y = f(X)
relationship 1s one such property. It means the function can be well approximated
over sufficiently short intervals by a polynomial, usually linear or quadratic. This
1S necessary in optimization experiments where we want to interpolate between the
experimental design points.

These experiments are designed for continuous Y response. If you have a pass-
fail response, see 1f you can turn it into a continuous response. Here are a few
1deas:

» If you measure something on a continuous scale, but only record whether it
passed or failed in your normal operation, record the actual measurement
during the experiment.

» Ifyou typically use a go-no go gauge, actually measure the part during the
experiment.

» Record the size of defect instead of whether there 1s or 1s not a defect.
* Other 1deas?

Notes




3

Non-smooth response function

-}
-

|
I

Average Y as a function of X has jumps and/or corners

Quantitative
X

Quantitative X

Notes




Notes

A hypothetical non-smooth response function.

A function with jumps or sharp comers will not be well approximated by low-order
polynomials in neighborhoods of the associated X values. This is a problem in
optimization experiments because we want to interpolate.

It may or may not be a problem in screening experiments, because there we are merely
trying to identify factors with large first-order effects. Accurate approximation
throughout the X range 1s not required, although we may not be able to see the impact
of the factor under certain circumstances. (You can see in the picture above that the
response, Y, 1s at nearly the same level across various X values.)

Jumps and sharp comers often occur outside the feasible operating range of the
process. In fact, such discontinuities often define the feasible operating range. A
smooth response function is usually a safe assumption as long as we are not operating
too close to a “chiff.”

Notes




Occam’s razor 63

“One should not increase, beyond what is
necessary, the number of entities
required to explain something.”

—William of Occam, medieval philosopher

Exact “French curve” Linear plus noise

Notes




Notes l 64 I

Occam’s razor represents a preference for simple explanations over complex
ones. This reflects a belef that simple hypotheses are more likely to be true
than complex ones. This belief 1s not always justified, but it 1s efficient 1n that 1t
leads to models with just enough complexity to explain a given set of
observations.

We can always find a sufficiently complex curve passing exactly through any
given set of data points. The predictive ability of this “over-fitting” method
is notoriously poor. The more successful “Occam™ strategy 1s illustrated by
random variation superimposed on a simple linear model.

Notes




Standard assumptions on the response function

65

vY = f(X}, X5, X5,...) + error

v Can’t assume f(X) explains everything (hence the error term)

v Can’t assume f(X) is linear, but quadratic model is almost
always sufficient

« f(X) may include second order interactive effects
« f(X) may include quadratic effects

v Don’t need cubic or higher order models
« Don’t need higher order interactive effects

Notes




Review: Least squares model fitting

. 66

lom e

For each of 18 potato chip bags, we have data on

T = bonding temperature
D = bonding time (duration)
Y = bond strength

The best fitting response surface model (RSM) is the one whose
parameters
by, by, by, by, by, bs

minimize the sum of squared residuals:

Z[Y (b, +b,T+b,D+b,TD+b,T> +b.D )|’

{18 bags|

Notes




Least squares fit of Response Surface Model (RSM)

4, 2
Avg. Y =87.2+83(T)+7.7(D)-31.8(TD)-16.1(T?)-13.2(D?)
A B c D E F G
1 TEMP DWELL BOND Prediction Noise
2 1 1 11.0 10.08 0.92
3 b -1 89 10.08 1.18
4 A 0 639 62.80 1.10
5 1 0 60.4 62.80 -2.40
6 1 1 932 89.07 413
7 1 1 86.5 89.07 257
8 0 - 657 66.30 -0.60
9 0 1 67.7 66.30 1.40
10 0 0 88.4 87.20 1.20 least squares
1 0 0 83.0 87.20 0.80 modeling_xls
12 0 1 82.0 81.65 035
13 0 1 785 8165 315
14 1 1 88.1 90.37 227
15 1 - 921 90.37 1.73
16 1 0 772 79.45 225
17 1 0 81.0 79.45 155
18 1 1 395 42.08 258 6 terms 1n model
19 1 1 45.9 42.08 3.82 (equation shown above)
20 Sum of squares (SS)| 93876.58 93792M
21 Degrees of freedom (DF) 18 6 12
22 RMSE | Square root of noise (SS/DF) i 265 = V 8418/12
23

Notes




6 Statistical Models

Linear in the Xs

Average Bond = 67.2 + 8.3(TEMP) + 8.3(DWELL)

Notes




— —

Notes 70

Fa— |

Response surface: tilted plane.

Simple linear models like the one shown above are used in screening designs. In many

cases, simple linear models fit the data poorly, and do not give accurate predictions.
They should not be used for optimization experiments.

Simple linear model: Y =by+ byxy + byxy + -« + by xy,

Notes




Linear interaction model

|
7

e

Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMPx DWELL)

100 -

BOND

Notes




Notes 72

Response surface: saddle.

Linear mteraction models like the one shown above usually fit the data much better
than simple linear models.

They imnclude all main effects and all interaction effects.

They are good for optimization experiments where all factors are categorical. but they
should not be used for optimization experiments mmvolving quantitative factors.

Linear interaction model:

Y = by + byxy + byxy + 4 bix; + byp Xy Xy + by3xyx3 + -+ + byjx;x;

Notes




Response surface model (RSM)

Avg. BOND = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMPxDWELL)
-15.5(TEMPxTEMP) - 12.9(DWELLxDWELL)

BOND 2

o m——— 7 DWELL
TEMP ™ '@ 10 0 °

Notes




Notes 74

Response surface: ndge.

The response surface model (RSM) shown above is the standard model for
optimization experiments.

It differs from the linear interaction model 1in that it includes quadratic (squared)
terms for all continuous factors, in addition to all main effects and interactions.
Quadratic terms are never used with categorical factors.

In experiments involving continuous factors, the RSM may fit the data much better
than the linear interaction model. In other words, the response surface model may
be a better model of the process.

Response Surface Model RSM):

Y= bo + blxl -+ bzxz + oo 4 b,-x,- o bllexz -+ b13x1X3 + oo 4 bl'jxix]'
+b11xf + b22x22 + YUY + b,-,-xiz

Notes




RSM for a different data set (process)

Avg. TENSILE = 22.5 - 3.3(RATE) + 3.4(RPM) - 3.6(RATExRPM)
- 4.8(RATE x RATE) - 5.6(RPM x RPM)

20

TENSILE

200

RATE

Notes




Notes 76

Response surface: hilltop.

Other response surface shapes include inverted saddles, inverted ridges, and bowls.

You can’t tell from the plot alone, but n this example the RSM model does not fit the
data very well.

Notes




RSM plus quadratic interactions

Avg. TENSILE = 22.4 - 8.5(RATE)+ 8.6(RPM) - 3.2(RATE x RPM)
- 6.1(RATE?) - 4.8(RPM?) - 7.0(RATE2x RPM)
+8.1(RATE x RPM?)

20,

TENSILE

Notes




)

Notes 78 '

The shows a more complicated quadratic model fit to the same data as on the previous
page. This model tumns out to fit the data well.

Model terms like
RATE x RATE x RPM
RATE x RPM x RPM
RATE x RATE x RPM x RPM
are called quadratic interactions. Adding one or more quadratic interactions is a good

thing to try when an RSM model does not fit.

It 1s also possible to add other higher-level terms (cubic, three-way interactions), if the
sample size 1s large enough to support the extra terms . . .

Notes




Higher-order polynomial models? 79

3 order polynomial (cubic)
A\/g Y == b0+ le + bzX?' i 3 b3X3

¢

4 order polynomial (quartic)

Avg. Y = b+ b, X + b, X2 + b, X3 + b, X*

Notes




Notes 80

Even though third- or higher-order models may fit the data better than quadratic
(second-order) models, they are rarely used in DOE. Why? They require much larger
samples sizes for any given set of factors.

It 1s much more common to use quadratic models in an iterative fashion. A quadratic
model may not fit the data well over a large nitial factor space, but it almost always
tells us which subset of the initial factor space 1s most likely to give the results we are
looking for. The next step 1s to run another quadratric experiment in the smaller
region. The smaller the factor space, the better the quadratic model will fit the data.

This concept 1s illustrated on the next page.

Notes




lterated quadratic experiments

First experiment, wide ranges — “big picture”

Y ® //
(response to be 3

minimized) First quadratic
approximation

True
response
. function

*—— Data points

[ [ [
Low X Medium X High X

Notes




lterated quadratic experiments (cont'd) 82

Second experiment, narrow ranges — accurate modeling

Second quadratic
approximation e Vet

| I I
LowX Medium X  High X

Notes




Review: Models for categorical factors |

Twvo-level categorical factor

MATL = Steel or Rubber

u; if MATL = Steel

Average COST =
i, if MATL = Rubber

Notes




Equation form of model

Categorical factors are represented by indicator variables
(also known as dummy variables)

Average COST = b, + b, MATL|[Steel]

1 1if MATL = Steel

MATL[Steel] = _
-1 if MATL = Rubber

Notes




Simple linear model with all factors categorical

Avg. COST = b,

+ b, LGR[Low]

+ b, MATL[Steel]

+ by USAGE[50%]

+ b, GRIT[30]

KAnangy: blue book pricing of used ca

* Base price + extra for power windows
+ extra for air conditioning
+ extra for cruise control
etc.

-

\

rs

J

4.868125
"High" = -0.616875
+ Match| LGR| "Low" = 0.616875

else =

"Rubber” = 1145625
+ Match| MATL || "Steel’  =-1.145625

else >

"50%" = 1.054375
+ Match| USAGE|| "75%" = -1.054375

else =

"30"=-0.048125
+ Match[ GRIT] "50"=0.048125
else = .

Notes




Categorical interaction model

86

Avg. COST = b,

4 R
# Factors | 4 G
Full factorial (FF)| 16 32 64
Min. sample size| 11 16 22
%of FF| 69 50 34

. y,

+ b, LGR[Low]

+ b, MATL|[Steel]

+ b; USAGE[50%)]

+ b, GRIT[30]

+ bs LGR[Low] x MATL[Steel]

+ by LGR[Low] x USAGE[50%)]
+ b, LGR[Low] x GRIT[30]

+ by MATL[Steel] x USAGE[50%)]
+ by MATL[Steel] x GRIT[30]

+ b, USAGE[50%] x GRIT[30]

Notes




7 Design Principles 37u

Bold strategy

“Control group”

Replication

Randomization

“Blocking”

Notes




Bold strategy s }\

Use the entire feasible operating range in a first experiment

Linear approximation

Continuous
Y

True response function

e «— (X Y)datapoints

I
Ly Continuous X High

Notes




Not bold enough 89

i

* Low and high levels of X are too close together

* We mistakenly conclude that X has no effect on Y

Continuous
Y

Low High
Continuous X

Notes




“Control group”

90]

For each factor, one of the
levels should match the
current process

» Ideally, this i1s the middle
level for continuous factors

* At least one run in the
experiment should match the
current process settings, for a
“sanity check”

» In these types of designs, we
don’t usually refer to this as
a “control group”

Temp

Press Dwell Mat’l

120
120
120
150
150
150
180
180
180

150
50
150
50

00,

150

02.

2.0
14)
2.0
0.2
2.0
0.2

C

C
(A]
B
B
C
A

Notes




Notes A

The units mvolved in a DOE may turn out to be uniformly different from those in
current production — either better or worse. This can be due to the effects of noise
variables on production units, or to special circumstances surrounding the creation
and handling of experimental units.

For each factor, one of the DOE levels should match the current state value of that
factor. This allows valid comparisons between current state and experimental process
settings. This 1s especially important when non-routine measurements, tests or
inspections are applied to experimental units.

Notes




Replication

192 l

Use a replicate or a
replicate run to
quantify the error

in the experiment.

This improves estimates
of coefficients and
precision in determining

factor significance.

Experimental
Temp Press units
120 50
120 50
120 150
120 150
180 50
180 50
180 150
180 150

Notes




Notes =

Replication forces redundancy into the experiment. This 1s necessary for two reasons:

* To quantify the magnitude of error in the experimental data — differences between
units at the same design point are, by definition, due to error (variation in the
process that 1s not accounted for in the factors).

» To reduce the influence of error on the experimental results by estimating “pure
error.” This increases the signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the
validity of the results. Is there anything about the run order shown above that makes
you nervous? Please explain.

Notes




Randomization

Use a random number
generator to determine
the sequence in which
experimental units are
created and tested

(JMP does this for you.)

Experimental
Temp Press units
120 150
180 50
180 50
120 150
180 50
120 150
180 150
120 50

=
94

e

Notes




Randomization 95

Benefits

* Reduces the chance of biased results due to nuisance variables
(factors not included in the experiment that may be changing while
the experiment is being conducted)

-Doesn't require control of nuisance variables, which may be

unknown or uncontrollable

‘Results are more convincing to skeptics

What happens if vou don 't randomize?

* Nuisance (noise) variables may be changing during your experiment
* This increases the chance of drawing the wrong conclusions from
your experiment (significant factors, best levels, etc.)
* Randomization guards against this

Drawbacks
- Impractical when some of the factors are hard to change

-We'll see what to do about this later

Notes




Blocking

Blocking allows you to

account for some nuisance

variables

* Nuisance variables or
factors are used to divide
the experiment into
homogeneous "blocks”

* Effects of nuisance factors
are separated from effects
of other factors, for more
accurate analysis of factor
significance

Experimental
Temp Press units
120 50 g\ Block 1
Operator | Bob
120 150 "ot 1
Machine | A
180 150 Material | Lot 6
180 50
180 150 (5) Block 2
g & &) Tl
: .,,_: Machine |B
120 50 \ 7 ) Material [Lot7
120 150 rr:.em

Notes




Agricultural origin of “blocking” [—a

» Want to increase crop yields
* Experimental units are plots of land 1n a field

» Compare varieties, fertilizers, etc.

* Need 50 plots (runs), not 25

* Have to use a second field

* Differences 1n the soil will
cause differences n yields

— More plots

Block 2

Notes




Why use blocking?

Use blocking when experimental runs cannot be completed within a
timeframe (shift, time allotted on a machine, etc.) or some other
constraint (batch of material, space, etc.)

Blocking systematically eliminates the effect of known, controllable
nuisance (noise) factors

o Makes predictions more reliable
o Quantifies the effects of nuisance variables

Improves precision with which treatment means are compared,
without increasing sample size

o Makes identification of important (significant) factors more
reliable

Protects against variation due to known factors not included in the
experiment

Notes




8 The Custom Design Process

929

We saw the Full-Factorial Design earlier, and learned:

« A 2% full-factorial design can estimate main effects and
interactions, but cannot estimate quadratic terms

« A three level full-factorial (3%) design can estimate main

effects, interactions and quadratic effects, but is an inefficient

design.

Let’s look at some other designs.

Notes




Response Surface Designs 100

/

L]

The central composite design (CCD) is a 2 factorial
with added axial or star runs.

It is (was) the most used response surface design when all factors are continuous

Above are images of two and three factor CCDs

* The CCD requires two axial runs for each factor, plus the 2¥ design runs
* 3 — 5 center points are recommended

* Total runs required for the 3-factor CCD are 8 + 6 + center points = 17-19.

A Response Surface Design can estimate main effects, 2-factor interactions
and quadratic effects, with more efficiency than the 3% full-factorial.

Notes




Response Surface Designs (cont'd)

4
o K
/ ¥
4

Box-Behnken designs (left) are spherical, and do not have any points on
the corners of the “cube” contained by the limits of the factors.

The face-centered cube (right) is a variation on the Central Composite
Design, with axial points on the centers of the faces of the cube (for k=3).

* 3 — 5 center points are recommended for each of these designs
* Total runs required for the 3-factor Box-Behnken design 1s 15-17.
* Total runs required for the face-centered cube is the same as the CCD (17-19).

As Response Surface Designs, these can estimate main effects, 2-factor
interactions and quadratic effects.

Notes




Custom Designs 102

JMP’s Custom Design platform uses modern computing power to employ a
coordinate-exchange algorithm for determining the best set of points to use in
a Response Surface Design, creating an “optimal design.”

Often, fewer runs are required than the classical designs just presented.

When you look at the points chosen for your experiment, you may notice:
* Center points--all continuous factors at the middle level of the range given
* Points at the corners of the “cube”--all factors at high or low levels

* Points in the centers of the “cube™ edges (Box-Behnken) or faces (face-centered
cube)—some factors at the middle level, others at high or low levels

*  You will not see axial runs extending beyond the “cube,” as in the original CCD

Because fewer runs are used in these designs,
there will be some correlations and aliasing between terms.

(See Design Evaluation > Color Map on Correlations)

Notes




Steps for Creating a Custom Design

L.

2

Specify the Responses and general goals (maximize, minimize, or match target).

. Specify the Factors.

» For continuous factors, specify the high and low levels.
+ For categorical factors, specify each level to be mncluded in the experiment.

. Specify the statistical Model (usually RSM).

Specify the blocking factor, if blocking is needed. (Click RSM again)

» Enter the maximum number of runs that can be completed in one block (timeframe,
batch of matenal. etc.).

» JMP will evenly split required runs into blocks no larger than the number specified

. Create the design matrix. (Make Design)

. If desired, use Design Evaluation > Power Analysis to determine sample size.

Back up to make changes (Back), or create the data table (Make Table).
Save the table.

Later: Run the experiment in the order given. Enter results into table.

Notes




1. Specify the Responses and general goals

DOE — Custom Design

4 = Custom Design

4 Responses

|Add Response.z|| Remove | [Number of Responses...

Respcnsm G Lower Limit Upper Limit Importance
bond \ Match Target ?
print Maximize
—

4 Factors

i;A_d_d_Fac;or_;} ﬁte;ove_ | Add N Factors 1

Name Role Changes Values

Notes




2. Specify the Factors

4 = Custom Design

4 Responses
|Add Response ~|| Remove | [Number of Responses...
Response Name Goal Lower Limit Upper Limit Importance
bend Match Target
print Maximize

4 Factors Do not use this opTitD

!Add Factor_: r- emov-e_l Add N Factors 1

Name Role Lhanaee— Values
Atemp " Lentinuous Easy 120 1 I
A press Continuous Easy 50 150
A dwell Continuous Easy 0.2 2
S

SpecifyXactors
y clicking the Add Factor button. Double click on a
factor name or to edit it.

{Cominue- \

Notes




3. Specify the statistical Model (usually RSM)

4 Model

[Main Effects| [Interactions »|[ RSM ]| Cross |[Powers v ||[Remove Term)
Name X Estimability

Intercept Necessary
temp Necessary
press Necessary
dwell Necessary
temp*temp Necessary
temp*press Necessary
press*press Necessary
temp*dwell Necessary
press*dwell SSary
dwell*dwell Necessary

> Alias Terms

4 Design Generation

[] Group runs into random blocks of size:

Number of Center Points:
Number of Replicate Runs:

Number of Runs:
Minimum

o) Default
User Specified

10
16
16

~

[Response Surface Model]

Do not label your blocks until
after you have done this!

Notes




4. Specify the blocking factor, if blocking is needed.

Once you specify the Model, the Default and Minimum Number of Runs
are displayed.

Use this information, or User Specified Number of Runs (another
sample size you’ve determined), to decide whether Blocking is needed.

It’s not a bad idea to split your experiment into blocks just in case, if it 1s
likely to take several hours or more to complete. For example, you may
have a block size equal to half of a shift, just in case there’s an
evacuation, or the machine goes down, or you get called away urgently,
and cannot complete the experiment all at one time.

[t Blocking is needed:

1. Click User Specified Number of Runs, even if you want to use the
Default (this prevents JMP from increasing the sample size to a
multiple of the block size),

2. Go back up to Factors to enter a Blocking factor,

3. Specify Model (click RSM) again.

Notes




=

4. Specify the blocking factor, if blocking is needed. (cont'd) | 108

| ——

» Select User Specified Number of Runs to prevent an increase due to
blocking

4 Design Generation
[] Group runs into random blocks of size: 2

Number of Center Points: 0

Number of Replicate Runs: 0

Number of Runs:

Minimum 10

\ Defauilt — A

®) User Specified [ 15‘
iM_ake_lésign]

* Go back up to factor specification:
Add Factor > Blocking > Select the maximum runs possible per block

If your maximum is not listed,
select Other... to Specify Number of Runs per Block

\ ; By Please Enter a Number X

Specify Number of Runs per Block ‘E

Oii\ Cancel |

Notes




4. Specify the blocking factor, if blocking is needed. (cont'd)

» Name the Blocking factor, so you will recognize it in the Design Matrix and Table:

4 Factors

[Ed mo_r:l , It-{e:ove_l Add N Factors

Name Role Changes Values
Atemp Continuous Easy 120 180
M press Continuous Easy 50 150
A dveell Continuous Easy 0.2 2
L shiff Blocking Easy |1 2

* You do not need to be concerned about how many “levels™ are shown under
“Values.” JMP will handle this when 1t creates the design.

* Re-specify the Model. (Click RSM again.) Click through JMP comments
about categorical and blocking factors in RSM models.

Notes




4. Specify the blocking factor, if blocking is needed. (cont'd) m

DO NOT use this option for setting up a blocking factor!

4 Model
[Main EffectsJ [lntefactions v} [W EMﬂ | Cross l {Powers - [Remove Termj
Name Estimability
Intercept Necessary
temp Necessary
press Necessary
dwell Necessary
temp*temp Necessary
temp”press Necessary
press*press Necessary
temp*dwell Necessary
> Alias Terms
4 Design Generation NO!
== - 3 = / ’ .
= SrougrrorerintorandonT blocksof size 21" Don’t do it!

JMP will generate uneven block sizes, if this option 1s used.

Notes




5. Create the Design Matrix.

4 Model
[Misin Effecks) iteractions =] | RSM_| [ Cross_| [Powers ] [Remove Term) Ao
Name Estimability Ron temp press dwell Shift
Intercept Necessary . 150 100 ™ .
temp Necessary 1 = ‘ = = :
press Necessary < 120 50 02 1
dwell Necessary 3 180 150 02 1
Shift Necessary 4 180 50 2 1
temp*temp Necessary 5 180 50 02 1
temp*press Necessary 5 120 50 s 5
press”press Necessary = = > - =
temp*dwell Necessary 180 150 2 2
press dwell Necessary 8 150 100 02 2
dwell*dwell Necessary ] 150 100 1.1 1
> Alias Terms 10 1527 50 1.1 2
= L} 150 985 1.1 2
4 Design Generation 12 120 100 31 3
13 150 150 11 1
Number of Center Points: 0 14 120 150 02 2
Number of Replicate Runs: 0 15 120 150 2 2
16 180 100 11 2
Number of Runs: > Design Evaluation
Minimum 10 Output Options
Default 1 :
® User Specified 4 Data Table Options
[Make Designl [] Save X Matrix

[_] Simulate Responses
(] Include Run Order Column

Run Order | Randomize within Blocks

Don’t worry about the order of the blocking
factor (Shift). This will be reordered when
you Make Table.

[Make Table!
[ Back |

Notes




6. If desired, use Power Analysis* to determine sample size. =

Design Evaluation > Power Analysis

4 Design Evaluation
4 Power Analysis

Significance Level 0,05

Anticipated RMSE 1
Anticipated

Term Coefficient Power
Intercept 1] 0.402
temp 1, 0.706
press 1. 0.706
dwell 1] 0.705
Shift 1 0.865
temp*temp 1] 0.262
temp*press 1/ 0.623
press*press 1] 0.262
temp*dwell 1/ 0.623
press*dwell 1] 0.623
dwell*dwell 1] 0.263

* Details of this procedure are presented later, in the Determining Sample Size section.

Notes




7. Back up to make changes or create the data table.

* Click Back to back up
and adjust sample size.

» Adjust User Specified

Number of Runs Once the design is as needed:
* Click Make Design * Check Include Run Order Column
e pto * click Make Table
4 Data Table Options /
[ Save X Matrix JMP creates an editable table.

[ ] Simulate Responses
[ Include Run Order Column

Run Order: ' Randomize within Blocks ~ Output Options

e 2

[Make Table] 4 Data Table Options
Back 1

[] Save X Matrix
(] Simulate Responses
[] Include Run Order Column

Run Order: ' Randomize within Blocks ~
Make Table|
Back |

Notes




8. Save the table.

L4

* You can reorder columns and adjust any odd factor levels by entering the
desired value

o Odd levels are an artifact of the procedure JMP uses to create custom designs

o Before creating the table, you can also back up to create another design, and

see 1f that takes care of it

o In this example, temp of 152.7 would be changed to 150, press of 98.5 would
be changed to 100

w | Custom Design

P Model
P Evaluate Design
P DOE Dialog

» Columns (7/0)
A temp %

A press %k

A dwell %k

o Shift 3k

A bond %k

A print 3k

4 Run Order

v Rows
All rows
Selected
Excluded
Hidden
Labelled

Design  Custom Design
Criterion | Optimal

coooa

-

-

L= e R R

o

14
15

16

temp press dwell

150
180
150
120
180
120
180
150

100
150
150
100
50
50
50
100
100
150
150
985
150
50
50
100

[ I R I T T N P S g ey

Shift bond  print Run Order

1
3

4

. 5
. 6
. . 7
. . 8
. . 9
. . 10
. . "
. . 12
. 13

. 14
15

. . 16

Run your experiment in
the order specified and
enter data into this table.

If data 1s entered directly
into the table as the
experiment 1s performed,
1t’s not a bad 1dea to print
a copy of the table and
keep a hard copy also, as
you go . .. Just In case.

Notes




Exercises [ b

Use the Custom Design process described on the previous slides to create Response
Surface designs for the exercises on the following pages. In addition to special
instructions given in each case, follow these general instructions:

* Determine whether each factor is continuous or categorical
* Use the sample size given to determine 1f blocking 1s needed.

* For each exercise, have the instructor review your matrix when you are finished.

* Make and save each design table.

Notes




Exercise 8.1

Control factors Levels
Heat treat Anneal Solution/age
Polish Chemical Mechanical
Peen Yes No

* Response vanable: Cycles fo failure

Blocking factor: none
« Experimental unmit: one small test piece

« Sample size: 12 (constraint due to availability of test fixtures)

Notes




Exercise 8.2

Control factors Levels
Contact wheel land-groove ratio (LGR) Low High
Contact wheel matenial (Material) Steel Rubber
Belt usage limit (Usage) 50% 80%
Belt grit size (Grit) “30” =50~

* Response vaniable: Cost

» Experimental unmit: one large casting

Blocking: At most, 10 runs can be completed 1n a morning or an
afternoon. You want to split the runs evenly between two blocks.

Blocking factor: Time of day (moming vs. afternoon)

Sample size: Use the default sample size. Enter it here

-
—_

4

Notes




Exercise 8.3

Control factors Ranges
Foice 70 to 150
Energy 275 to 325
Amplitude 70 to 90

Response variable: Leak rate

Blocking constraint: Due to production needs, a maximum of
20 containers can be molded in each tool cavity

Blocking factor: Cavity (parts are molded from 4 tool
cavities)

Experimental unit: one welded plastic container

Sample size for experiment: 68

Notes




9 Determining Sample Size for an Experiment L

Sample size, N, is the total number of “runs” in the experiment.

How should sample size be determined?

» First, you must have at least one run for each model term.
More factors and more complex model = more terms and more runs

»  Second, your purpose must be clear for a given experiment.

Process optimization with RSM require more runs for each factor than
experiments for screening for important factors

Less ambiguity in results = more runs

* Beyond that, there are several answers to the question of how to determine
sample size. Two are presented on the following slides.

Notes




How should sample size be determined? (cont'd) 12

1. The quickest answer that most statisticians experienced in
experimentation give, is that the sample size depends on your budget.
Run the best designed experiment you can, within your budgetary
constraints.

*  Think through your experimental strategy before running your first
experiment

*  Don’t use more than about 25% of your entire budget on vour first
experiment

* Compare potential designs with Design Diagnostics > Compare Designs
o  Fraction of Design Space Plot, when prediction using the model. 1s a goal
o  Color Map on Correlations, whenever less thana full-factorial is used

Notes




How should sample size be determined? (cont'd)

121

2. Use JMP’s Design Evaluation > Power Analysis to ensure that:

Main Effects (e.g. Temp, Dwell, X1) have a Power of 0.9 t0 0.8
Interactions (e.g. Temp x Dwell. X1*X2) have a Power of about 0.8
Quadratic Terms (e.g. Temp x Temp, X1*X1) have a Power of about 0.5

Use the Power Analysis as it is when you open it, without changing Anticipated
RMSE or Coefficients (this allows good detection of effects with 3, > RMSE)

Adjust Power by going Back and changing the User Specified Number of Runs

4 Design Evaluation
4 Power Analysis

Significance Level
Anticipated RMSE

Term
Intercept
X1

X2

X3
X1x1
X1 x2
xX2*X2
X1 X3
X2*X3
X37X3

Coefficient Power

0.615
0.962
0.962
0.962
0.547
0.899
0.547
0.899
0.899
0.547

Notes




Example: Using Power Analysis to Determine Sample Size

- 122

Set up Responses, Factors and Model, then click Make Design

4 = Custom Design
4 Factors

4 Define Factor Constraints

® None
Specify Linear Constraints
Use Disallowed Combinations Filter
Use Disallowed Combinations Script

4 Model
Main Effects| |Interactions »|| RSM

Cross || Powers v | |Remove Term

Name Estimability
Intercept Necessary
temp Necessary
press Necessary
dwell Necessary
temp*temp Necessary
temp“press Necessary
press®press Necessary
temp“dwell Necessary

> Alias Terms

4 Design Generation
Group runs inte random blocks of size:

=)

Number of Center Points:

(=}

Number of Replicate Runs:

Number of Runs:

Minimum 10
®) Default 16

User Specified 16
Make VDesuén‘

Notes




Example: Using Power Analysis to Determine Sample Size (contd) |

Click on the triangle next to Design Evaluation, then on the triangle next to
Power Analysis to open the Power Analysis report:

< Design Evaluation

Review the Power Analysis to 4 Power Analysis
determine if all: Significance Level | 0.05
Anticipated RMSE
*  Mam Effects (e.g. temp, dwell, X1) Anticipated
" Term Coefficient Power
have a Power of 0.9 to 0.8 Intercept 1/ (0.427)
. N * temp 1 0.75
Interactions (e.g. temp*dwell, e 1| ors
X1*X2) have a Power of about 0.8 dwell ! qo.rs
temp*temp 1 10.278
*  Quadratic Terms (e.g. dwell*dwell, v P gl
press”press 27
X1*X1) have a Power of about 0.5 temp”dwell 1 |o.6s7
press*dwell 1/ 10.657
dwell*dwell 1 10.278
| —

In this example, all Power values are too low. The sample size needs to be increased.

Notes




Example: Using Power Analysis to Determine Sample Size (contd) :2_3

| -

* Click Bactk.
» Select User Specified and increase the Number of Runs.

» Chick Make Design 4 Design Generation

] Group runs into random blocks of size:

Number of Center Points:

Number of Replicate Runs: 0

Number of Runs:

Minimum 10

Default 16
® UserSpecified | Zd!
[Make Desigr|

* Review the Power Analysis report again, to determine whether the power
levels meet the requirements.

o This may require several iterations

o If you overshoot, go back and reduce the number of runs

Notes




Example: Using Power Analysis to Determine Sample Size (contd)

[t took 25 runs for all model terms to exceed the desired power.

(Because every design is a little different, it’s possible that a design of 24 or 26
runs could (eventually) be generated that exceed the desired power levels.)

An experimenter may choose a slightly smaller sample size, as the desired
power levels are approximate (“about 0.8”’) and are usually conservative.
4 Design Evaluation

4 Power Analysis
Significance Level | 0.05

Anticipated RMSE 1
Anticipated

Term Coefficient Power
Intercept 1, 0.615
temp 1| 0.962
press 1/ 0.962
dwell 1/ 0.962
temp™temp 1| 0.547
temp*press 1/ 0.899
press™press 1| 0.547
temp*dwell 1| 0.899
press*dwell 1) 0.899
dwell*dwell 1| 0.547

Notes




Power Analysis with Categorical Factors at more than 2 Levels

When categorical factors are at more than two levels,
the Power Analysis report gets a little messy.

4 Design Evaluation
4 Power Analysis

Significance Level  0.05
Anticipated RMSE

* Use the upper part of the Power Analysis, as Anticipated
before, for all continuous factor: e TSR X
ntercept 0.442
O main eﬁects Intro APR 1 0.882
p < ~—— Time Period 1 0877
O 1Interactions Gift 1 10575
Gift 2 -1, 0.631

O quadratic terms Gift 3 1 0575
Intro APR"Intro APR 1 0297

Intro APR*Time Period 1. 0.838

1 0307

Time Period*Time Period

Intro APR*Gift 1 i 0477
Intro APR*Gift 2 -1 0477
Intro APR*Gift 3 1| 0477
Time Period"Gift 1 1 0476
Time Peniod*Gift 2 -1 0476
Time Period*Gift 3 1 0476

» Use the little table below for all categorical factor: ey e T

o main effects Effect Power
. # 4 & > Gift 0.763

o 1nteractions that include categorical factors —inwoserrcn 063
Time Period*Gift  0.629

Notes




Exercise 9.1

We are planning an experiment to optimize a monofilament extrusion process with 4
continuous factors X1 to X4. The response variable 1s fensile strength.

* Optimization experiment = Response Surface Model needed
* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required in this experiment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels.|

Notes




Exercise 9.2 128

We are planning an experiment to optimize an ultrasonic welding process with 3
continuous factors and a 4-level categorical factor. The response variable 1s
the weld depth.

* Optimization experiment = Response Surface Model needed

* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required 1n this experiment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels.]

Notes




10 DOE Workshop
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Notes




11 Experiments with Hard-to-Change Factors

Sometimes it’s not feasible to completely randomize,
because a factor is hard-to-change

There are many situations when this is the case. Here are a few examples:

* Temperature in a furnace takes a very long time (hours) to stabilize after
changing

* Special material needed (a factor) are made in large batches and cannot be

stored, or it is run in a continuous flow through the process

* Material or part used in a machine is difficult to change, requiring a
complete breakdown and cleaning

* Type of irrigation on a plot of land is very difficult and costly to change (an

example of the origin of split-plot designs)

What are examples in your workplace?

131

Notes




Experiments with Hard-to-change factors (cont'd) | i

When you have hard-to-change factors that cannot be randomized,
you need to create and analyze your experiment as a “split-plot” design

If you don’t do this (if you design and analyze as usual), you are more likely to:

* Conclude that unimportant factors are important among the hard-to-change factors
o You think that a factor (X) 1s impacting your response (Y). when it is not
o This 1s a Type I error

o Hard-to-change factors are those in the “Whole Plots™ or main treatments. that
were not randomized

* Fail to recognize factors that are significant among the easy-to-change factors
o You think that a factor (X) 1s NOT impacting your response (Y), when it is
o This 1s a Type Il error

o Easy-to-change factors are those in the “Subplots” or split-plots. that were
randomized

Notes




Experiments with Hard-to-change factors (cont'd) [

The decision to consider a factor as “hard-to-change”
should not be taken lightly

* Subplot (easy-to-change) factors are compared with higher precision

o Usually, subplot error 1s smaller than whole-plot error

o  Whenever possible, the treatment(s) or factors we are most interested n
should be assigned to the subplots

* To increase the precision of the test on whole-plot (hard-to-change)
factors, additional replicates of the experiment or additional whole-plots
are needed

o Clearly, this takes more time and resources

o Several (3-6) replicates could be needed to gain an adequate level of
precision

o So, you could be back to changing that hard-to-change factor many times

Notes




Creating a Split-Plot Design

* DOE > Custom Design

134

* Enter the factors as usual, except double-click on “Changes” and change to

Hard for the hard to change factor

* C(Click Continue

4 Factors
!Add Factor | [ Removﬂ Add N Factors 1
Name Role Changes Values
ATemp Continuous Hard 120 180
A Dwell Continuous Easy 0.2 2
v Material Categorical Easy A |8 [c

Notes




Creating a Split-Plot Design (cont’d) 135

*  (Click on RSM.

* JMP will suggest a reasonable number of Whole Plots for the number of
factors and levels entered

* The number of Whole Plots shows the number of times the hard-to-change
factor will need to be changed in the experiment

* Click Make Design 4Mode

|Main Effects| |Interactions || RSM || Cross ||Powers | {Bemoy@ Term|
Name Estimability
Intercept Necessary
Temp . Necessary
Dwell Necessary
Matenal Necessary
Temp*Temp Necessary
Temp*Dwell Necessary
Dwell*Dwell Necessary
Temp*Material Necessary
> Alias Terms

4 Design Generation
Number of Whole Plots 5

Number of Runs:

Minimum 12

Default 20
® User Specified 20
[Make Design|

Notes




Creating a Split-Plot Design (cont'd)

The design is presented.

As before, click Back to make adjustments. Click Make Table.

Run the experiment in the order shown in the table.

L
o
L]
Design
Run Whole Plots Temp
1 1 150
2 1 150
3 1 150
4 1 150
5 2 180
6 2 180
7 2 180
8 2 180
9 3 120
10 3 120
1 3 120
12 3 120
13 4 150
14 4 150
15 4 150
16 4 150
17 5 150
18 5 150
19 5 150
20 5 150

Dwell
1.1
02

o

N oo

O =4 - - - -
N - -

- -
NN =N N -y -

Material

NowrProPOOowmowPEO0OPRPomOPEomoOP

Table:

136

Whole Plots Temp Dwell

150
150
150
150
180
180
180
180
120

1
e

120
120
150
150
150
150
150
150
150
150

NN = b b -

Wb s R B R WWWWNDN

11
|}

02
02

02
11

NI SIS NN

Material

N ®E®OBEOODOEONRP>ODAODD DO B

Y1




Blocking in a Split-Plot Design 137

What if there are too many runs to complete in one day (or lot of material, or
by one tester; etc.)?

* Once you see that there are too many runs, click Back (before making the table)

* Add a Categorical Factor with the number of levels as the number of batches or
days or shifts, etc. needed for the experiment (In this example, two days will be
needed to run the experiment, so a 2-Level Categorical Factor was added.)

* Name the factor something that you can easily pick out of the lists of terms (Here it
1s named REMOVE))

* Set Changes for this factor to Very Hard

* Click Continue

Factors
Add Factor v|| Remove | Add N Factors | 1
Name Role Changes Values
ATemp Continuous Hard 120 180
A Dwell Continuous Easy 0.2 2
v Material Categorical Easy A |8 IC
(JREMOVE Categorical Very Hard |L1 L2

Notes




Blocking in a Split-Plot Design (cont'd)

* Click RSM

* Remove from the Model every term that contains the Categorical factor that
you added

* Highlight the term then click Remove Term

Model

[Main Effects| [Interactions || RSM || Cross |[Powek ~|[Remove Term|
Name EstimablllfA

Intercept Necessary

Temp Necessary

Dwell i Necessary

Matenial Necessary

Necessary

Temp*Temp Necessary

Temp*Dwell Necessary

Dwell*Dwell Necessary

Model \

[Main Effects) [Interactions «| [ RSM | Cross | [Powers +| [Remove Term|
Name Estimability

Temp*Temp Necessary

Temp*Dwell Necessary

Dwell*Dwell . Necessary

Temp*Matenal Necessary

Dwell*Material Necessary

Temp"REMOVE Necessary

Dwell*"REMOVE Necessary

Material*"REMOVE Necessary

Notes




Blocking in a Split-Plot Design (cont’d) 139

* Change the number of Whole Plots to the number of levels of the
Categorical Factor

* In this example, two days were needed
* So,a 2-Level Categorical Factor called REMOVE was added
* Now, the Number of Whole Plots is changed to 2

* Click make Design

Design Generation
[_] Hard to change factors can vary independently of Very Hard to change factors.

Number of Whole Plots

Number of Subplots 6

Number of Runs:

) Minimum 12
®) Default 18

User Specified 18
[Make Design|

Notes




Blocking in a Split-Plot Design (cont’'d)

* The Design is developed

*  Whole Plots show the number of days required

* REMOVE is still in the table, as it was entered as a factor

* (Click Make Table

Design
Run Whole Plots Subplots Temp Dwell Material REMOVE
1 1 1 120 02 c L
1 120 2 A L
3 1 1 120 11 B L1
E 1 2 180 2 c U1
5 : 2 180 02 A L ; ;
6 , 3 1 eane, i e [f you get this warning,
7 1 3 150 1 C L1 : ; .
8 1 3 150 -. %1 B it’s okay to ignore it, IN
9 - 3 150 2 B L1
10 2 4 120 1.1 B L1 THIS CASE, because you
" 2 4 120 02 A L1 : .
12 2 4 20 2 C L are not trymg to estimate
13 2 3 150 02 B L1 ~
14 2 55 g0, 1 ¢ M effects of the whole plot
15 2 5 150 1.1 A L1
16 2 6 180 A : L
17 2 6 180 2 A L1
18 2 6 180 02 C L1
le one e whol trongly recommended. Tl gr
g th ugh ts imate the whole
na T e plo ar estable

Notes




Blocking in a Split-Plot Design (cont’d) 141

* The table is generated
* Click on the column of the Categorical Factor (“REMOVE” in this example).
* Cols > Delete Columns to delete the column from the table

Whole Plots Subplots Temp Dwell Material REMOVE Y1

1 1 1200 02 ¢C U .

1 1 120 2 A L1 .

120 18 L1 .

1 2 180 2 ¢ ¥ .

1 2 180 02 A L1 . - &

3 > ig0 118 X : Whole Plots Subplots Temp Dwell Material Y1

: : e o1e = - 1 1 120 02 ¢C L1 .

1 3 150 1A L . L L 120 2 A L u

1 3 150 28 L1 . 3 120/ 1178 u s

5 2 AR & - 2 180 2 ¢ L1

2 4 120 02 A L1 . 2 Ae] d.a & .

> % % 1% v - 2 180 1] B L

2 5 150 028 L . - 3 1908 $31C A :

5 5 150 c o3 2 1 3 150 1.1 A L1 .

2 5 150 11 A L1 . ) d 129 28 4 :

2 5 180 118 L1 . g 4 1201 1.1:8 L

2 6 180 2 A L . 2 4 120 02 A L ¢

2 6 180 02 C L1 2 4 120 2 C L .
2 5 150 02 B L .
2 5 150 11 ¢ L .
2 5 150 1.1 A L1 .
2 6 180 18 L .
2 6 180 2 A L1 .
2 6 180 02 C U .

Notes




Blocking in a Split-Plot Design (cont’'d)

* Ifyou open the Column Info for Whole Plots, you’ll see that the Design

Role is Random Block (JMP is pretty smart!)

* Rename the Whole Plots column with the name of your block

E‘-f- Day - JMP —

'‘Day’ in table 'Split Split Plot Example Table'

Column Name EWho!e Plots

[ ] Lock
Data Type Character ~
Modeling Type | Nominal i

\Column Promiv]

Design Role

Value Ordering

Design Role indicates how the column is
used as a factor in a model for an
expenimental design.

Random Block  ~
] Remove '

| Cancel l

Notes




Blocking in a Split-Plot Design (cont’d) 143

* This shows the final table, with Whole Plots renamed to Day
* This experiment is designed to be run in two days

*  What you actually have now is a split-split-plot design

nSubplots Temp Dwell Material Y1

1 120 02 C .
1 1 120 2 A .
1 1 120 11 B .
1 2 180 2 C .
1 2 180 02 A .
1 2 180 11 B *
1 3 150> 1.31|C .
1 3 150 1.1 A .
1 3 150 2 B s
2 4 120 1.1 B .
2 4 120 02 A e
2 4 120 2 C e
2 5 150 02 B
2 5 150 1|C
2 5 150 1.1 A
2 6 180 11 B
2 6 180 2 A
2 6 180 02 C

Notes




Analyzing the Split-Plot Design 144

* For the Split-Plot or the Split-Split Plot design, click on the green triangle
next to Model after entering data into the table.

i)
BRI A0 DEEEC P,

w Split Split Plot Exa... P| 4 -
\ies»gn Custom Design | 5 Subplots Temp Dwell Material Y1

Criterion | Optimal

11 12 02 .
Model ; “0 : c
b Evaluate Design 21 120 2 A .
P DOE Dialog 31 1 120 118 .
41 2 180 2 C .
51 2 180 02 A .
w |Columns (6/1) 6 1 2 180 11 B .
& Day % 71 3 150 11 C >
th Subplots 3k sl 3 5 Sy :
A Temp % L i
A Dwell k 91 3 150 28
i Material 3k 10 2 4 120 1.1 B .
Avik 112 4 120 02 A
122 4 120 2 ¢
132 5 150 02 B
142 5 150 1.1 C
=)Rows 15 2 5 150 1.1 A
;‘e“'w‘: "g 16 2 6 180 1.1 B
ect - : - -
Excluded 0 17 2 6 180 2 A
Hidden 0 18 2 6 180 02 C
Labelled 0

"
4

Notes




Analyzing the Split-Plot Design

* The Fit Model window will look a little different. Leave as is!
* (Click Run

* Analyze the residuals and remove terms as with other experiments

4 » Model Specification
Select Columns

¥ 6 Columns
d. TP )
o Subplots
A Temp
A Dwell
& Material
AV

Pick Role Variables
[ 4Y?

[ Weight |

[Freq |
By

Construct Model Effects

7Adq7
Ciriorssii
_ Nest
f Macros v
Degree 2
Attributes (v
Transform (=

[] No Intercept

~|| Day & Random

Subplots & Random

|| Temp & RS

] Dwell & RS

‘| Matenial
Temp*Temp

Temp"Dwell
Dwell*Dwell
Temp*Matenal
Dwell*Material

{ Recall ]

Personality: | Standard Least Squares

Emphasis: | Minimal Report

Method: REML (Recommended) ~

| Unbounded Variance Components
| Estimate Only Variance Components

[ Hep | [ Run |

| Keep dialog open
[ Remove |

> v

145

Notes




12 Multiple Response Optimization

« Experiments may have more than one response
variable

* You can optimize each response separately . . .

* ... but you will get different answers for each
response!

Notes




Notes

It 1s not uncommon to have multiple response variables i a DOE. If you think you

have just one, you might want to solicit feedback from one or more knowledgeable
colleagues.

In this section we introduce and illustrate the most widely used technique for joint
optimization of multiple responses.

Notes




Example 1: heat sealing process

Response Bond
- : Effect Tests

* DOE Participant Files \
heat sealing 2.jmp Source Nparm
Shift 1
" Temp(120,180) 1
* Run the Model script Press(50,150) 1
Dwell(0.2,2) 1
: Temp*Temp 1
* Response variables: Temp*Press 1
Press*Press 1
v" Bond (bond strength) Temp*Dwell .
v' Print (higher-is- S -

better cosmetic Response Print
quality rating) Effect Tests
* Shift is the only factor we ;‘:‘f’:“ .
. . '

can eliminate Temp(120,180) 1
Press(50,150) 1
Dwell(0.2,2) 1
* All other factors are Temp*Temp 1
significant for at least one s ¢
response Temp*Dwell 1
Press*Dwell 1
Dwell"Dwell 1

o
=4

[ o = L U S SR S S S

Sum of
Squares
3.578
1540.835
8.439
1606.813
1363.630
14.607
1.385
20235249
0.759
715715

Sum of
Squares
0.137812
6.821113
25.625986
2.121674
2.148242
0.300304
0.257674
1.613751
1.065140
1.372401

F Ratio
0.8499
366.0070
2.0046
381.6793
323.9142
3.4697
0.3290
4806642
0.1804
170.0096

F Ratio
1.7253
85.3929
320.8095
26.5611
26.8937
3.7595
3.2258
20.2024
13.334
17.1810

Prob > F
0.3671

0.1715
0.0766
0.5724

0.6754

Prob > F
0.2032

0.0661
0.0869

Notes




Example 1 (cont'd)

150

» The Effect Summary
displays the lowest
p-value from each of
the response’s
Effects Tests

» This makes it easy to
find terms to remove
from the model

* Remove
insignificant terms,
as before, using the
Effect Summary

Effect Summary

Source LogWorth
Temp*Dwell 25.559
Dwell(0.2,2) 14.223
Temp(120,180) 14.041 |}
Temp*Temp 13.515 ]
Press(50,150) 13473
Dwell*Dwell 10.809
Press*Dwell 2.827
Temp*Press 1.180
Press*Press 1.061 ||
Shift 0.692 |

PValue
0.00000
0.00000 *
0.00000 ~
0.00000
0.00000
0.00000
0.00149
0.06606
0.08689
0.20319

Notes




Example 1 (cont'd)

J

151

I

We want Bond = 80 and Print as large as possible.

Here is a solution based on manually exploring the Prediction Profiler.

Prediction Profiler

100
80 o~ /"’\
o et .68
é [77.7497
g2.2s08) 40
20
0
5
- 348400 3
£ [4.0323
: 2
4.66461)
1
0
O O O O O O O O o o o o W o W
= g i A I S S ol [ - S
Temp Press Dwell

Notes




3

In this example 1s it easy to find solutions by manually exploring the Prediction
Profiler.

v" Press should be set to 150, because this increases Print without significantly
affecting Bond.

v" The baseline value for Dwell was 1.0. Reducing this to 0.5 increases
throughput while staying above the lowest feasible dwell time (0.2)

v" Once these settings are in place, we can manipulate Temp to achieve
something very close to 80 ps1 for Bond.

Joint optimization of response variables was not needed in this example. In most
applications, however, manual optimization will not achieve the desired results.

Extreme versions of this are illustrated in the next two examples.

Close the analysis window and the data table without saving.

Notes




Example 2. extrusion process

&

(Visc, Temp, Rate, RPM) = (80, 297, 100, 243)
Ductility = 13

Prediction Profiler

35000

——— 30000

- - O o0 zsm
y) € 1277529, 20000
' & 300808 15000
10000

5000

40

S 2
b) ‘g:‘]:'f.— 20
A 15.3938] 10

0

Data sets \ extrusion 2

Notes




i
Notes 154

This example 1s based on data from an experiment to optimize the mechanical

properties of an extruded plastic material. We want Strength to be as high as possible
while maintaining a lower bound of 20 for Ductility.

The solution for Strength (29367) shown above was found by visually exploring the
Prediction Profiler. However, this approach resulted in an unacceptably low Ductility

(13).

Notes




Example 2 (cont'd)

155

(Visc, Temp, Rate, RPM) =~ (64, 260, 200, 300)
Strength = 6080

Prediction Profiler

N 35000
(v —— 30000
42079945 ) 25000
S [4323.95, 20000
& 7835.94] 15000
10000
&R 5000
A 40
_—
30
£(31.8807. 20
- NG
o -1 10

0

Notes




Notes

The solution for Ductility (35) shown above was found by visually exploring the

Prediction Profiler. However, this approach resulted in an unacceptably low Strength
(6080).

Notes




Joint optimization of responses

Each response has a goal (minimize, maximize or target)

Define a “desirability function™ for each response

Combine the individual desirabilities into a single overall
desirability function

Maximize the overall desirability to jointly optimize all
responses

Notes
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Notes 158

Desirability 1s a unitless quantity between 0 and 1, defined so that higher 1s better. ]MP
supplies default desirability functions based on the experimental data for your response
variables. You must redefine the desirability functions so that they represent your
objectives for each response variable.

You start by setting the general goal for each response: Maximize, Minimize or Match

Target. Then you specify low, middle, and high data values to fine tune the shape of the
desirability functions.

Notes




e |

Default desirability functions =
1 / 14 \
0.5 Maximize 0.5 Minimize
0 I/l | 0 | | I
Low Mid High Low Mid High
g / \
0.5 Match Target

.1

0 I |
Low Mid High

Notes




Notes 160

The desirability function 1s increasing for Maximize responses and decreasing for
Minimize responses. It 1s bell-shaped for Match Target responses.

For Minimize responses with a lower bound of 0, it is a good idea to make the Low

value equal to 0. Examples are number of defects, fraction defective, cycle time,
standard deviation, cost of waste, etc.

The low and high values for a Match Target response are used to define the allowable
deviation from the target value.

Notes




Overall desirability

* The overall desirability function for the response variables (Y,
Y.—’.’ . s ) 1S

\/ (Yl desirability)X(Y2 deSil‘ability)x =

* It is the geometric mean of the desirability functions for all the
individual response variables

* With a geometric mean, the overall desirability will be zero
whenever any individual response desirability is zero

Notes




" 162
Notes 1

A weighted geometric mean can be used. The weights (called importance in IMP)
allow users to specify relative priorities for the responses. The higher the importance.

the greater the influence the response has in determining the overall solution found by
the optimization algorithm.

The vast majority of users do not go mto this level of detail.

Notes




Example 2 (revisited)

DOE Participant Files \ extrusion 2.jmp — Model script — Model
Specification — Run
4 '~ Model Specification
Select Columns Pick Role Variables Personality: Isu—nci:rcﬁ;ast—Sq;r;; f‘
¥ 6 Columns [ A Strength - — ‘

A Visc -y A Ductility Emphasis: | Minimal Report v |
A Temp ‘
drse (et = oL

—_— | Help | [ Run |
4 Strength Freq |
A Ductility e———— \»_Re_ci_f Keep dialog open

T~ - |

| Remove |

Construct Model Effects

" Temp& RS

; Cross || Rate& RS =

[ .|RPM& RS

Nest || visc*Visc

e s — n /i -

| Macros v | e T‘emp

| Temp*Temp

Degree | 2| |Visc*Rate

- —. |Temp*Rate
Attributes » Rate*Rate .
Transform (=
No Intercept

Notes




Example 2 (cont'd)

34 extrusion 2 - Fit Lea...ﬂ_& '

4 = Least Squares Fit

4 '~ Response Strength
[ Residual by Predicted Plot
[ Summary of Fit
> Analysis of Variance
b Parameter Estimates
[ Effect Tests
[ Effect Details

4 '~ Response Ductility
> Residual by Predicted Plot
> Summary of Fit
> Analysis of Variance
> Parameter Estimates
U Effect Tests
b Effect Details

> = Prediction Profiler

>3 v

 Alt-click on Response Strength red triangle —
uncheck Parameter Estimates, Effect Details, Plot
Effect Leverage — OK

* Repeat for Response Ductility

=
E% Select Options and click OK

Regression Reports Parameter Power

¥| Summary of Fit

Row Diagnostics
Plot Actual by Predicted
Plot Effect Leverage

¥| Plot Residual by Predicted

Correlation of Estimates
Effect Screening
Scaled Estimates

| Analysis of Variance
Parameter Estimates

V| Effect Tests Normal Plot Plot Residual by Row
Effect Details Bayes Plot Plot Studentized Residuald
Show All Confidence Intervals || Pareto Plot Press
AlCc Factor Profiling Durbin Watson Test

Estimates | Profiler Save Columns

Prediction Formula
Predicted Values
Residuals

Show Prediction Expression Interaction Plots
Sorted Estimates
Expanded Estimates
Sequential Tests
Custom Test

Multiple Comparisons
Joint Factor Tests

Inverse Prediction

| Contour Profiler
| Cube Plots

Box Cox Y Transformation || Mean Confidence Interval
Surface Profiler Indiv Confidence Interval
Studentized Residuals
Hats

Std Error of Predicted

Notes




“Pruning” the models

* The Effect Summary
combines the P-values for all
responses

* Removing terms here applies
to the Effects Tests for one or
more responses

* The usual threshold 1s P >
0.15

Effect Summary

Source
Rate*RPM*RPM
Rate*RPM
Rate{100,200)
Rate*Rate*RPM
RPM(150,300)
Rate*Rate
RPM*RPM
Temp(260,320)
Visc(60,80)
Temp*RPM
Visc*Visc*Temp
Visc*Rate
Visc*RPM
Visc*Temp*Temp
Visc*Visc*RPM
Temp*Temp*Rate
Visc*Visc*Rate
Temp*Temp*RPM
Temp™Rate*Rate
Temp*RPM*RPM
Temp*Temp
Visc*Rate"Rate
Visc*Temp
Temp*Rate
Visc*Visc
Visc*RPM*RPM

Remove Add Edit

LogWorth

7.277

7.181}

6.383 |

6.300 |

6.165 |

5.394 |
4,809 [
3121
2.913
1.805 [
1.568 [
1.559 e
1.549
1.526 [N
1420 I
1.212
0.844 |10
0.826 [l
0.808 [
0.792 I
0.668 [
0.571 1
0.470 @
0.358 1
0.299 1
0.215]]

UUUH

PValue
0.00000
0.00000 ~
0.00000 *
0.00000
0.00000
0.00000 ~
0.00002
0.00076
0.00122
0.01565
0.02705
0.02763
0.02822
0.02980
0.03723
0.06143
0.14308
0.14926
0.15550
0.16134
0.21486 *
0.26852
0.33863 *
0.43877 ~
0.50227 ~
0.60885

FDR (* denotes effects with containing effects above them

Notes




“Pruning” the models (cont'd)

Effect Tests for Strength

Source Prob > F
Visc(60,80)

Temp(260,320)
Rate(100,200)
RPM(150,300)

Visc*Rate 0.0153"
Rate*Rate

Visc*RPM

Temp*RPM

Rate*RPM

RPM*RPM 1
Visc*Visc*Temp 0.0317
Visc*Visc*Rate 0.1001
Visc*Visc*RPM 0.0116*
Visc*Temp*Temp 0.0140*
Temp*Temp*Rate  0.0635
Temp*Temp*RPM  0.0577
Temp*Rate*Rate 0.0844
Rate*Rate*RPM
Rate*RPM*RPM

Effect Summary

Source
Rate*RPM*RPM
Rate*RPM
Rate*Rate"RPM
Rate(100,200)
RPM(150,300)
Rate*Rate
RPM*RPM
Visc(60,80)
Temp(260,320)
Temp*RPM
Visc*RPM
Visc*Visc*RPM
Visc*Temp*Temp
Visc*Rate
Visc*Visc*Temp
Temp*Temp*RPM
Temp*Temp*Rate
Temp*Rate*Rate
Visc*Visc*Rate

Effect Tests for Ductility
Source Prob > F
Visc(60,80)

Temp(260,320)
Rate(100,200)
RPM(150,300) :
Visc*Rate 0.4624
Rate*Rate 0.8364
Visc*RPM 0.5440
Temp*RPM 0.7358
Rate*RPM ‘ ]
RPM*RPM 0.4084
Visc*Visc*Temp 0.0527
Visc*Visc*Rate 0.89%4
Visc*Visc*RPM 0.8700
Visc*Temp*Temp  0.8114
Temp*Temp*Rate  0.9857
Temp*Temp*RPM  0.3483
Temp*Rate*Rate 0.3080
Rate*Rate*RPM 0.9424
Rate*RPM*RPM 0.5257

Notes




Example 2 (cont'd)
Prediction Profiler . functions

35000
30000

2063313 25000 . _
196762, 20000 | o | ‘
21590.3) 15000

10000 : :

5009 -

Strength

i
g_;’ 85617 25 “‘~_~—.,.\__ \,\ / \_\
= (22,4094 20 ;
8253029) 13
5 ' '
0
> 1 ] ]
::: 0.75 " ]
£0.553439 05 ’_\ /"ﬂall\>
g 0.25 : _ ._desirability
0 r R
O wn O NN O0DO0DO0O00DO0O000 © O O O OO =] o OO W v N o~
NNN.N M M MAed - v—‘-i:-—I e N ™~ ~ m = o
Visc Temp Rate RPM Desirability

Notes




Notes 168
| —

Here 1s the default Prediction Profiler for the four-factor extrusion experiment. The
individual desirability functions are shown in the nght-most column. In this case
they are both increasing functions because our general objective for both responses is
Maximize.

The overall desirability 1s a function of the experimental factors, and is shown 1n the
bottom row. By default, it 1s the unweighted geometric mean of the individual
desirability functions.

Notes




Example 2 (cont'd)

[Optimization and Desirability} :{ Maximize Desirability ]

/

Prediction Profiler

35000
s S 30000
2593053 25000

3255, 20000
15000
10000
5000

40

Strength

150758 30

Ductility
w §
- N
o O

rability

0.606035 05
0.25
0

Des
60
! 65

5N

70
75
80

W non
N o N
o o

260
270
280
290
300
310
320
100

120
140
160

180
200
150
200
250
300

Visc Temp Rate RPM Desirability

Notes




[
Notes s |

Shown above 1s the Prediction Profiler after selecting Maximize Desirability from the
red triangle menu. We have increased average Strength to 25930, and decreased
average Ductility to 21.5.

Notes




Example 2 (cont'd)

Using a Match Target objective (see next slide)

Prediction Profiler

35000
__ 30000
97 25000
20000
15000
10000

5000
40

30

rno

Strength
i

I
O

Ductility
4
o
o

i
N
'S
f
b
o

, 0.75
0.817515 05
0.25

Desirability

Desirability

171

Notes




Notes

To obtam the results shown above, double-click in the individual Desirability pane
(on the right) for Ductility. Change the specifications as shown below, click OK, run
Maximize Desirability again.

. X r?f Response Goal @‘
Predicted average Strength is now
25359, predicted average Ductility 1s (Match Target = |
22 N

Ductility  Values Desirability

The 95% confidence nterval 1s High: | 23| 0.0183 |
(19.5, 24.4). This is an improvement Middle [ 22| 1]
over the previous confidence interval Low: I 21]| 0.0183 |
(19.0, 24.0), which would have Importance: 1]
allowed Ductility to vary a little further [ ok ][ Cancel |[ Help |

below 20. e

NS

Note: Due to the iterative process used in the prediction profiler, results may
vary slightly from what’s shown in the above slide.

Least Squares Fit red triangle — Save Script — To Data Table — Save Script As —
Name: Fit Least Squares — OK.

Notes




Exercise 12.1 m

(a) DOE Participant Files \ heat sealing 2. Run the model script. Use the Effect
Summary to remove model terms with P> 0.15.

(b) Go to the Prediction Profiler. Our target for average Bond 1s 80, with a tolerance
of +£5. The highest possible value for average Print 1s 5. Average Print must exceed
4. Modify the desirability functions for Bond and Print accordingly. Click
Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

(¢c) Click Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability.

d) The Production Manager 1s unhappy with our solution. It achieves excellent bond
strength (80) and print quality (4.8), but the proposed increase i dwell time would
reduce throughput from 300 to 50 bags per minute!

To look for a compromise, select Reser Factor Grid on the Prediction Profiler red
triangle. We want to hold Dwell at a low value, say 0.5. Type 0.5 for Current Value,
check the Lock Factor Setting box, then click OK. The vertical line on the Dwell
profile should now be solid.

Notes




Exercise 12.1 (cont'd) ‘; 174:

rE’p Factor Settings M
Factor Temp Press Dwell

| Current Value: (155942][ 150|[ 05|
Minimum Setting: [ 120][  so][ 02]
Maximum Setting: [ 180][ 150][ 2]
Number of Plotted Points: | 41|[  41] 41]
Show v v v
Lock Factor Setting: v

oK ][ Concel
"

e) Run Maximize Desirability again. The optimal factor settings are shown in the
Current Value row. The response averages are 80.08 for Bond and 4.35 for Print.

f) Save your script, close and save the data table.

Notes




Exercise 12.2 m

a) Assembly of inkjet print cartridges includes an ultrasonic welding operation with
X variables Force, Energy, Amplitude, and Cavity (1dentifies the tool cavity in
which each plastic cartridge was molded). The response variables are Weld depth
and Leak rate.

b) DOE Participant Files \ ultrasonic welding 2. Run the model script. Use a Log
transformation for Leak rate. Use Effect Summary to prune the models.

c) Go to the Prediction Profiler. The target for average Weld depth 1s 0.20, with a
tolerance of + 0.05. The lowest possible value for average Leak rate is 0. We
require mean Leak Rate to be no larger than 0.10.

d) Modify the desirability functions for Weld depth and Leak rate accordingly. Click
Prediction Profiler red tnangle — Optimization and Desirability — Save
Desirabilities.

e) Click Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability. See next slide.

Notes




Exercise 12.2 (cont'd)

Prediction Profiler

0.55
0.50
, 0.45
[0.1845 0.
0.2175) 0.
0.
0
0

0.01242¢ 01,
[0.00508 002 :
0.03042) 0QL : :

Weld depth

3
~
c
-
o
@ \
- op] :
5 \
0.001
1
>
& 0.75
] 5
£0.927128 05
5
o 0.25
0
0 © © ©O © 990 90 9 9Q O OO0 O N O WM O O W o o~
o w o ~ - WO 0 O © = AN ™M ™ ~ L o« = ~N o ~
M o 4 N NN M M oMmom o (=]
Force Energy Ampltude Desirability

f) Least Squares Fit — Save Script — To Data Table — Name: Fit Least Squares —
OK

g) Save data table.

Notes




Exercise 12.3 (Homework) m

a) DOE Participant Files \ electron microscope. Run the Model script. In this case, it
will take you directly to the Model Dialog. Apply Log transformations to all 4
response variables, then run the model.

b) Click Least Squares Fit red triangle — Effect Summary — prune the models. See
slide below.

¢) Go to the Prediction Profiler. We want to minimize all 4 responses. Use the same
desirability functions for all 4 responses: High = 2, Middle = 1, Low = 0. Click
Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

d) Click Prediction Profiler red triangle — Reset Factor Grid — Factor Settings —»
click the Lock Factor Setting box under Tool — OK. See next page.

e) Run Maximize Desirability separately for each Tool (A, B, C). Give the average
values of the 4 responses for each tool. See next page.

f) Save your script, close and save the data table.

Notes




Exercise 12.3 (cont'd)

Source

Tool

Total Dose(2,16)
Bias*Tool
Bias(-10,10)

Total Dose*Tool

W Time*Bias

W Time(30,90)

Total Dose*Total Dose
Bias*Bias
Integrations

W Time*Tool

Total Dose*W Time
W Area(4,16)

W Area*Tool
Integrations*W Time
W Time*W Time
Integrations*W Area
Polish Time(5,20)
W Area*W Time

W Area*Bias

(b) Effect Summary

LogWorth

19.514

]

7.057
5.140 I
4.892 I
3.203 ||
2.294 I
2.232 I
2.229 I
2.003 I
1.961 ]
1.957 [
1.915 [
1.858 I}
1.596 1
1.499 )
1.483
1.371 0
1.247 8

0.950

0.941 1

=

PValue
0.00000
0.00000
0.00001
0.00001
0.00063
0.00509
0.00586
0.00590
0.009%4
0.010%4
0.01103
0.01216
0.01388
0.02536
0.03172
0.03288
0.04255
0.05662
0.11211
0.11449

Notes




Exercise 12.3 (cont'd)

179

(d) Reset Factor Grid

r?’, Factor Settings &‘
Factor Total Dose Integrations WArea W Time Polish Time Bias Tool
Current Value: ﬁiﬁé@ ‘ [ 16][89.9536]| s][ " 10]

Minimum Setting: - [ 4] 30] s][ " -10]
Maximum Setting: [ 16| Lj 161 || 90 90| L‘ 201 L 10[
Number of Plotted Points: [ 41] [ a1 a1 a1l a1
Show v VI v I v v v
Lock Factor Setting: V|
[ OK l { Cancel [
. 4

Notes




Exercise 12.3 (cont'd)

(e) Average responses by tool

Tool | S-Height | S-Width | D-Height | D-Width
A 1.33 113 1.10 0.95
B 1.41 0.76 1.36 1.08
C 1.48 1:32 1.94 1537

Notes




13 Screening Experiments

=

Optimization

Screening

Smaller number of factors

Main and interactive effects

Quantitative factors have 3 levels

Identify the best factor levels

Larger number of factors

Main and interactive effects if
categorical factors at only 2-levels;
otherwise main effects only

All factors have 2 levels (usually)

Identify the “active” factors

Notes




About screening experiments

* They are usually conducted early in the process of optimization
* They involve a relatively large number of factors

* Their objective is to identify a smaller set of influential factors for
further experimentation

* It is likely that many factors considered have little or no effect on the
response (sparsity-of-effects)

* They use the smallest feasible design for the given number of factors —
saves time and money

* They are based on main-effect models, although with some designs,
factors with interactions and quadratic effects can be identified

* They usually consist of factors at only two levels

* They rank the factors by the size of their estimated effects

Notes




Bold strategy

Levels of X are far enough apart to quantify the effect

- Data points -

B
Two-level categorical X

Notes




Not bold enough C1ea

Levels of X are too close to quantify the effect

Two-level categorical X

Notes




Example

* Titanium castings — strong & light

* Tidevelops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

Notes




Example

(cont'd)

Notes

Black Belt
"We should brainstorm factors
for a DOE."

Plant manager
"We can't experiment with such
an expensive part!”

Ti metallurgist
"The problem doesn't replicate
on smaller parts.”

Part engineer
"What have got to lose? It's
been weeks since we shipped
any of thesel”




Example (cont'd) [ 187,
Current state | Possible future
Process area Factor Levels X variable state solution
Slurry Batch1 vs Batch2 v
# Dips 14 vs 18 v
Shell making
Bake time 6 hrs vs 48 hrs v
Bake temp 1950° vs 2050° v
Alloy cost Low vs High v
Alloy status New vs Revert v
Casting
Heat shield | Mild vs Stainless v
Fan speed 2400 vs 3200 v

Notes




Example (cont'd) o

Above 1s the list that emerged from the brainstorming session.
» Three of the factors are variables in the current state.

* The other five are possible improvement 1deas for the future state.
» Total: 8 factors

* Plant manager agreed to 16 castings

* All factors are at two levels

Notes




Steps in creating a Screening Design

1) DOE - Classical —» Two Level Screening —» Screening Design
2) Responses — Response Name —» 02 — Goal —» Minimize

3) Factors — Add all factors as in previous designs (continuous or
categorical, number of levels for categorical)

4) Enter factor names and levels from the table on the previous page —
Continue

5) Choose Screening Type — Construct a main effects screening design
— Continue — Make Design — Make Table

6) (The matrix below has been sorted by Slurry, # Dips, Bake time and
Bake temp)

7) Save as Ti casting alpha case

Notes




Design matrix

5] Ti casting alpha case - JMP

File Edit Tables Rows Cols

DOE Analyze

Graph Tools

View Window Help

4 50Coks|v

v 118/0 Slurry
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 1
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2
Batch 2

W 00 - O » B W N -

el el il et il el
WV R WN O

# Dips
14
14
14
14
18
18
18
18
14
14
14
14
18
18
18
18

Bake time Bake temp Alloy cost Alloy status

6 hrs
6 hrs
6 hrs
48 hrs
6 hrs
48 hrs
48 hrs
48 hrs
6 hrs
48 hrs
48 hrs
48 hrs
6 hrs
6 hrs
6 hrs
48 hrs

1950°
1950°
2050°
2050°
2050°
1950°
1950°
2050°
2050°
1950°
1950°
2050°
1950°
1950°
2050°
2050°

High
High
Low
High
Low
High
Low
Low
Low
Low
Low
High
High
Low
High
High

New
Revert
Revert
New
Revert
New
Revert
New
New
Revert
New
Revert
Revert
New
New
Revert

Heat shield Fan speed 02

Mild
tainless
Mild
Stainless
Stainless
Mild
Stainless
Mild
Mild
Mild
Stainless
Stainless
Mild
Stainless
Stainless
Mild

3200
2400
3200
2400
2400
2400
3200
3200
2400
2400
3200
3200
3200
2400
3200
2400

"

Notes




Analyzing the Screening Experiment . . .

... two months (and many sleepless nights) later...

DOE participant files \ Ti casting alpha case with data

5 Ti casting alpha case with data - IMP =
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
~ Ti casting alp... P 4 =
Design Custom Desi | ¥ Slurry  #Dips Bake time Bake temp Alloycost Alloystatus Heat shield Fanspeed 02
B Model 1 Batchl 14 48 2050 High Revert Mild 3200 191
2 Batchl 14 48 2050 Low New sS 2400 91
3 Batchl 14 6 1950 High New sS 3200 76
= Columns (9/ 4 Batchl 14 6 1950 Low Revert Mild 2400 90
: i'“l')'i'gs’; S Batchl 18 48 1950 High Revert 3 2400 184
W, Bake time 3 6 Batch1l 18 48 1950 Low New Mild 3200 132
dh Bake temp 3 7 Batchl 18 6 2050 High New Mild 2400 144
k. Alloy cost 3 8 Batch1l 18 6 2050 Low Revert SS 3200 197
ik Alloy status 3 9 Batch2 14 48 1950 High New Mild 2400 174
: ;‘::‘S;:zd** 10 Batch2 14 48 1950 Low Revert ss 3200 128
402 % 11 Batch2 14 6 2050 High Revert sS 2400 166
12 Batch2 14 6 2050 Low New Mild 3200 255
~ Rows 13 Batch2 18 48 2050 High New ss 3200 318
All rows 16 14 Batch2 18 48 2050 Low Revert Mild 2400 186
Selected 0 15 Batch2 18 6 1950 High Revert Mild 3200 111
i’:;:’::d g 16 Batch2 18 6 1950 Low New sS 2400 213
Labelled 0

Notes




The model dialog

~ Model Specification

Select Columns

* 9 Columns
i Slurry
ik = Dips
ik Bake time
i Bake temp
ik Alloy cost
ik Alloy status
i Heat shield
th Fan speed
402

Pick Role Variables
: Y | 402
| Weight |
| Freq |
L By |

Construct Model Effects

T
———— 1 # Dips
Cross . Bake time
—————— | Bake temp
J Nest || Alloy cost
—————| Alloy status
\uMacros > )| 1 eat shield

Degree = | |Fan speed
Attributes |+
Transform =

No Intercept

Emphasis: ,MEJJRGP? — T‘
[ Help | |:Run; \

|_Recall | 7] Keep didiog open

| Remove |

* Can't analyze
interactive
or quadratic
effects in
this
screening
experiment

» Just click on
Run

Notes




Analysis
[ Red triangle }(— Response 02
Effect Screening
v The parameter estimates have equal variances.
L Effect screening J The parameter estimates are not correlated.
Lenth PSE
14625
Jr Pareto Plot of Estimates
Pareto Plot Term Estimate
Slurry[Batch 1] -27.87500 T
. 3 G Bake temp[1950]  -27.50000 T
Big hitters 2 Dips(14] -19.62500 [
Fan speed[2400]  -10.00000 =
Slurry Bake time[48] 9.50000 I
Rake temp Alloy status[New] 9.37500
h Heat shield[Mild] -5.62500 [}
# Dips Alloy cost{Low] -4.50000

* Slurry is a variable in the current state

* The O, values for castings made from Batch 1 shells were much lower

than those from Batch 2

* The operators did not report any differences in the make-up of the two

batches

Notes




— 7
Notes 194 i

To interpret screening experiments, use the Effects Screening analysis element as
shown above. It shows showing the relative magnitude of the factor effects. The idea 1s
to use the factors with the largest effects in a subsequent optimization experiment.

The interactive and quadratic effects are left out of the model. This biases the signal-to-
noise ratios downward. The P-values are not to be trusted, so factors appear less
significant than they really are.

Notes




|deal follow-up plan

=
| 195
b

* Do a screening experiment in the shell-making area

* Include Bake temp, # Dips and the important shell-

making variables in an optimization experiment

Notes




What actually happened 196

e

* They changed Bake temp to 1950 and # Dips to 14 (easy)

* The problem immediately went away

* 13 of the 16 DOE castings were good to ship as 1s

* Only 1 eventually scrapped

» Worst-case annual cost avoidance: $20.8M

* No immediate follow-up

Notes




Root causes

* Investigation of the slurry effect eventually lead to the root
cause of the problem

— The density of the ceramic powder used to make the
shell had increased over time, resulting in heavier shells

—> The increase had been noted, but no action was taken
because the densities were still within spec limits

— At the time, shell weights were not monitored

* Why no significant correlations in the “file cabinet™ data?

— The O, data in the engineering database was post rework
rather than first pass

Notes




Control limits vs. spec limits =

USL

Density

------------------------------------------------------------- LCL

LSL

* The data was trying to tell us something

* Disaster could have been averted

Notes




Exercise 13.1 ;

a)

b)

Create a standard screening design matrix for the 10 factors shown below.
Note: A sample size of 16 would have been adequate, but the project team
decided to use a sample size of 24.

Save the table of factors for use in the next exercise:
Click the red triangle next to Screening Design > Save Factors (table opens)

File > Save as... > extrusion design factors
Save vour design matrix as extrusion design 1.jmp.

DOE Participant Files \ extrusion 0 with datajmp. Analyze the data as
shown for standard screening designs.

Based on the results for Strength and Ductility, find the best set of 4 factors for
a subsequent optimization experiment.

Notes




Exercise 13.1 (cont'd)

- 200

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

Responses are Strength and Ductility of the extrusions

0.0 to 0.5
20 to 40
60 to 80
0.1 to 025

260 to 320
260 to 320
260 to 320
260 to 320

100 to 200
150 to 300

Notes




Another way to analyze

The experiment in the previous example was conducted years ago.

JMP can now analyze this experiment differently,
giving more information!

The O2 experiment can be analyzed using JMP's Fit Two Level Screening

.

Requirement for this type of analysis: All factors are at 2 levels
Reports and interpretation are very different

Based on the assertion that relatively few of the effects are active
Most are inactive (insignificant), meaning their effects are negligible

Often, 1n screening experiments, there are no degrees of freedom for
error

Estimates of mactive effects are used to estimate random error in this
analysis

Some information can be gained about 2-factor interactions

2-Factor interactions are aliased with each other

Notes




Fit Two Level Screening

DOE participant files \ Ti casting alpha case with data

» DOE > Classical > Two Level Screening > Fit Two Level Screening

+ Set up as shown (all factors are cast into X)

« Click OK
tf Fit Two Level Screening - JMP - O X
Looking at lots of effects to help decide which to put in the model.
Select Columns 2 Cast Selected Columns into Roles Action
¥ 9 Columns [ Y 402 [ OK
: ; Cancel
X wh Sturry 1
[:] & = Dips Remove
k. Bake time Recall
W Bake temp m
DBY ot -
» \:] v

Notes




Fit Two Level Screening (cont'd) E

— |

Below is the Contrasts report:

« Contrast column shows the regression parameter estimate
o An asterisk shows estimate 1s not the same as the regression estimate
o  An asterisk would indicate that we need to use the Fit Model platform
o  There are no asterisks in this report

« Individual p-Values indicate significant effects
« Bar Chart shows terms significant at the 0.10 level
« Analysis may not be exactly the same if re-run, due to the analysis process
« Note that there is an interaction that is significant!
o  We cannot tell if the significant interaction is Bake temp*Fan speed
o It could be any of the interactions under Aliases
The estimate of the effect (Contrast) is actually the sum
of all of the aliased interactions
o This is because this is a screening design
o Additional experimentation is needed determine the active interaction

Notes




Contrasts report ﬂ

4 Contrasts
Lenth Individual Simultaneous
Term Contrast t-Ratio  p-Value p-Value Aliases
# Dips 19.6250 | 1.62 0.1126 0.7222
Fan speed 10.0000 ] 0.83 03818 1.0000
Bake time 9.5000| 1 079  0.4068 1.0000
Alloy status -9.3750 [l -078 04133 1.0000
Heat shield 5.6250 | 047  0.6697 1.0000
Alloy cost 4.5000 il 037 07320 1.0000
Slurry*Bake temp 9.8750 =3 0.82 0.3882 1.0000 = Dips*Bake time, Fan speed”Alloy status, Heat shield"Alloy cost
Slurry*# Dips -6.5000 l -0.54 0.6237 1.0000 Bake temp*Bake time, Alloy status"Heat shield, Fan speed”Alloy cost
Bake temp*= Dips -1.8750 I -0.16 0.887 1.0000 Slurry*Bake time, Fan speed*Heat shield, Alloy status*Alloy cost
Slurry*Fan speed -0.8750 -0.07 0.9474 1.0000 Bake temp*Alloy status, Bake time"Heat shield, # Dips*Alloy cost
*Alloy status, # Dips*Heat shield, Bake time*Alloy cost
# Dips*Fan speed -6.1250 O | -0.51 0.6434 1.0000 Bake time*Alloy status, Bake temp*Heat shield, Slurry*Alloy cost
Fan speed*Bake time 6.7500| m ;' 056 06115 1.0000 # Dips*Alloy status, Slurry*Heat shield, Bake temp*Alloy cost

Notes




Fit Two Level Screening (cont'd)

The Half Normal Plot graphically identifies significant effects

+ Significant effects or terms fall off (away from) the blue line
+  The additional point off the line 1s # Dips, which was near the cut-off
- Here, it appears to be significant
+  One could choose to carry this term forward
4 Half Normal Plot

40 = :
Bake temp®Fan speed
+
35
30 Slurry
= " i
n 25 Bake temp
§ 2
g 20
o
2 15
f:
g0
5
0
-5
00 05 1.0 1.5 20 25

Half Normal Quantile

Lenth PSE=12.0938
P-Values derived from a simulation of 10000 Lenth t ratios.

[Make Model| [Run Model|

Notes




Fit Two Level Screening (cont'd) 206

« Click Make Model
« Fit Model window will come up
o Significant terms have been carried forward
o Terms can be added to the model
o  # Dips could be added (probably should be, based on Half Normal Plot)

B% Selected Model - IMP = o X I
4 = Model Specification
Select Columns Pick Role Vaniables Personality: Standard Least St
* 9 Columns [T % | 402 &
& Slurry = ! 3 Emphasis: | Effect Screening
ik = Dips —_— -
h Bake time “Weight | [(Hep | [ Run |
& Bake temp e — e
ik Alloy cost Freq | _Recall | [7] Keep dialog open
ik Alloy status | Remove |
i Heat shield By - |
ik Fan speed
402 Construct Model Effects
Add || Shurry
— | Bake temp
Cross || Bake temp*Fan speed
| Magros v |
Degree | 2]
Attributes =
Transform =
[_] No Intercept

Notes




Fit Two Level Screening (cont'd)

= Cl lck Run % Report: Fit Model - IMP - O X

; oy 4 '~ Response 02
«  This familiar report comes up  4eftect summary

k . Source LogWorth == PValue
° ThlS analySIS got us furthcr Bake temp*Fan speed 2.869 [l 0.00135
Slurry 2.074 [ 0.00844

o Presence of interaction A Lo 2.030 [ 008132

Remove Add Edit [ ] FDR 0+ dencoes effects with containing effects above them

o  Need higher level terms biack Of Fit

4 Summary of Fit
« Additional experimentation to: RS 0.75372
RSquare Adj 0.69215
o Determine interaction N N A

Mean of Response 166
Observations (or Sum Wagts) 16

I Analysis of Variance

4 Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 166 8.861419 1873
Slurry[Batch 1] -27.875 8861419 -3.15
Bake temp[1950] -275 8.861419 -3.10
Bake temp[1950]*Fan speed[2400] 3675 8.861419 4.15

I Effect Tests

[ Effect Details

o Optimize

Notes




Definitive Screening Design

A Definitive Screening Design is a very effective screening design

« Factors must be either continuous or two-level categorical

[t can be a good alternative to a Custom Design when six or more factors

“A minimum run-size DSD 1s capable of correctly identifying active terms with high
probability if the number of active effects 1s less than about half the number of runs
and 1f the effects sizes exceed twice the standard deviation. However, by augmenting
a mmimum run-size DSD with four or more properly selected runs, you can identify
substantially more effects with high probability. . .. Extra Runs substantially
increase the design’s ability to detect second-order effects.”

--From JMP’s Overview of the Fit Definitive Screening Platform

. . oo B b
“Effect sizes exceed twice the standard deviation™ =2 :" -2

which means that the difference between the average response at the high level and
at the low level 1s 26, or 2 * std dev. (Remember, the coefficient is the effect/2.)

“Second order effects” include 2-level interactions and quadratic terms.

Notes




Example

Using the same situation as in the previous example:

«  Enter response and factors, as usual

«  Set up Design Options, as shown. (4 Extra Runs are recommended!!!)

0 DOE - Definitive Screening Design - JMP - ] X
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
4 « Definitive Screening Design

4 Responses

[Add Response v [ Remove | [Number of Responses...|

Response Name Goal Lower Limit Upper Limit Importance
oo e — 1 L

4 Factors
Name Role Values
A Bake temp Continuous 1950 2050
wh Alloy cost Categorical Low High
th Alloy status Categorical New Revert
i Heat shield Categorical Mild Stainless
A Fan speed Continuous 2400 3200
4 Design Options

No Blocks Required
®) Add Blocks with Center Runs to Estimate Quadratic Effects
Add Blocks without Extra Center Runs

Number of Blocks

2]:
Number of Extra Runs | 4|2

Make Design

-
“

Notes




Example (cont'd)

This Definitive Screening Design requires 22 runs
» In the previous example, only 16 runs were required
«  However, a follow-on optimization experiment was needed

The Definitive Screening can be run, then augmented, if needed

«  This requires many fewer runs (and other resources) overall

“

Block Slurry #Dips Bake time Bake temp Alloycost Alloystatus Heat shield Fan speed 02

1 Batch2 18 27 2000 High Revert Stainless 2800 .
2|1 Batch2 14 6 2050 Low Revert Stainless 2800 .
311 Batch1 18 6 1950 Low New Stainless 3200 .
4 Batch2 18 48 1950 Low New Stainless 3200 .
5[1 Batch1 14 6 2050 High Revert Mild 2400 *
61 Batch1 14 48 2050 High New Stainless 3200 .
7/ Batch1 18 48 1950 High New Mild 2800 .
81 Batch2 18 27 2050 High Revert Stainless 3200 ®
91 Batch1 14 27 2000 Low New Mild 2800 .
101 Batch2 14 48 2050 High Revert Mild 2400 o
111 Batch2 18 6 1950 Low Revert Mild 2400 .
12 |1 Batch 1 14 27 1950 Low New Mild 2400 .
132 Batch2 18 48 2050 Low New Stainless 2400 .
142 Batch1 18 6 2050 Low New Stainless 2400 .
15|2 Batch2 18 48 1950 High Revert Stainless 2400 .
162 Batch 1 18 48 2050 Low Revert Mild 3200 .
172 Batch1 14 6 1950 High Revert Mild 3200 .
182 Batch1 14 6 2050 Low New Mild 3200 .
192 Batch2 14 48 1950 High Revert Mild 3200 .
202 Batch2 14 6 1950 High New Stainless 2400 *
21|2 Batch1 14 48 2000 Low Revert Stainless 2400 .
22 |2 Batch2 18 6 2000 High New Mild 3200 .

Notes




Analyzing the Definitive Screening Design

When you create a Definitive Screening Design in JMP
: 4
the Table will contain a script for analysis
Help > Sample Data Library Design Experiment / Extraction 3 Data
E'JiExtractlcn;Data 7— JMP : o -
° Run the File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
: = e 4 D M EE L =
experiment R v o [REE
l w Extraction3 Data 3 BY v Methano
* Enter data into |0 o | = o tet |1 [Ethencl [Propemol Butmcl | il [ Teme [ Yo
| Note These fictional data w = ~ > - = —
the table v Fit Dei.mzwe‘Screemng 21 5 10 10 10 9 2 6507
. / B Evaluate Design 31 10 10 0 0 75 2 7994
* Click on the | B DOE Dialog 4 0 0 10 0 9 2 3558
: | 51 5 0 0 0 6 1 48580
green triangle to | = Columns (8/0) 6 1 10 0 5 10 9 1 6819
analyze the data ::Loz* " 7)1 0 10 5 0 6 2 6032
- | 4 Methanol 1 a . PR
(run the script) |4 enonol % 81 10 10 o 10 s 50.75
| 4 Propancl 91 0 0 10 10 15 1 4920
| 4 Butanol 10 2 5 5 5 5 15 15 1555
. Y?u must. use baore I = ™ 0 o 9 1 1857
Fit Definitive ‘:Tnme: 12)2 10 0 0 5 9 2 2239
. | A Yield 13 2 10 5 10 10 6 2 3601
Screenlng.for 14 2 0 5 0 0 9 1 8.65
the analysis, to 152 10 0 10 0 6 15 3206
take advantage | 16 2 0 0 of %] & 2| 2w
: » Rows 17 2 0 10 10 5 6 1 0.13
of the design S o i 18 2 0 10 0 10 9 15 1507
elect
structure | Excluded 0
| Hidden 0
| Labelled 0

Notes




Analyzing the Definitive Screening Design (cont'd)

| Stage 1 - Main Effect Estimates
Term Estimate Std Error tRatio Prob>|t|

« JMP does all the work:

: - Methanol  9.7133 03674 26.438

o Stage I tests Main Effects Ethanol 23166  0.3674 6.3055

o Stage 2 tests interactions and Tine SATRELE 103609 ST L 008
i G Statistic ~ Value
quadratic terms of significant RMSE 13747
Main Effects & 3

o Combined Model includes both

| Stage 2 - Even Order Effect Estimates

4 Combined Model Parameter Estimates Term o ol [Entimeate: | S0l Ervor | € Ratlo; {Probo i
Term Estimate StdError tRatio Prob>|t] 'L'::['f;”‘ o R e
Intercept 34568  1.0452 33.074 Methanol*Ethanol -0367 07127 -0515 0.6581
Lot(1] 17.197  0.6023 28552 Methanol*Time 05266 07127 0.7389 0.5369
Methanol 9.7133 04281 22.691 Ethanol*Time 9.8258 0.8534 11.514
Ethanol 23166 04281 54118 Methanol*Methanol 7.637 14914 5.1208 0.0361°
Time "4.0798  0.4281 9.5307 Ethanol*Ethanol -1.449 1477 -0.981 0429
Methanol*Ethanol -0.367 05534 -0.663 0.5287 Time*Time -3.297 1477 -2.232  0.1552
Methanol*Time 0.5266  0.5534 0.9516 0.3730 Statistic  Value
Ethanol*Time 9.8258 0.6627 14.828 RMSE 2.0626
Methanol*Methanol 7.637 1.1581 6.5945 DF 2
Ethanol*Ethanol -1.449 11469 -1.264 0.2468
Time*Time -3.297 11469 -2.875 0.0238"

Statistic  Value
RMSE  1.6017 Click Run Model
DF 7

[Make Model| [Run Model

Notes




Analyzing the Definitive Screening Design (cont'd)

A familiar report comes up

« Proceed as before: Check residuals and remove insignificant terms

* Note that interactions and quadratic terms are estimated!

« This 1s what is meant by Definitive Screening

+ In this case, an additional optimization experiment is not necessary!

4 Effect Summary
Source LogWorth
Lot 7.779 |
Methanol(0,10) 7.087 B
Ethanol*Time 5.818 [N
Time(1,2) 4.532 R
Methanol*Methanol 3.514
Ethanol(0,10) 3.002 [
Time*Time 1623 0
Ethanol*Ethanol 0.608 |
Methanol*Time 0.428 [
Methanol*Ethanc! 0.277

Remove Add Edit [ ] FDR

"' denctes effects with containing effects above them)

PValue
0.00000
0.00000
0.00000

0.00003 »

0.00031

0.00100 ~

0.02382
0.24682
0.37300
0.52873

; 213

Notes




Full Factorial vs. Definitive Screening Design (not randomized) A

| —
Full Factorial Design with Defmitive Screening Design with
4 Center Runs: 4 Extra Runs and 2 Center Runs:
x1 | 2 | x | xa Y X1 X2 X3 X4 X5 X6 Y
= = > - - - T _‘ - - -
1 . 0 -1 1
1 . 1 0
1 . -1 0 -1
= . = 1 0
=1 . » 0
L * 1 -1 -1 0
| .
- ] 1 0 = | ! .
1 . ' 1 - 0 ‘ :
1 . -1 -1 0 -1 .
> 3 - 1 i1 3 0 .
! 1 1 . Z, L 0 y
1 1 . = 1 1 1 -1 .
1 1 ! . 1 -1 1 .
1 1 1 w 1 .
0 0 0 0 . 1 -1
0 0 0 0 . 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 .

Note the structural differences in these two classes of designs.

Notes




Exercise 13.2 rz-.;

Using the same factors and levels as Exercise 20.1, create a Definitive Screening
Design.

* When you are ready to enter the factors:

» Click the red triangle next to Definitive Screening Design > Load Factors
(select the file extrusion design factors saved during Exercise 20.1)

* Be sure to add the recommended 4 runs!

* The previous experiment required 16 runs, but they used 24 runs. Further
experimentation would be needed with that screening design.

* How many runs does this Definitive Screening Design require?

Notes




Factors from Exercise 13.1

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

0.0 to 0.5
20 to 40
60 to 80
0.1 to 025

260 to 320
260 to 320
260 to 320
260 to 320

100 to 200
150 to 300

Responses are Strength and Ductility of the extrusions

Notes
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