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1 JMP menu map
| Calculate basic statistics, create statistical graphies, find % of

-I. data points beyond given limits

| Fit distribution models for regular quantitative data, evaluate
goodness of fit, predict %o or PPM beyond given limits

Distribution |-

Hypothesis testing, comparmg populations, testing for

f 7

|

| ) FitYby X | significant differences
Correlating variables, modeling Y as a function of one X or

[
multiple Xs, prediction, optinization

Categorical MSA
without standards

If, |
Variability/Attribute Gauge Chart l—{

Analyze (
\ | Qualityand |
- | Pareto Piot

\
Process
Fit distibution models for life data
(time to failure), evaluate goodness of

fit, predict failwre probabilities

#

Reliability Life
and Survival Distribution

Notes




JMP menu map (cont'd) m

|' Specify desired default settings
for IMP analysis platforms

File —— Preferences Platforms

| Derive a smaller data table by calculating statistics over a
/ by | subset of a larger data table
‘ A Subsst |- | Extract a subset of a data table I
Tables L 5 Sort | I Sort a data table by specified columns |

. i Stack 4| Stack values from multiple columns into a smgle column ‘

s Split 4| Unstack values from a single column mto multiple ¢olumns |

e

- __________-{- Calculate the required sample size for a designed experiment
DOE }‘:—‘:’ -

_—“—-{ Create the design matrix for a designed experiment ‘

Graph Overlay Plot —{ Plot one or more data series in time sequence I

Notes




2 Basic Statistics and Statistical Graphics

T

* Frequency histogram

« Cumulative distribution function
* Percentiles

* Box and whisker plot

« JMP distribution analysis

+ Data validation

* Distribution analysis options

* Plotting data in time sequence

+ Saving analyses and data tables

Notes




Notes P 4 _“
N——

Y variables are characteristics of parts or transactions that determine customer
satisfaction, or lack thereof. They provide the data from which project metrics are
computed. In sections 2 and 3 we focus on guantirative Y vanables. Examples
include:

» Properties: physical, chemical, electncal, optical, . . .
» Distance, time, dimensions. cost, quantity

* Event counts (when there 1s not a discrete number of opportunities for the
event to occur)

JMP uses the term continuous for quantitative vanables, and often uses the term
nominal for categorical vanables.

Notes




Frequency histogram

— §
. J
i

LSSV2 data sets \ DI Water
Number of data points in each bin
80 - =

Count
I
o
J

Ao L

———— ————————

1200 1300 1400 1500 1600 1700 1800 1900 2000

Continuous Y vanable

Notes




Cumulative percentage histogram

Percentage of data points < upper limit of each bin
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Cumulative percentage histogram (cont'd)

Made the bins smaller
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Cumulative distribution function (CDF)

100

Percent less than

1200

* Bins are so small they isolate
individual data values

* For small sample sizes, the COF
looks like a staircase with a o
step at each data value

* About 40% are 1600 or less

« About 5% are 1400 or less

T

L I E— ! T

1300 1400 1500 1800 1700 1800 1900

Continuous Y variable

2000

Notes




Percentiles

A percentile is a value that divides a population or data
set into two groups, based on a stated percentage

10% are less than the 10™ percentile, 90% are greater
25% are less than the 25th percentile, 75% are greater
50% are less than the 50" percentile, 50% are greater
75% are less than the 75™ percentile, 25% are greater

90% are less than the 90™ percentile, 10% are greater

Notes




Percentiles (cont'd)
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11

Common percentile-based data summary
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Box-and-whisker plot

“Inter-quartile range™ (IQR)
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“Whiskers” show the minimum and maximum data points,

not including outliers (see next slide)

Notes




Rule for plotting points separately 13
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Ends of whiskers are determined by the highest and lowest data points
that are mside the calculated ranges.
Points plotted separately are outliers, and should be mvestigated.

Notes




JMP distribution analysis

File — Open — All Files — Data sets \ lead time 1 — Open — Import”

r[a] lead time 1 - JMP [2]
file Edt Jables Bows Cols DOE Analze Graph Tgols Yiew Window Help |

E=SEE)

w lead time 1

» Source

v Columns (1/0)
A Lead ime

—_—— ———
* Rows

*;All rows 15
|Selected 0
Excluded 0
|Hidden 0
Labelled 0

s - Y S Y N

el o
Wk W=D O

Lead time

9.61
9.71
954
9.67
9.75
9.49
9.55
942
9.58
9.61
9.87
9.93
9.81
9.89
9.94

Analyze
A

Distribution

\

"Needed only for

non-JMP files

r Y
& Distribution - JMP (2] | 5
The distnbution of values in each column »

Select Columns Cast Selected Columns into Roles Action
* 1 Columns Y, Columns/ | 4lLead time oK |
e— | Weight | _Cancel |
Histograms Only Freq |
_ Recall |
Help |
2 o
-

Notes




Data validation

r - T
5~ lead time 1 - Distribution of Lead time - JMP [2] t =B
| {
4 ~ Distributions |
| 4 ~ Lead time
r) !
§~— 4 » Summary Statistics
(later) | <$:> . Mean 15.343333
Std Dev 21.815551
— N 15
Minimum 949
Maximum 942
==l
0 A 20 40 60 80 100
>3 v
Qg 1 —
\
« Qutlier

Frequency histogram

* Not always visible in the histogram
* Click on 1t
* Look in the data table

Notes




Data validation (contd) 5

3 lead time 1 - 1P (2 |mrlﬂﬂ

file Edit Jobles Bows Cols DOE Anahyze Graph Tools View Window Hep |
v lead time 1 . 4 ‘
ey | Lead time ‘
1 951
2 971 |
3 9.54 |
e 4 9.67 : -
v Columns (1/0) - S5 (F3) ted time 1 - 1P (2] [FSET™)
Lead time . — = o e St s Y || P R i (e e 8 S ety P P a— -
4 6 945 | Ble  Edit Tables Rows Cols DOE Analyze Graph Tgols View Window Heip
7 9.55 |. lead timel D] 9 v
] o2 | [=Soune > Lewd thme
9 958 1 9.61
10 9,61 2 9.7
- 11 9.8 : o
= Rows 12 993 v Columns (1/0) v i
All rows 15 13 981 | 4l Lead time 5 9.75
Selected 1 14 989 6 940
Excluded 0 7 9,55
ey 5 1 9,34 e
Labelled 0 ; 9.58
10 9.61
e — / — 11 9.87
7 12 9.9
5 13 as
1
v" Data entry error - 0 - L
- 15 9.04
/ Hidden 0 -
v" Enter the correct value |Labelied o
v" Go to next shide > v

Notes




Distribution analysis with data correction

"
[& lead time 1 - Distribution of Lead time - JMP [2] [ESEE)

| 4 « Distributions
4 « Lead time

4 » Summary Statistics

b—- 11— }—i Mean 96913333

StdDev  0.1671555

N 15
Minimum 9.42
Maximum 9.94
94 as 95 97 93 a9 10
l > -

Note the change in the histogram and the summary statistics

Notes




Cleaning up the box plot (optional)

F
|&= lead time 1 - Distribution of Lead time - IMP [2]

* Right click mthis | —_

(=&

space 4 = Distributions

4 = Lead time

— =

+ Select Customize

« Select Box Plot

* Uncheck
Confidence
Diamond and
Shortest Half —
OK

94 85 06 9.7 a8 10

4 '+ Summary Statistics

tlean 9.6913333
Sid Dev  0.1671555
N 15
Mirimum 9.42
Maximum 0.94

Sl r

* What remains 1s the box and whisker plot

« JIMP calls it Qutlier Box Plot because its main
purpose in this context 1s to show outliers

Notes




Distribution analysis options Qn

s -
[= lead time 1 - Distribution of Lead time - JMP [2] Lo | ()

|4 ~ Distributions
4 « Lead time

/ 4 = Summary Statistics
: e | — Mesn  9.6913333

Std Dev 0.1671555
= N 15
Minimum 042

Maximum 954

* Click on the red triangle next to Lead time while holding down the A/t key
* This will show the default analysis options for the Distribution platform

» See next shde

Notes




Default analysis options (cont'd)

#. Select Options and click OK

L2

Display Options
| Quantiles

| Set Quantile lncremen{j

| Custom Quantiles
¢! Summary Statistics
Customize Summary Statistics
¥| Horzontal Layout
Axes on Left
Histogram Options
|#/! Histogram
| Shadowgram
| Vertical
Std Error Bars
| Set Bin Width|
Count Ans
| Prob Auis
| Density Axis

Show Percents

Show Counts

Normal Quantile Plot

Outlier Box Plot

Quantile Box Plot

Stem and Leaf

CDF Plot

Test Mean|

Test Std Dev| ]
Confidence Interval 1090 v‘

Prediction Interval
Tolerance Interval
Capability Analysis

Just for practice:

Continuous Fit ! Remove

Normal
LogNormal
Weibull
Weibull with threshold
Extreme Value
Exponential
Gamma

Beta

Smooth Curve
Johnson Su
Johnson Sb
Johnson SI
Glog

All

Save|Level Numbers v |

Uncheck Summanry Statistics and Outlier Box Plot — Check CDF Plot — OK

This can also be done by just clicking on the red triangle, but requires more steps.

Notes




Cumulative distribution function (CDF plot)

r — ™
|5~ lead time 1 - Distribution of Lead time - IMP 2] o | [
4 = Distributions |

4 = Lead time
< CDF Plot
| | |
1
08
I ‘
| | 3
94 9% 95 ©7 985 99 10 £ 9
&
§
Y 04
02
94 95 @5 a7 o8 99
Lead time
\\‘ v |
.

* Plots the proportion of data points < each value m the data set
* The step size at each data value 1s usually I/N, where N is the sample size

* If the same value occurs twice in the data set, the step size there 1s 2/N

Notes




Modifying JMP plots

CDF Plot

aren Frol

4 83 ¥b ¥ %4 oy
Ll e

2. Double click on a number on
the X axis
* check Major Grid Lines
* uncheck Minor Tick Mark
« OK

l. Double click on a number on the Y axis

change Increment to (.1

check Major Grid Lines

uncheck Minor Tick Mark

Set Minmmimum to 0 and Maximum to 1
OK

CDF Plot

Cum Prob

o O
it WD
|

o
&

=
A

02
0l

94 95 86 9.7 CF a9
Leadtime

Notes




4
Calculating percentages 23 |
g percentag _
rl.:- lead time 1 - Dutribution of Lead time - JMP [2] | = i = Ln'_dﬂ
4 = Distributions l
.~ Lead time !
: . 4 CDF Plot
| 1
| | — 09
os
=
g4 95 95 97 9& 93 10 E o
|
¥ ] 9 o5 87 G5 a5
Lasg e
! N |

* Suppose we want to know the percentage of data pomnts exceeding 9.8
* Chick the Lead time red triangle — select Process Capability

« Enter 9.8 for the Upper Spec Limit —» click OK

Notes




Percentages (cont'd)

4 '~ Lead time Capability

4 = Histogram
ust
..;.‘
...‘ L
‘...
1 i
a7 98 a9
Lead time
< Overall Sigma Capability
Index Estimate Lower95% Upper 95%
Cpk e217 p.o? 0.400
Cpu 027 0.027 0.200

4 Nonconformance
Expected Expected
Portion Observed % Within % Overall %
Above USL 333333 154871 25.78%
Total Cutside 333333 15481 257816

Density

== Overall

Nonconformance shows:

the Normal distribution

chart

Capability

chxt scction

* Observed percent out-of-spec
» Expected (predicted), based on

Capability indices are calculated:
* Within Sigma Capability can be
used when small samples are

collected, such as for an Xbar-R

* Turn this off by clicking on the
red triangle next to Lead time

* Turn off the Within curve on the
histogram by clicking on the
red triangle next to Histogram

We will cover distribution fitting in

\

Notes




Plotting data in time sequence

L=]

Graph — Legacy — Overlay Plot

— N
%2> Overlay Plot - JMP [2] = e
The Plot of Y as X vanes continucusly ‘
Select Columns Cast Sefected Columns into Roles Action |
¥ 1 Columns Y |/ 4mLead time oK -
A cad time = — —— - \
| Left Scale/Right Scale | Cancel
Options T ‘
X Remove
X Log Scale | Grouping | Samove
Left Y Log Scale By | _Recall
Right Y Log Scale Help ‘
~ v ‘

* You can have different left and right scales for plotting multiple

Y variables

O

Cast both Y variables mto Y
5 Select the one you want to display on the secondary (right) scale

o Click Left Scale/Right Scale.
o Arrows point to the Y-scale for each Y variable

* A date, time, or other sequencing variable could be cast into X

Notes




Overlay plot (cont'd)
= Graph Buider = Geaph Buidder
Lood time va Row Laad time ve. Row
}a ! K /
[ [*
A / ’ ,
A/ = A
\ ¥ / \ ‘/ . s '/H\I f/ \ /
.\";" “‘\ A / ! 4"/ \\ , / \ |
v\ \ / / ‘."( } A ‘,/'
Y .,,’ N 8
\/
.

1, Dec =

16, Increment

» Modify the chart as follows:
0, Maximum

* Double Chck X-Axis: Minimum

* Double Click on Y-Axis: Minimum = 9.4
* Right Click on Chart: Customize > Line > Lie Color > Red

* Double Click on X-Axis Title: Change “Row™ to “Time Sequence”

Notes




Overlay plot (cont'd) "

s ~*» Good way to look for assignable cause
e R patterns versus their time sequence

* Same as a line chart in Excel

i A / K Overlay plot can be used to display
Py //\ // \ | different data sets on different Y-Axis
l\ / |

v:

\\ /4'

Overlay Plot - P - 0

The Piot of Y a5 X vanes continuously
Select Columms [Cast Sebected Columns o Roles 1 Action
| Left Scale/Right Scade Cancel
Options p T
Sor
e Grouping Remove
X Scale -
Log Sca = Recall
Left ¥ Log Scale
13
Right Y Log Scale eip
!
> v

Notes




Saving your analyses and data table

[~ lead tme 1 - Distibution of Lead time - IMP [2]

) = Distributions
= Lead time

* Click on the thumbnail for the distribution analysis at the

<4 CDF Plot

bottom of the data table

* Click the red triangle next to Distributions

* Save Script — To Data Table — Name: Distribution — OK

— I -y
4 = Capability Analysis
Specification Valse Portion % Actusl
Lower Spec Limiit Sslow LS
Spec Target U 333n
Uppar Spac Limit 98 Tomsl Outside 333333
Long Term Sigma
hd

Notes




Saving things (cont'd) = 1

b : Y
»- lead time 1 - Overlay Plot of Lead time - JMP [2] =) é

4 ~ Overlay Plot
10
99 -
98 .

Q7 o

Lead time

a5 o
95 .
94 =

93

D 3 23 & i3 6 208 90 b 113143510
Time sequence

>3 v

|-

* Click on the thumbnail for your overlay plot, click the red
triangle next to Overlay Plot

* Save Script = To Data Table — Name: Overlay Plot — OK

* Go to your data table

Notes




Saving things (cont'd)

Fle Edt Tables Rows Cos DOE Ansyze Graph Tooks View Window  Heb

» Cycle times

Notes C\Documents and Se
w Distribution

w Overiay Plot

» Columns (1/0)

A |Leadtime

» Rows

All rows 15
Selectad 0
Excluded 0
Hidden 0
Labelied g

L . L o A

o= 0o

13

Lead time
961
an
954
967
975
949
8955
942
958
981
987
893
asl
989
994

* Two scripts have been added to
the left panel

* If you save the file (as JMP), the
scripts will be saved with it

* The next time you open the file,
you can run the scripts to recreate
the analyses exactly as you left
them

* Close and save your data table
now"

‘Use Save As to make sure you can find
the file next time you want to open it

Notes




Exercise 2.1 m

Open Data sets \ quotation process. Perform the following data analysis tasks for the
variable 7AT (turnaround time).

(a) Run a distribution analysis. Note the large number of points plotted separately on
the outlier box plot. This pattern 1s common with asymmetrnic “ski slope”
distributions that pile up near zero. These points are nof assignable causes, so they
would not be mvestigated or removed.

(b) Record the average, standard deviation, sample size. minimum, maximum and
median.

(¢) Turn off the outlier box plot.

(d) Find the % of data pomts exceeding 3.

(¢) Tum off the Within Sigma Capability.

(f) Save your analysis script. Close and save the data table.

Notes




Exercise 2.2 .u

Data sets \ DI water. Perform the following data analysis tasks for the varnable
Resistivity.

(a) Create an overlay plot. You should see something that suggests bad data (stretch
the graph 1if necessary). Use your mouse to draw a box around the suspicious data
points. Right click in an uninhabited area of the plot, select Row Hide and
Exclude.

(b) Run a distribution analysis. Record the average. standard deviation, sample size,
minimum, and maximum.

(¢) Turn off the outlier box plot.

(d) Find the % of data pomts falling below 1500.

(e) Tum off the Within Sigma Capability.

(f) Save your analysis scripts. Close and save the data table.

Notes




3 Fitting and Using Distributions

Distribution curves

Checking goodness of fit

JMP examples

Fitting and using the Normal distribution
Fitting and using the Lognormal distribution
Finding the best fitting distribution(s)

Using the best fitting distributions(s)

Notes




Frequency histogram

—

e

0 —

A description of the data

1200

1300

1400

1500 1600 1700 1800 1900

Continuous Y variable

2000

Notes




*7-35

Distribution curves

Possible descriptions of the population

Continuous Y variable

Notes




Distribution curves (cont'd)

36

—

Area under the curve between y, and y,

= % of the population with y, <Y £ y,

Y1 Y2

Continuous Y variable

Notes




=

Distribution curves (cont'd) ‘[ a7

Area under the curve to the right of vy,

= % of the population with Y > y;

Continuous Y variable

Notes




Fitting a distribution curve to the data

—

i

I =

~
~N
\

/

Y

* The Normal curve depends only on pt and ¢ (population mean and std. dev.)

* Plug the sample mean and std. dev. into the formula i place of ptand &

Continuous Y variable

Notes




Distribution curves allow us to extrapolate . . . [ 3

LSL
/]
4
0.12% / |

(1165 ppm) 7 '
are predicted /] \\

to fall on or ,-/ 23

below 1200 _’f
* . = | ]

e
1200 1300 1400 1500 1600 1700 1800 1900 2000

Mimmum value i the datais 1267

Notes




. but only if the distribution matches the data! 40

N\

3-2-10 12 3 45 686T7 8 910111213141516

Notes




Checking goodness of fit

Data CDF’
100 - g ¥
< /.cﬂ’
] -~
80 — o
= ]
©
£ A
60 -
w .
9
& 404
o ]
(5]
a i
20 |
0 _‘ 569";”
1200 1400 1600 1800 2000

“Cumulative Distribution Function

Notes




Checking goodness of fit (cont'd)

% 1
l. 42
—

Best fitting population CDF (assuming Normal)

100

—

-

80 —

60

40 -

20

Percent less than

0 I | Al L] L —' T L v T v Ld T T L T T T
1200 1400 1600 1800 2000

Notes




Checking goodness of fit (cont'd)

43

i

100 -
80 ]
60

40

Percent less than

20

Data and population CDFs should match

———————
1200 1400 1600 1800

2000

Notes




Normal Quantile Plot (also known as Normal probability plot) _. 44

CDF:s plotted on a Normal distribution scale

Population

LSL
90.2

99
95

Population

Percent less than
(8]
=

1200 1400 1600 1800 2000

Notes




JMP example: Normal data

File — Open — Data sets — DI water — Open — Import

* Analyze — Distribution —» R =
~ esistivity
Resistivity — 50K

» VResistivity —» Normal

Quantile Plot g 0.98
G = . ~ n/ - 5-‘ <
» Fit 1s good — the points form a 4 125093
relatively straight line and stay 0.86
within the hyperbolic band Ny an
o It 1s common for the data to 004
curve up a little at the top and 0.45
down a little at the bottom of 067- 5
the Normal Quantile Plot '
-128--0.1
o A curve throughout the graph / 184--0.05
indicates non-normal data /
* Save the script to the data table . e
* File save as — DI water;jmp . 0.002

* Leave the data table open 1300 1400 1500 1600 1700 1800 1900 2000

Notes




JMP example: non-Normal data

File — Open — Data sets — quotation process — Open — Import

* Analyze — Distnbution — TAT

> TAT - OK

Distributions — Stack

14T — Normal Quantile Plot

L]

Fit 1s bad — the points do not
follow the line and do not stay
mside the hyperbolic band

« Save the script to the data table

File save as —» guoration
process.jmp

* (Close the data table

433 Dgg
184005
12E- 09
~ 0.8
ant-0.55
asil-03
.o 014
_:.E_l_ G.U?
.. 0.02
et
0.004
S=-0.000¢
16

Notes




Is this data Normal?

a7

-0.67-

-1.28+

-1.644

2.33-

1.64-

1.28-

0.67-

0.0+

0.5

50

-0.99
- 0.98

- 0.95
0.9

0.8
F0.7

0.3
0.2

50.1
- 0.05

-0.02
2334}

Notes




Is this data Normal?

067

33,1 0.99

0.98

110.95
it 0.9

0.8

0.7
06

0041 0.5

-0.674

1284

0.4
0.3

0.2

0.1

11 0.05

0.02

“10.01

Notes




Fitting and using the Normal distribution

Go to DI waterjmp

The values of Resistivity in rows
205 to 214 are constant at 1454

» These are not true measurements,
so we use the red triangle to hide
and exclude the questionable
values

This reduces the sample size from
474 to 464

Next slide:
- Analyze — Distribution

- Red Triangle — Continuous Fit
— Fit Normal

r@ DI water - JMP

A
.

Eile Edit Jables Rows Cols DOE Analyze ﬁnp: 7?@

* Columns {3/0)

|k Day

‘A Hour

\A Resistivity

I v Rows ]

All rows 474 216 4-F
Selected 10| 217 4-¢
| Excluded 10} =
Hidden 10} 218 4 t
Labelied 0 218 4.F
\ 2X 4-F

* Dl water i s o~

| P Source = Day
202 4-F
203 4.F

Hour Resistivity

13890
15520
16160
14540
14540
14340
14540
14540
14540
14540
14540
14540
14540
16250
15630
16425
18570
15165
17480

Notes




Normal distribution (cont'd)

50

£ = Resistivity
& = Summary Statistics

1300 1400 13500 1800 1700 1800 1900 2000

o O Men 18325248
”~ ok ¢ 149 GEPST
y \q Sad Dev 4208

~ ?\ N 44

. g = '\_i - Munermym 1267

_{,f l ] - 2 Mamum 2020

—t e S Median 162878
)
@

— Select Diagnostic Plots — QQ Plot

— Next slide

4, ~ Fitted Normal Distribution
Estimate StdError  Lowes 5%  Upper 95%

Dispersion © 1420677 0391907

Click on the Fitted Normal Distribution red triangle:

16195082 16454513
14130114 14265648

Notes




Normal distribution (cont'd)

4 = Fitted Normal Distribution
Parameter Estimate Std Error Lower 95% Upper 95%
Locetion g 153235248 6595303 16105982 16454513

Dispersion @ 14206717 03910007 14130114 14265648 * The QQ Plot 1s similar to the Normal
Measures £
-2*LoglLikelihood 5915.2214 Quantile Plot
AlCc 5
a)ctmwm © When the distribution 1s a good
R fit, the data will fall in a line on
2000 o the plOt
900 =
800
€ 1700
=§ 600
1500 * Click on the Fitted Normal
400 Distribution red tnangle again:
300
200 — Select Process Capability
1200 1300 1400 1500 1600 1700 1800 1900 2000 2300
i Cugnite » Enter 1200 for Lower Spec Limit

— OK

—» Next shde

Notes




Normal distribution (cont'd)

=

4 = Resistivity Capability
4 ~ Histogram

LSt

.
.
.

1]

.

L] ‘

1200 1300 1400 1500 1600 1700 1800
Resistivity
4 Overall Sigma Capability
Index Estimate Lower95% Upper 95%
Cpk 1.015 09543 1.087
Cpl 1,015 0.543 1.087

< Nonconformance

Loy

1900 2000

Expected Expected
Portion Observed % Within % Overall %

Below LSL 0.0000 0.0693 ()

165

Total Outside 0.0000 0.0693 0.1165

Density
o= Dversll

» Ohserved % shows that none of the
measurements in the data set are less
than 1200

» Expected Overall % shows that 0.12%
are predicted to fall below 1200 in the
population (future production)

» Save script from the Distributions red
triangle

» Save and close the data table

Notes




What if the Normal distribution isn't a good fit? E

Steps for fitting a distribution to data:

I. Analyze — Distribution

Check Normal Quantile Plot—data in straight line indicates good fit
If uncertain: Continuous Fit — Fit Normal
W Fitted Normal Distribution — Goodness of Fit

«  Anderson-Darling p-value > 0.05 indicates good fit

2. If Normal not a good fit: Continuous Fit — Fit Lognormal
«  WFitted Lognormal Distribution = Diagnostic Plots — QQ Plot
Data in a relatively straight line on the QQ Plot indicates good fit
If uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit
Anderson-Darling p-value > 0.05 indicates good fit

3. If Lognormal is not a good fit: Continuous Fit — Fit All
«  Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense for the data.
Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.
JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sbh, SHASH, Normal 2 Mixture, etc.)

Notes




Fitting and using the Lognormal distribution

* Data sets — number & size of 4 ~ Max size
defects

« Analyze — Distribution — Max
size

» Max size 1s not Normal

* The LogNormal distribution 1s the

most common alternative :
* Red triangle Max Size
» Continuous Fit —» Fit LogNormal
* Red triangle Fitted Lognormal Dist 5
— Diagnostic Plots — QQ Plot 0 3

\
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thda

;—r—l
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o000 O
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wh de Lmoon
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0 =
e
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MNormal Quantile Plot

Notes
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— .
Lognormal distribution (cont'd)
Max size
\ Summary Statistics 4 Fitted Lognormal Distribution
[ : Maan 710635 Parameter Estimate Std Error Lower 95% Upper 95%
\ Std Dev 5174654 Scale B 15799251 0.109%067 14507293 1899121
‘ 5T N 48 Shape e 07593775 00775036 06295191 (9408779
! ‘Y Minimam 0s Measures
| N Maamum 7 -2*Loglikelihood 27105631
L T —— Megan ANz 7533268
0 } 25 BIC 276.60872
QQ Plot
30
.
25 :
..'.-g,l
Click on the Fitted LogNormal Distribution . /
red triangle ;
4]
3 25

— Select Process Capability
— Enter 30 for the Upper Spec Limit
— 0K

Notes




Lognormal distribution (cont'd)
4 ~ Max size(Lognormal) Capability

Nonnormal capability indices calculated with the Percentiles method

4 ~ Histogram
Ust Density
A === Overall
—
. .
. .
K
. Y
. 0
' .
:
. -~
. .s.
' ==z || .
O' o e ':'_'"":O""jj * None of the measurements in the
9 ' . < &2 3 33
Max size data set are greater than 30
4 Overall Sigma Capability 4 Parameter Estimates * 1.17% are predicted to exceed 30
Index Estimate Parameter Estimate : .
o o ke e in the pgptllatlon (future
Cou 0.524 Shape o 0.7593775 production)
< Nonconformance A NP
Expected » Save script from the Distributions
Portion Observed % Overall % red Inangle
Above USL 00000  1.1705
Total Outside 0.0000 1.1705
* Save and close the data table

Notes




Finding the best-fitting distribution(s) E_‘

] 40 Con

v 5700 Rows Algner

16

W o W N NN N W WN @ W WENDNWNN @S NRNRNW N NN WN -

X dev

Y dev

N
N N O e o

—- -,

s Nt \ il
0 W N - DO W

,
"~

-15

R dev
17.454240197
02195444573
23 250406699

1
11.180338887
-
20518284529
17.262576502
85440037453
10.630145813
12529904085
B
8.602325267
11.1803396887
3 1622776602
894427191
20
21931712199
14 317821063
11.313708499
23 086792761
24 207435874
11401754251
10
10295630141
13.801470509
B.5440037453
16

24 69817807
894427191

If neither the Normal or Lognormal are a good
fit to the data, you'll need to find a better option.

* Data sets \ alignment process

» Three similar alignment tools are used to attach
orifice plates to computer chips. Y dev and X dev
are the vertical and horizontal deviations from
target mn mils.

* The alignment specification applies to the radial
deviation calculated from X and Y. See shide
below for the calculation of R dev.

* Analyze — Distribution — R dev
* Remove:

v Summary Statistics

v Outlier Box Plot

* Red triangle (R Dev) — Continuous Fit — Fit
All

* Go to slide 61 to see the results

Notes




Using the formula tool

Double click on the blank column header next to Y dev, click on Column 4,
rename as R dev. Click on Column Properties, select Formula, Edit Formula. Use
your mouse to create the formula for R dev as shown below.

8% Rdev - IMP (4] [531[1] Lo | E e
| I3 |4 Cotumns | =" de]{em){ ¢ oe){ w2 [¥5)(2) [8=]| )} S| @)\X) D)

— —— ——— | A Aligner, E ’
» Row “|| dXdev | 2

» Numeric ‘mgh

» Transcendental AR dey

» Tngonometric

» Character = 2 2
|| » Comparison 1 Xdev + Ydev

» Conditional —

» Probability | Table Variat ~ |

» Discrete Probability Notes “
> Statistical
‘>Random ' 7 2 e A2 B
» Date Time | OK || Cancel || Apply || Help |

Notes




Best-fitting distributions (cont'd)

4 = Distributions
&= Rdev
. 4 Compare Distributions
' Show Distribution MCc~ AlCcWelght 2 4 6.8 BIC  -2'toglikethood
i o] Waibull — 543338 09524 RN | 43523565 4539300
: [ Johnion Sb 45502820 D020 | 4558301 45422035
/ = 8 LaSH — 45514529 o081 | 43695101 45434338
/ I O Mormsl3 Moture —— 45350309 0.0M7 45019708 45308178
ral T r—— Narrial 2 Mistute —— 45595833 0.0002 45623908 45407301
@ 3 0 1% 20 35 30 35 40 [l Gamma — #TIn o 45801935 45671552
[ FMorrmsd — 4504 A0 1] 45015154 45804771
Logncremal — 45T 0 4685708 4ETLTHS
Cauchy — 482250 0 48317106 48186723
Eaponental —— 50458052 1] 50604004 30528932

* Distributions are ranked by AICc (" Akaike

Information Criterion corrected” — will call it AICc¢
from now on)

f\ Double click 1\‘

\)
o It helps us compare fit of models - fit of Format

distributions in this case d
Fixed Decimal (1)
il

« AICc is a measure of lack of fit

o Smaller values indicate better model fit

o AICce 1s not a hypothesis test—it doesn’t tell you \_ OK )
how well a model fits, only which 1s better

Notes




Best-fitting distributions (cont'd)

4 = Rdev
< Compare Distributions
p ‘ Show Distribution
W Weibull —
- Ll Johnson Sb
( [ sHASH —
f{" N ] Normal 3 Mirturs ——
) —ﬁ-ﬂ-:n—_ 1 ixture =
| Nomal 2 Mixture
0 5 10 85 20 25 30 35 40 | Gamma Sem—
[ Normal —
[ Lognormal P—
C] Cauchy o—
E Exponential =

* Dastributions with the same AICc (rounded to the nearest tenth) have the same

lack of fit (or equivalently, the same goodness of fit)

* The distribution with the A/Cc Weight closest to one 1s the better fit

AlCc~ AlCcWeight 2 468

45433
4550

45515
45560
45599
45712
45845
46768
48227
50559

0.9524

0.0295 |

0.0161
0.00%7
0.0002

0

(= e - R

Notes




Using the best-fitting distribution: Weibull

What % of future parts will have R dev > 40?

4 Compare Distributions

Show  Distribution e MCcWeight 2 4568 BIC

v Wesbuil 8 0953 [ 45523585
Johnion Sb 0.02%6 )
SHASH — 4551 0.0161 |
Nommal 3 Mixwre — 45560329 0007
Normsl 2 Mixtute 45598833 .00
Gamma — ASTIATS o 45801038
Normal — 43344549 0 4503514
Lognormat 48767723 0 46857928
Cauchy — 48029 0 483 1.7106
Exponential 50558892 0 50604024

4+ Fitted Weibull Distribution
arameter

Kuie o 172408 0307008
Shape B 22716665 00672977
Mensures

2*Loglikslihond 4539 3200

AlCz 4543338

gic 45823588

* Click on the Fitted Weibull Distribution red triangle

» Select Process Capability

» Enter 40 for USL — OK

Estimate SidErvor Lower 95% Upper 85%

16,050713

21415545

17.855926
24052358

Notes




Weibull fit (cont'd)

4 = Rdev(Weibull) Capability

Nonnormal capability indices calculated with the Percentiles method

4 '~ Histogram

ust
o= |
“lp" =]
ot -
P 3
‘hi
"0 —.“
g “‘q.
7 |
Rl L .
0 5 10 15 20 235 30 35 40
R dav
4 Overall Sigma Capability < Parameter Estimates
Index Estimate Parameter Estimate
Cpk 1.016 Scale a 17.246152
Cpu 1016 Shape P 22716665
4 Nonconformance

Expected

Portion Observed % Overall %

Above USL 0.1475 0.1158

Total Qutside 0.1475 0.1158

4 Process Summary
Density UsL 40
-« Overall N 678
Sample Mean 1528778
Sampie Std Dav  7.097424

* 0.15% of the data values exceed 40

* 0.12% are predicted to exceed 40 in
the population (future production),
based on estimates made using the
Weibull distribution

Notes




What if we had assumed a Normal distribution? 63

4 = Rdev

-
:

./ 2334

0.6

>
'

0.995
0.99
0.98
0.95
0.9
0.8

o000
r Wi en

0.1
0.05
JO.:-‘.

0.005

Normal Quantile Plot

4 ~ Summary Statistics

Mean 15.287761
Std Dev 7.0974238
N 678
Minimum 1

Maximum 40.804412
Median 14.422205

* The curve throughout
this Normal Quantile
Plot indicates that this
1s not a good fit

Notes




What if we had assumed a Normal distribution? (cont'd)

4 = R dev Capability
4 ~ Histogram

USL

.~
.
[

T
20

2% 30 35 40

Rdev
4 Overall Sigma Capability
Index Estimate Lower 95% Upper 95%
Cpk 1.161 1.094 1.227
Cpu 1.161 1094 1.227

4 Nonconformance
Expected Expected

Partion Observed % Within % Overall %
Above USL 0.1475 0.0240 0.0249
Total Cutside 0.1475 0.0240 0.024

4 Process Summary

Density usL 40
== QOverall N 678
Sample Mean 15.28776
Within Sigma  7.078084
Overall Sigma  7.097424

Stability Index. 1.002732

Within sigma estimated by average moving range

We would have
underestimated the
future % defective:

Expected
%% Defective
Weibull 0.12%
Normal ‘ 0.02%

Notes




Steps for fitting a distribution to data

If the Normal or Lognormal is a good fit, use it!

I.  Analyze — Distribution
+  Check Normal Quantile Plot—data in straight line indicates good fit
«  If uncertain: Continuous Fit — Fit Normal
«  W¥Fitted Normal Distribution — Goodness of Fit
+  Anderson-Darling p-value > 0.05 indicates good fit

(5

[f Normal not a good fit: Continuous Fit — Fit Lognormal

- WwFitted Lognormal Distribution — Diagnostic Plots — QQ Plot
Data in straight line on the QQ Plot indicates good fit

«  If uncertain: ¥ Fitted Lognormal Distribution — Goodness of Fit

«  Anderson-Darling p-value > 0.05 indicates good fit

o

[f Lognormal is not a good fit: Continuous Fit — Fit All

»  Check QQ Plot and view the curve on the histogram to make sure that the
fit makes sense.

«  Standard distributions are Weibull, Gamma, Normal, Lognormal,
Exponential, Cauchy.

«  JMP offers other specialty distributions that often don’t apply, so use
caution with them (Johnson Sb, SHASH, Normal 2 Mixture, etc.)

Notes




Exercise 3.1

Answer questions below. Save the analysis scripts, save and close the data tables.
[When opeming files, make sure JMP 1s looking for “All files” not “All IMP files.”]

a) Data sets \ guotation process, vanable TAT. What % of RFQs n the data set have

TAT > 15?

b) What % (or PPM) of future RFQs will have TAT > 157

¢) Data sets \ solution properties, variable SG coded. What % of solution vials in the
data set have SG coded > 507

d) What % (or PPM) of future vials will have SG coded > 507

e) Data sets \ number and size of defecis, vanable # Defects. What % of castings in
the data set have more than 50 defects?

Notes




Exercise 3.1 (cont'd) n

f) What % (or PPM) of future castings will have more than 50 defects?

g) Data sets \ casting dimensions, variable Length. What % of castings in the data set
have length outside the interval [598, 602]?

h) What % (or PPM) of future castings will have lengths outside this interval?

1) Data sets \ casting dimensions, vaniable Diam. What % of castings 1n the data set
have diameters outside the interval [49, 51]?

1) What % (or PPM) of future castings will have diameters outside this interval?

Notes




4 Introduction to Life Data

69

e —

Life = elapsed time until the occurrence of some event

* Failure of an item on test

* Planned end of test

* Unplanned end of test

* Failure of an item in service
* Scheduled downtime

Definitions of “time”

* Seconds, minutes, hours
* Days, weeks, months

* Usage cycles, number of moves, distance

Notes




Life data (contd) L” i

Usually there is one event of primary interest

* Usually, failure of an item

Other events may preempt the event of primary interest
* Planned end of test
* Unplanned end of test
* These are called "suspensions”

* We say that the time to failure is "censored”

Notes




Data sets \ failures and suspensions.jmp

n

Label
h - & O O —=

o = M W b

o
[ o P IS NS DY N SN TN (S NS S S SR W NS G— R R—

10 20 30 40 50 60
Time

70 80 90 100

15 items were tested
12 failures (x)
3 suspensions ( L=-)

This “event plot™ distinguishes
suspensions from failures and
shows the event times

If we don’t distinguish
suspensions from failures, the
calculated failure probabilities
will be biased upwards

This will make our rehiability
look worse than it reallv 1s

Notes




Cumulative distribution function (CDF)

1.0

0.9-

|

Each step height :% = = 0.067

1

L

J T

0.3+

01

G.'D o ety —=1 = aas, P, — [ = 3

40 45 50 55 60 65 70 75
Time

In this plot, all
events are treated
as failures

80 8 90 95

Notes




CDF distinguishing suspensions from failures L ]

1.0

0.9-

Suspensions at times 58 and 71

« 0.086

- This is the correct plot

- It steps up only at failure times

- The step size increases after
- ; each suspension, because the
- 70 75 number of items remaining on
Time test decreases

Notes




Overlay of CDFs

CDF treating all times as failures

------------- CDF distinguishing suspensions from failures

1.0

0.9
0.8 Suspensions at times 58 and 71

|

B Jr

H

After the first
suspension, the solid
line overstates the
failure probabilities

0.1+ |
u.ﬂ 37 T T T T T T T T
40 45 50 55 &0 65 70 75 80
Time

85 960 95

Notes




Can't we just ignore the suspensions?

CDF ignoring the suspensions

e CDF distinguishing suspensions from failures

1.0
0.9
0.8
0.7- :
Each step height = — = 0,083 -
0.6- 12
o
£
= 0.51
w
0.4 This intuitive idea is
actually worse than
0.3 treating all times as
failures
0.2
0.1
O-o T T T T T T T T T 1
40 45 50 55 60 65 70 75 80 8 90 95

Time

Notes




5 Analyzing Life Data

* The Exponential distribution

* The Weibull distribution

* Fitting life distributions in JMP

* Finding and using the best fitting life distribution

Notes




Failure curves for the Exponential distribution

1.04
0.9-
0.8+
0.7
0.6+

0.5-
0.4-
0.3+
024 //

Failure probability

0.14//

0.0 1 1 I 1 1 I
0 5 10 15 20 25 30

Time to failure

Notes




Notes

The Exponential distribution is the simplest life distribution. It has only one
parameter: the mean time between/before failure (MTBF). The Greek letter 0 (theta)
1s often used to denote the population value of the MTBF.

Shown above are the failure functions F(t) for three different Exponential
distributions. F(r) is the probability that an item will fail before time r.

The reliability function is defined as R(r) = 1 — F(¢). R(r) 1s the probability that an
item will survive beyond time 7. The Exponential reliability function 1s given by R(f)
= exp(-1/0).

Notes




Failure curves for the Weibull distribution

-

Failure probability

=1 '{-t. | _-\
0.5 / F(.f):lée_ (U"]F
0.4- ; 0.p=2) v e
= S S n = characteristic life
: [3 = shape
0.2 \_ S
0.1 .l" /‘/.
0.044=_, . | . - - | ' '

Time to failure

0 5 10 15 20 25 30 35 40 45

Notes




Notes

The Weibull distribution was introduced to the reliability engineering community in
the 1950s by a man named Waloddi Weibull. Prior to that, most reliability work was
based on the Exponential distribution. Due to its greater flexibility, the Weibull has
become one of the most widely-used life distributions.

The Weibull distribution has two parameters: the characteristic life n (eta), and the
shape [3 (beta). The charactenistic life (1) has the same qualitative interpretation as the
MTBEF (0). The shape parameter ([3) determines which of two distinct failure modes
are represented. When B < 1, we have a burn-in or infant-mortality failure mode.
When P > 1, we have a wear-out failure mode. A Weibull distribution with B=11s
identical to an Exponential distribution with 6 = .

Shown above are failure functions F(r) for four different Weibull distnbutions. F(r) 1s
the probability that an item will fail before time 7.

The Weibull reliability function (probability that an item will survive beyond time 7)
is given by R(f) = exp[-(t'n)P].

Notes




Fitting life distributions in JMP

Data sets \ failures and suspensions Analvze
4 failures and suspensions - JMP =i e M v
fle Edt Isbles Rows GCok DOE Analze Graph Tgols Yiew Wndow Help Rehability and Survival
4 v-.": {a » 2 ] v
= 42 0 ’ Life Distribution
2 48 0 |
3 L ) . v
- o~ J
4 55 0 Set up as shown below
5 58 1 |
v
: 61 0 oK
- 2 [ O <  — —— — -
~ i: | Life Distribution - JMP
9 71 i —
10 75 >
1 81 Life Distnbution = Compare Groups
12 87
13 g9 Select Columns Cast Selected Columns into Roles Action
14 03 , =
7 o || =2 Columns ¥, Time to E | oK
‘ A Time ; ‘
4 Suspension | Cancel
] — T > | B
= o Select Confidence Interval Method e —— eﬂog
| ralure Lause |
I s (caBlecel
(O SN | Help
| | label

Notes




Fitting life distributions (cont'd)

83

4 = Life Distribution
» Event Plot

4 Compare Distributions

Distribution Scale
v| Nonparametric ‘®

Lognormal

| Weibull

| Loglogistic

Frechet

| Normal

SEV

| Logistic

Probability

04

__——-—-—""-__-_———_-’;

* CDF plotting the 02
failures

* Shows the comers of 0
the steps, but not the 40 50
“staircase”

60

70 80 %0
Time

* «—— [denufies
the times
when
suspensions
occurred

Notes




Fitting life distributions (cont'd)

| failures and suspensions - Life Distribution of Time - JMP L (5D Sy
4 « Life Distribution
i Event Plot
4 Compare Distributions
Distribution  Scale
v Nonparametric @ —
Lognormal —_
Weibull —
Loglogistic — |
Frechet p—
Normal f— 08 S
SEV —
Logistic — 2
v — A
_ 08
3
2
o
&
04
T 95% confidence \
. ¢ A 4
mtervals for failure i
probabilities T
- o A 4
1 These intervals are
“nonparametric” o
\_ ) 40 50 60 70 80 90
Tlr‘.‘.e

Notes




Notes 'EQ

This analysis 1s referred to as nonparametric, meaning that it is not based on a
statistical model (such as the ones listed on the left.) This 1s a good thing, because
statistical models can be wrong. However, there are drawbacks:

a) The nonparametric CDF 1s discontinuous.

b) Large numbers of failures are required to get margins of error small enough
to be useful.

In practice, 1t is preferable to use a statistical model that fits the data well. This

provides a continuous estimate of the failure function and smaller margins of error.

You can change the confidence level by selecting Change Confidence Level on the
menu produced by the red tnangle next to Life Distribution.

Notes




Exponential fit — linear probability scale 36

4 Compare Distributions
Distribution  Scale
Loglogistic _
Frechet _—
“Normal -
SEV —_
Logistic _ -
tsv —_— 08 < . 95% confidence
v Exponential — > y
Nsebasciaiorg = mterval for (80)
GenGamma —_ based on the
_ 06 Exponential
3 model
3
<
a
04
02 !

Bad fit — the Exponential failure curve doesn’t match the data

Notes




* This used to be the only way to plot failure curves

Exponential fit — Exponential probability scale 87
4 Compare Distributions
Distribution  Scale
Leglogistic —
Frechet em——
Normal e
SEV —
Logustic —
LEV — ’
¥| Exponential ] - - 0.9
LogGenGamma —_—
GenGamma _
0.94
:f 0.91
2
: : a
= 95% confidence
03 mterval for F(80)
based on the
Iy’ 'g .
= — Exponential
ol model
0.35
02 T
0,001 » O
40 50 60 70 80 90
Time

* The Scale button allows the failure curve to plot as a straight line

Notes




Weibull fit — linear probability scale

88

4 Compare Distributions
Distribution  Scale

7! Nonparametric @

Lognormal p—
v Weibull —
Loglogistic —
Frechet J—
Normal —_— 08 A
SEV —_—
Logistic _
LEV —
- ’-l
056 1
£ /
el P
b d 4
S A 4
a 4
04 /
/
« /
02 SO —J
-'.
=
0
40 S0 60 70 80
Time
A better fit

95% confidence
mterval for F(80)
based on the
Weibull model

Notes




Weibull fit — Weibull probability scale 89

< Compare Distributions
Distribution  Scale

¥| Nonparametric

Lognormal —_
] Weibull 5 . P
Loglogistic 1‘ —_ - /// 0]0 1
e = 2 - 95% confidence
0. ¥ .
Normal - e mterval for F(80)
SEV - 06 - based on the
Logistic — //
o -_— 7 . 7 Weibull model
. /,
Z 0% < =
o 3 7~
2 018 7
o ” -
A 01 - 5
: /
0.06
0.035 1 ,
0.024
0.016
0,009
\ ® “ » © w 109
Time

* The Scale button allows the failure curve to plot as a straight line

* This used to be the only way to plot failure curves

Notes




Finding and using the best fitting distribution

* Click the Life Distribution red triangle — Fit All Nonnegative
4 Compare Distributions
. JM.P plots the best i
fiting model on the ¢ Menparamec =
- ) v I_o-gnmmgl +] -
corresponding Weibul
nya Leglegistic — |
probability scale Frechet
) Mormal — 8 A
Si.L’ _— ‘/’-‘-
* In this case, Aeghc — o
. LEV —_ 7 :
Lognormal gives > B T Pl
the best fit 5 / ‘
£
£ v
« See next shde 0.25 - b
7l r
0.08 /57
7
0.01
2 5 10
 Statistics
"You can't have a negative time to failure!

Notes




Best fitti

ing distribution (cont'd)

4 Statistics

4 Model Comparisons
Distribution
Lognormal
Weibull
Loglogistic
Frechet
Generalized Gamma

Exponential

AlCc
1126
1128
1133
1138
1157
1334

T

-2Loglikelihood

107.57926
107.81732
108.33193
108.75681
107.51791
131.06658

BIC

112.99536
113.23342
113.74804
114.17291
115.64206
133.77463

* As before, models are ranked by AIC (smaller is better)

* As before, round the AIC values to the nearest tenth

* In this case, Lognormal gives the best fit

Notes




The distribution profiler !E

~ Distribution Profiler
* F{(t) 1s the probability that an

. . ‘ . . 1
item from this population will p—
X 08 oS
fail before time ¢ - likely
E 0449951 06
o : » S [0.25735
* The middle curve is the most Fr) 3osssaa 04

likely value of F{(t)

* For example, the most likely
value of F(68) is 0.45 (45%)

-~ S R AN Y
(shown in red on the left side - :
~ - ime
of the profiler)
e

* The reliability function R(?) is defined as | — F{(¥)

* R(?) i1s the probability that an item from this population will not fail until after
time ¢

* For example, R(68) = 0.55 (55%)

Notes




Distribution profiler (cont'd) | gﬂ

= Distribution Profiler

1
* The upper and lower curves — € Worst

. # . case
give 95% confidence intervals o
for ‘F'“) 449951 05 £ % <— Best
[0.25735 Lr _ ok
0.65542) 04 '
* The upper curve gives the - -
worst case value of F(1)" g

]

Lognormal

* For example, the worst case 2 8 R 8 %
value of F{68) is 0.655 =
(65.5%)

» The lower curve gives the best case value of F(r)""

* For example, the best case value of F(68)=0.257 (2.57%)

*For' Engineering. “For Sales.

Notes




Distribution profiler (cont'd)

—
=l

* Suppose we are interested in F(80)

* Change the value 68 to 80 (click and
edit)

= Distribution Profiler

Lognormal

[0.457
0.85634]

70

* The most likely value of £(80) is 68.4
* The worst case value of F(f) is 85.6%

* The best case value of F(80) 1545.7%

Notes




Exercise 5.1 | 95 |

Data sers \ print life. The “time™ to failure 1s Pages.

a) Identify the best fitting non-negative distnbution. Use that distribution to answer
the following questions.

b) What 1s the most likely value of F(10.000)?

¢) With 95% confidence, what 1s the worst-case value of F(10,000)?

d) Save the analysis script, close and save the data table.

Notes




Exercise 5.2 %

Data sets \ probe reliability. The “ttme™ to falure 1s Hits.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions

b) What 1s the most likely value of F(200)?

¢) With 95% confidence, what 1s the worst-case value of F(200)?

d) Save the analysis script, close and save the data table.

Notes




Exercise 5.3 o7

Data seis \ field reliability. The ume to failure 1s Days in field.

a) Identify the best fitting non-negative distribution. Use that distribution to answer
the following questions

b) What 1s the most likely value of F(365)?

¢) With 95% confidence, what 1s the worst-case value of F(365)7?

d) Save the analysis script, close and save the data table.

Notes




6 Categorical MSA Without Standards

| -

It is preferable to base nominal MSA on a set of items whose
true status i1s known (standards)

« With standards, we can determine the probabilities of passing
bad items and failing good ones

 Creating standards can be difficult and time consuming

* Lacking standards, “% agreement within and between
appraisers” can serve as a proxy for “% agreement with
standard”

Notes




Example 1

Data sets \ pass-fail no stds
* msa pass-fad no stds 4 ¥
Motes C\Documents and Sef - Session Pat | InspA | InspB  InspC | 2
! 1) Ul S i * 50 parts
2 2 I
3 - $ S | M | » Appraisers A. B, C
4 1 2P PP
= 5 2! 13 o N | S o) * 3 nspections per part pet
: 3 e s A e P-“v per part
; 1 - F appraiser
8 2 3lF F 3 5 ; ;
9 3| 3lF IF ; » Partis actually nommal, since
10 1] 4|F IF F part numbers are only
:; ; :i ,‘: ; identifiers without a numerical
= Columns (5/0) : : : 3 i y fe
AR 13 i 5F F 5 relationship. Change by:
# Pan 14 2 5(F F F
& Insp A s 3 §F [ IF *  Right chick on 4 1'xe.\l to
& Insp B 18 i &P P Ip Part and Select Nomunal, or
& nsp C 17 20 8PP TF
18 3 BIF IF F *  Right chck on field name
!g ; ;i: -z -g “Part” > Column Info >
2 { i 5
2 ) S Data Type = Character
2 1 8P = 3
3 2 8P PP . Plea.se bAe aware that Jf\fP
24 3l ep I I | is occasionally inconsistent
25 1 8F W IF in its terminology
28 2| (| T [ [ 2
ERwe 27 ) ) (A
Al rows 150§ \ n'p P P

Notes




Agreement within & between appraisers

3 Se;s:o:_ﬁ_ Fat
1 ifr P P
1 * 100% agreement
4 1) 2P = =
2 2 N G
0 I 1
] I 1 S |
M2 3F F _F
8 3 alF G I3
T ) S
i 2] alF G G
12 3l 4lF O
13 1 5/F ¥ F
A 2 5'F 3 F Sk 2 £
=== S sf & & +=36opportunities for pairwise agreement
] ] N -
. 6 o 2o * 16 pairwise agreements
19 1 e R i Y
7 I S » Agreement = 16/36 = 0.444
2) 3; TP P F
2 1 sp @ P
22 2 8P [ Ip
7 ) T [ |
2 1 8F  |FF
28 28 BIF F IF
27 8 8F iF \F
28 1] 18P :" .P
26 ¥ i 10 F P P ~. . .
3 wEr P e * 36 opportunities for pairwise agreement
3 |' !_1‘F ‘P .P
g T * 8 pairwise disagreements
“ 1 12fF F G
F— « Agreement = 28/36=0.778
{ 3. 12 F




Analyzing a categorical MSA without standards

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns Cast Selected mns into Roles Action
ASession Y Response OK
(Part
thinsp A Cancel
thinsp B
thinsp C Pt v oo

- Standard of Remove

St Dy | X,Groupng Recal

Attribute v D

Help
Freq
By

Enter Raters as separate columns

Notes




Agreement report 103

Gauge Attribute Chart

* Plot of the agreement percentages for
the items in the study

* It is helpful to rescale the vertical axis

* See next slide

Notes




Agreement report (cont'd) :m

Gauge Attribute Chart

% Agroen
o

(3456 7T/ 9 10131213 14/1516 1711819 20,23, 22:33| 24,25 26 272829 30|31 32 33 34/ 353637 38;39 40 41 '42/43 44 454647 4845 50

* The horizontal dotted line marks the “agreement grand mean”
* In this example, the agreement grand mean is a little over 90 (read of f graph)
* Nowhere in the report is this number printed — bad JMP!

* If the agreement grand mean is too low, follow-up should focus on the items with
the lowest % agreement

* There are no recognized standards for the agreement grand mean. A lower bound
of 95% is fairly common. 99% is of ten used in applications involving safety.

Notes




Agreement report (cont'd)

96
94 * These are the agreement percentages
92 for each appraiser
S 90- kd /
S Bg- / * The appraiser with the lowest
- percentage represents the greatest
® i opportunity for improvement
—1
i * Sometimes the smallest % agreement
80T nspA [ nsp8 | faspC among the appraisers is used as the
Rater metric
—— Agreament between & withih raters
Agreement Report
95% 95%
Rater % Agreement¥Lower Cl Upper Cl
Insp A 91.4285) 895082 93.0248
Insp B 91.9048| 900502 93.4388
Insp C 89.8095) 876057 91.6588 * Percentage of items for which

Number Number

Inspected Matched ° t Lower Cl
50 39 M‘% 64758 * This should not be used as a metric

agreement was 100%

Notes




=]

Save the script. close and save the data table.

Agreement Comparisons:
Each rater compared to all others, using Kappa statistics

K = 0.9 - Good measurement system
K < 0.7 - Bad measurement system
0.7 £ K £ 0.9 - Marginal measurement system

Agreement across Categories:

Agreement 1 classification corrected for the amount of agreement which would be
expected by chance. Kappa assesses the agreement between a fixed number of raters
when classifying items.

When K= 1, perfect agreement exists.

When K = 0, agreement is the same as would be expected by chance.

When K< 0, agreement is weaker than expected by chance; this rarely occurs and
usually means that the appraisers have different definitions of the assigned
categories.

Notes




Example 2

Data sets \ application rating no stds
< application rating no stds | ¢ - ‘
Notzs C\Documenss and Sej . Application | Sessiof | Appraiser | Rating | :
! y USmpson S| f e 15 emplovment applications
2 1 1 |Montgomery | 5! -
| L T|Holmes = & by .
3 1] 1 Duncan 4 * 5 appraisers
5 1 1 | Hayes | 5!
;] 2 1 | Simpson 2 . . X .
- 3| {Mongemsy 2 | ° 2 inspections per application
8 2 ! Holmes 2 er appraiser
; 2! 1 Duncan 1 per app
w2 1 Hayes 2 g !
1 3| I smpson 4 | * Five point scale, higher 1s
v C < 12 3! 1 |Monigomery 3
I s (40 < 1 LY s
‘Lmn ' 13 3! 1 |Hoimes | 3 better
4 Session | 3 Vouncan | 3 _ )
i Appratser 15 S = S * Change Rating to nominal
. Ratng €= 15 4l 1|Simpson _| !
17 4} 1 Montgorety | ! ~ : 5
8 8l {/Homes | 1 * For categorical MSA, we
18 4 tlowcn |1 nstackthi
2 al 1| Haye - Qmst unstack this data tabli/
21 51 1.Simpson 3
22 5 | |Montgomery | 3
;@ 5  1|Homes | 3| =
24 51 1Duncan | 2
25 8} 1 Hayes 3
- Rows 28 b 1|Simpson | 47
Al tows 50— 2 1 =) 1 | Mortgomery | 4! =

Notes




Unstacking a data table

Split - JMP

h[ Unstacks multiple rows for each 'Split Column' into multiple columns as
| wentified by a 'Spit By’ column

Ssiect Colurmrs
* dappication
Asession

hAppraiser
AR ating

Remaining columns
OKeep Al

ODrop Al

[Cselect

[(lkeep dsloq open

Tables — Split

Remove

Spit Cobumns @
Application
SESsIon

Output table name '

o B

Notes




Example 2 in required format

= Lintitled 12
= Source

= Columns (7/10)
. Application

4 Session

e Duncan

. Hayes

. Holmes

il Montgomerny
ik Simpson

= Rows
All rows

304

1

-

LA - - L s

Application | Session | Duncan | Hayes | Halmes | Montgomery | Simpsan

O3 | =~d O Oh | B Lk

= B A S

11
12
13

N N S N R N N R N N B s o R e e e

q "

) = ad | =l B A = == E RS RS = )= B DR e LS =

-.J.hu-.hua-u:mmbmmummu_mmnu#wmm

n Wi h

&

T L e S e e g e L R e S L S T e R X

g

LA R R PR X

O G| =8 sl Gt tn o = E sl s oo - e

-..twmmw—-nguh.humu—-hlu_umhudh-h.!m

h G = 5

Notes




Example 2 (cont'd) m‘

Analyze — Quality and Process — Variability / Attribute Gauge Chart

Select Columns Cast Selected

plucans into Roles Action

. Application Y Resporss/| oK | |
ASession Hayes [— |
hDuncan Holmes l,’:i"ff‘.J

o Hayes

i Holmes

ik Montgomery | | Remove '
ik Simpson Wl Recal ]

Coners e | (o]
Atribute e

Enter Raters as separate columns

Reminder of how
data needs to be
formatted

Notes




- —_—

Example 2 (cont'd) n

Gauge Attribute Chart
95 ‘ * The agreement grand mean is about 71
— way too low
§ 0 * Follow-up: focus on application 1, 3 and
sl Al — \ [ 10
sof \
51 * Greatest opportunity for improvement:
BTy e 5 8 g g further training of Duncan and Hayes
Application
Agreement Report
g 95% 95%
o Rater % Agreement Lower CI Upper Ci
s [Duncan 49.3039} 27.2673 72.4205
50 Hayes 69.0196 ) 43.9053 86.3784
i Holmes 792157 539935 92.5247
T ST ET BT &I & Montgomery 77.2549 519716 91.4246
5| 2| 3| 8| B Simpson 749020 49.5997 90.0500
$ Number Number 95% 95%
Rater Inspected Matched % e Lower ClI Upper Cl
15 4 28 10.897  51.950

Agreemant between & within raters

Notes




Notes 112

Save the analysis script to the data table, close and save the data table as:

application rating ne stds unstacked

Notes




Exercise 6.1

Data sets \ print samples 1 no stds. In this study 3 appraisers mspected 18 print
samples 3 times each.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

¢) Which sample(s) would be most useful in follow-up?

d) Of the 3 appraisers, which has the highest % agreement? What 1s the highest %
agreement?

¢) Save the script, close and save the data table as print samples 1 no stds unstacked.

Notes




Exercise 6.2 114

Data sets \ print samples 2 no stds. This 1s the follow-up study after the appraisers
received additional training.

a) Reformat the file as needed and run the analysis.

b) Record the approximate agreement grand mean.

¢) Of the 3 appraisers, which has the lowest % agreement? What is the lowest %
agreement?

d) Save the script, close and save the data table as print samples 2 no stds unstacked.

Notes




7 Comparing Populations — Continuous Y

* Example of comparing populations

« Analysis of variance (ANOVA) for comparing
populations

* Interpreting P-values

» Degrees of freedom for signal and noise

*« ANOVA in JIMP

Notes




Notes §116

S

Y vanables are charactenistics of parts. products or transactions that determine
customer satisfaction, or lack thereof. They provide the data from which project
metrics can be computed.

Comparison of statistical populations is equivalent to Y = f(X) analysis where the X
variable is categorical. The distinct values of the X variable define the populations or
sub-populations to be compared.

IMP uses the term contfinnous for quantitative vanables. Except in the DOE section.
JMP uses the term nominal for categorical variables.

Notes




Example of comparing populations

Data sets \ Anova 2 groups

Group

Data

Avg.

SD

A

2.8

26

29

2.0

2.75

0.129

31

2.9

33

28

3.2

MDD L DD PP >

3.0

3.05

0.187

» We have two groups of data
» Could be a before/after comparison

« Could be a stratification analysis

» The sample means for the two groups are different

* Is this enough to conclude that the population means are different?

17

Notes




Example (cont'd)

L

Data '_

Group
* Plotting the data 1s helpful, but it doesn’t give a defimtive answer

* How far apart do the sample means have to be before we can say
the population means are different?

*» How do we take into account the scatter around the means?

Notes




ANOVA for comparing populations (1 of 6)

B

Group

0 OO OW>P P> P

C

LSSV?2 student files \ ANOVA two groups

D

Data

28
26
29
2.7
3.1
29
33
2.8
32
3.0

E

F

Grand
mean

293
293
293
293
293
293
293
293
293
293

G H

Difference

-0.13
-0.33
-0.03
-0.23
- 017
-0.03
0.37
-0.13
027
007

J L
Group Error
-0.18 0.05
-0.18 -0.15
-0.18 0.15
-0.18 -0.05
0.12 0.05
012 -0.15
0.12 0.25
0.12 -0.25
0.12 0.15
012 -0.05

Notes




ANOVA (1 of 6, cont'd)

This worksheet shows all the calculations used to determine. based on the data.
whether or not the population means are different.

The first step is to calculate the Difference column by subtracting the grand mean
from the Darta column. The Difference 1s then decomposed into Group (the “signal™)
plus Error (the “noise™).

The Group column captures the portion of total variation caused by the difference
between the sample means.

The Error column captures the rest of the variation, variously called the residual.
unexplained, or noise vanation.

Notes




ANOVA (2 of 6)

LSSV2 student files \ ANOVA two groups

A B ICi D F
Grand
Group Data mean
A 28 293
A 286 293
A 29 293
A 27 293
B 31 293
B 29 293
B 33 293
B 28 293
B 32 293
B 30 293
Degrees of freedom (DF) 10 1

H J L M
Difference Group Error
-0.13 -0.18 0.05
-0.33 -0.18 -0.15
-0.03 -018 0.15
-0.23 -0.18 -0.05
017 012 0.05
-0.03 012 -0.15
037 0.12 025
-0.13 012 025
027 0.12 0.15
0.07 012 -0.05
9 1 8

Notes




ANOVA (2 of 6, cont'd)

The Data column consists of 10 mathematically independent quantities. We describe
this by saying 1t has 10 degrees of freedom (DF).

The Grand mean column consists of 10 values, but they are all identical. This column
has 1 DF.

The Difference column contains 10 values, but they are mathematically constrained
to sum to (. This column contains only 9 independent quantities, so 1t has 9 DF.

The Group column mherits the zero-sum constraint from the Difference column (it
must sum to zero), and 1t consists of only 2 distinct values. This column contamns only
one independent quantity, so it has | DF.

The Error column has 8 DF, because DFs have to add up.

The DFs for Group and Error play a role in determiming whether or not the
population means are different.

Notes




ANOVA (3 of 6)
LSSV?2 student files \ ANOVA two groups
A B._lcl 0 1 EN.E | 6 - | J L M,
Grand
Group Data mean Difference Group Error
A 28 293 -0.13 -0.18 0.05
A 286 293 -0.33 -0.18 -0.15
A 29 293 003 -018 015
A 27 293 -023 -0.18 -0.05
B 31 - 1293 | = 017 = | 012 005
B 29 293 -0.03 012 -0.15
B 33 293 037 012 025
B 28 293 -0.13 012 -0.25
B 32 293 027 012 0.15
B 30 293 007 012 -0.05
Degrees of freedom (DF) 10 = 1 = 9 = 1 8
Sum of squares (SS) 8629 - 8585 = 0.441 = 0216 0.225
Mean square (MS)| (SS/DF) 0.049 0.216 0.028

Notes




ANOVA (3 of 6, cont'd)

The sum of squares (SS) 1s a measure of the magnitude of each column. It is the sum
of the squares of the values in a column.

The sums of squares for the Difference, Group, and Error columns are usually much
smaller than those of the Data and Grand mean columns

The mean square (MS) is the statistically normalized measure (averaged. in a sense)
of the magnitude of each column. It is the SS for a column divided by the DF for that
column.

The mean squares for the Dara and Grand mean columns play no role in determining

whether or not the population means are different, so the MS is usually calculated
only for the Difference, Group, and Error columns.

Notes




ANOVA (4 of 6)
LSSV2 student files \ ANOVA two groups
A B ICl D | E| F G - | J L M
Grand
Group Data mean Difference Group Error
- 28 293 -0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
R 29 293 -0.03 -018 0.15
A 27 293 -0.23 -0.18 -0.05
B 31 - 1293 | = 017 - | 012 0.05
B 29 293 -0.03 012 -0.15
B 33 293 037 012 025
B 28 293 -0.13 012 -0.25
B 32 293 027 012 015
B 3.0 293 0.07 012 -0.05
Degrees of freedom (DF) 10 B 1 = 9 - 1 8
Sum of squares (SS)| 8629 - 8585 = 0441 = 0216 0225
Mean square (MS)| (SS/DF) 0.049 0216 0.028
Fratiol (Group MS /Error MS) 7.680

Notes




ANOVA (4 of 6, cont'd)

The Group MS measures the magnitude of the vanation caused by the difference
between the sample means.

The Error MS measures the magnitude of the vanation caused by evervthing except
the difference between the sample means.

The F ratio 1s the Group MS divided by Error MS. It 1s a signal-to-noise ratio.

The larger the F ratio, the stronger the evidence of a difference between the
population means.

Notes




ANOVA (5 of 6)
A B D E F G H | J K L M
Grand
Group Data mean Difference Group Error
A 28 293 0.13 -0.18 0.05
A 26 293 -0.33 -0.18 -0.15
A 29 293 -0.03 -0.18 0.15
A 27 293 023 018 -0.05
B 31 - | 293 | = 017 = | 012 | + | 005
B 29 293 -0.03 012 -0.15
B 33 293 0.37 0.12 0.25
B 28 293 -0.13 0.12 -025
B 32 293 0.27 0.12 0.15
B 3.0 2.93 0.07 0.12 -0.05
Degrees of freedom (DF) 10 - 1 - 9 - 1 + 8
Sum of squares (SS)| 8629 - 8585 = 0441 = 0216 -+ 0225
Mean square (MS)| (SS/DF) 0.049 0.216 0028
Fratio| (Group MS/Eror MS) 7680
P value| (Probability of an F ratio this large by chance alone) 0.0242

Notes




i

ANOVA (5 of 6, cont'd) 28 |

The P-value 1s a probability calculation based on the F ratio, the DF for the Gioup
column, and the DF for the Errer column.

Notes




=

Interpreting P-values e

Evidence that populations are different Confidence level
or variables are correlated (CL)
1.00 | |
None None
0.15] -
Some 85% < CL < 95%
o 005
T;? Strong 95% < CL < 99%
B 0.01
Very strong CL>99%
0.0001

Notes




P-values (cont'd)

As shown above, the P-value has fixed reference values for interpretation.

The P value 1s inversely related to the F ratio:
» The smaller the P-value, the stronger the evidence of a difference
between the population means.

If there are 3 or more groups, the interpretation is:

» The smaller the P-value, the stronger the evidence of one or more
differences among the population means.

Notes




ANOVA (6 of 6)

A el jef DN EfE G | H I J | K| L
Grand
Group Data mean Difference Group Error
A 28 293 013 -0.18 0.05
A 286 293 033 -0.18 -0.15
A 29 293 003 -0.18 0.15
A 27 293 -0.23 -0.18 -0.05
B 31 - | 293 = 0.17 = | 012 | + | 005
B 29 293 003 012 -0.15
B 33 293 0.37 012 025
B 28 293 013 012 -025
B 32 293 0.27 0.12 0.15
B 30 293 007 012 -0.05
Degrees of freedom (DF) 10 - 1 = 9 = 1 - 8
Sum of squares (SS) 8620 - 8585 = 0441 - 0216 -+ 0225
Mean square (MS)| (SS/DF) 0.049 0216 0.028
Fratio| (Group MS/Ermor MS) 7.680
P value| (Probability of an F ratio this large by chance alone) 0.0242
Root mean square (RMS)| (Square roof of MS) 0.221 0.168

Notes




ANOVA (6 of 6, cont'd)

The Roat Mean Square (RMS) for a column is the square root of the MS for that
column.

The RMS for the Difference column (0.221) 1s equal to the usual standard deviation
of the data (STDEV function in Excel).

The RMS for the Error column (0.168) is the standard deviation of the noise
vanation (error, residual, unexplained, etc.).

JMP uses the term Roor Mean Square Error (RMSE) for the RMS of the Error
column.”

"Given that Statistics is a body of knowledge dedicated to quantifying and reducing
variation, the variation in statistical terminology is appalling.

Notes




Degrees of freedom for comparing populations

7N

G

total sample size \\

I

number of groups being compared

1

6-1

Q—G

The Error DF 1s more important than the Group DF

DF for the group column

DF for the error column j

[ ]

[t determines the accuracy of the predicted values

Larger 1s better, 10 1s OK, bare minimum 1s 5

When DF 1s mentioned without a qualifier, it always means Error DF

Notes




Exercise 7.1

i
l

3

LS BT

-4 | &

A B

0]
:

OO0 Do ®E PP PP

Degrees of freedom (DF)
Sum of squares (S5)

C

D E F
Grand

Data mean

27
27
28
28
3.1
32 =
33
i3
26
2.7
27
28

G

H

Variance

|

J

Group

K

LSSV2 student files \ ANOVA three groups. Enter the appropriate numbers and
formulas mto the white cells to produce an ANOVA for the data shown here.

L M

Error

Mean sguare (MS)
F ratio
P value

{SS/DF)
(Graup MS /f Ermor MS)

{Probability of getting an F ratio this large by chance alone)

Root mean square (RMS)

(Square roct of MS)

—

N

Notes




ANOVA in JMP E

File — New — Data Table — Enter (or copy-paste) data as shown
file Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
Hagd  Laa L B PeRRege R T H W E R
« Untitied 6 bf< O
- Group Data
1A 27
2 A 27
| = Columns (2/0) : : ;:
:g:::p 5B 31 A1
68 32 < From Exercise 7.1
78 33 3
8 B
8 cC
~IRows 10 C
All rows 12 1c
Selected 0
Excluded 0 210
Higden 0
Labelled 0
L 4

Notes




ANOVA in JMP (contd)

Analyze — Fit Y by X — Set up as shown — OK

[’ Fit Y by X - Contextual - JMP
Distribution of Y for each X. Modeling types determine analysis.
Select Columns Cast Selected Columns into Roles Action

* TR | (v Response) | 4Dsis [ ok |
| |4Data | aptiona - —
eway {_X, Factor ”l-Group

LZ | [oef Bk [opions Remove

Bivariate | Oneway Weight [ootional numeric Recall |
i e (o=
- Vel - lmita | optona —

Logistic |Contingency l...By. .. ||optiona

4 &a |

Notes




Explanation of “mean diamonds”

Oneway Analysis of Data By Group

3.4
33- e
3.2 :
3.1- -

3-
2.9-
2.8,
27 e
26-

Data

Flving saucers!

| ___— Upper cockpit
=< ——— Upper body

el .‘-_'H__'_—-———__
_ il ) Lower body
| Lower cockpit

25 T

' Population means are different ‘| A
(with 95% confidence) ) N

_ /' Saucers can fly horizontally
‘ past each other with no contact
\ between their bodies /

Notes




Mean diamonds (cont'd) 138

Oneway Analysis of Data By Group

34
334 e "Fly by" interval
3.2 : , JC for comparing
31 <~ population means
g 31
o
O 291 F B
284" - —_— 95% confidence
27 - - ——— f interval for a single
26 . il . population mean
2 5 A L} B Ll C
Group

Approx. formula for “fly by” interval: ~ Sample mean + \/E(RMS}:’,"’V"E )
Approx. formula for 95% confidence interval:  Sample mean =+ Z(RMSE/“ JN )

N = sample size for each group

Notes




Analysis details

Oneway Anova

Summary of Fit - Standard deviation of the
Rsquare 0.895833 variation about the fitted
AdjRsquare 0.872685 line (error, residual, etc.)
RootMean SquareError  (0.091287 >{RMSE}— . Smaller is better
Mean of Response 29 . . .
Observations (or Sum Wagts) 12 - Has units of the ¥ var'lable“ '
Analysis of Variance

Sum of
Source DF  Squares Mean Square F Ratio Prob>F
Group— 2 0.64500000 0.322500 387000 [<.0001"|
Error 9 0.07500000 0.008333
C. Total 11 0.72000000 [P-V;iidél

the model terms in the

| Eegresdion] ‘ Indicates whether any of |
regression are significant

Notes




Analysis details (cont'd)

Oneway Anova

Summary of Fit
Rsquare 0.895833 .
Adj Rsquare 0.872685 —{Adjusted R?|
RootMean Square Error 0.091287
Mean of Response 29
Observations (or Sum Wots) 12
Analysis of Variance

Sum of
Source DF Squares Mean Square F|Ratio Prob>F
Group 2 0.64500000 0322500 387000 <0001
Error 9 0.07500000 0.008333
C. Total 11 0.72000000

Y

(s Proportion of the total variation in Y that is k>
caused by ("explained by") variation in X

* Larger is better

.+ Unitless )

Notes




How adjusted R? is calculated

Distributions
Data
Summary Statistics
Mean 29 _
Std Dev [0.2558409} » STDEV

“I M N (

| Total variation |
I in the data

=T .. 51 1
2526272829 3 31323334

P v d / B 2

Proportion of Y variation NOT caused by X = [ w] = [M] = 0.127315
\STDEV 0.2558409

Proportion of Y variation CAUSED by X =1 - [SRTLSEf.] = (.872685 = Adjusted R*

Notes




Exercise 7.2 m

Data sets \ number and size of defects. Max size 1s the area 1n square centimeters of
the largest contiguous weld repair area on each casting. Smaller Max size is better.

a) Test for a difference between welders A and B with respect to Max size. Give the
P value and mnterpret the result. (Ignore the 7 Test section of the output.)

b) Which welder represents best practice? What follow-up action should be taken?

¢) Give the value and the units of the RMSE in this example.

d) The RMSE i1s meaningful only if each group has roughly the same amount of
vaniation. Is this true m this case?

e) Save your analysis script to the data table, close and save the data table.

Notes




Exercise 7.3

Data sets \ guotation process. Supplier busmess unts (BUs) receive requests for

quote (RFQs) from customers. Account managers develop and submit the quotes.

TAT 1s the turnaround around time in days. The shorter the TAT, the happier the
customer.

a) Is the modeling tyvpe for BU correct? If not. change it to what it should be.

b) Test for differences among the BUs. Give the P value and interpret the result.

¢) Use the “flying saucers™ to determine which BUs represent best practice.

d) What follow-up action should be taken?

e) Save your analysis script to the data table, close and save the data table.

Notes




Exercise 7.4

Data sets \ alignment process. If the modeling type for Aligner 1s incorrect, change it
to what 1t should be.

a) Test for differences among the three aligners with respect to R dev. Give the P-
value and interpret the results.

b) Use the “flying saucers™ to determine which aligner represents best practice.
(Smaller R dev 1s better.)

¢) What follow-up action should be taken?

d) Save vour analysis script to the data table, close and save the data table.

Notes




Exercise 7.5

Data sets \ casting dimensions. We want to reduce vanation i the length of

cylindrical metal castings. The specification for Lengthis 600 + 1.5. The wax
patterns for these castings are molded on two machines A and B.

a) Test for differences between the molding machines with respect to Lengih. Give
the P-value and interpret the result.

b) Use the “flying saucers” to determine which machme represents best practice? (It
15 helpful to draw a reference line at the nominal value. Right click on one of the
numbers on the vertical axis, select Axis Seftings, use the Reference Lines tool. )

¢) What follow-up action should be taken?

d) Save vour analysis script to the data table, but don’t close the data table.

Notes




Exercise 7.5 (cont'd) E

We also want to reduce variation in the diameter of the castings. The specification for
Diam 1s 50 £ 0.75.

d) Test for differences between the molding machines with respect to Diam. Give
the P-value and interpret the result

e) Use the “flying saucers” to determune which machine represents best practice.
(Draw a reference line at the nominal value.)

f) What follow-up action should be taken?

g) For each of the variables Length and Diam. a certain proportion of the total
vanation is caused by the difference between the machines. For which vanable is
this proportion highest?

h) Save your analysis script to the data table, close and save the data table.

Notes




8 Comparing Populations — Pass/fail Y

147

18

|

[
Raw data | One part or transaction per row

|
Tabulated | Multiple parts or transactions

data | per row

Notes




Raw data example

Data sets \ quotation process
We want to compare the account managers in terms of % late
Analyze — Fit Y by X — set up as shown — OK

« quotation procass b B - e
Notes Clsers\Russell B « Quote Num AcctMgr BU Inital RFQ  Month  RFQ Cycles review TAT TAT==3 PO
1 6250012 19 6 06022003 200308 1 2 Pass
P CUmEE . e
3 7250022
s s250033| | Distibution of Y for each X Modeling types determine analysis
& 5250040/ | Select Columns Cast Selected Columns into Roles Action
7250011( |~ 4Qucte Num ¥, Response| | h TAT<=3 [ oK
l : | Cancel
Va I ital RFQ
< Columns (10/0) Nominal! | X Factor |/t Acctigs | Remave
A Quote Num ‘RFQ Cydles ———— . ——
| Recall
ACCOMgr :Frmamo revew (=DEAN )
EU AT | Help
4 Inival RFQ TAT=3 ( —
A vonth aro | Block
h RFQ Cycles | Weight COBONS! I =
h Finance review ‘fﬂWﬂ(‘ﬂ il
A TAT ‘; 7 0 | Freq |
k il b9 —
i TAT<=3 A \, By |
ik FO lBhrMah Onaway T e—
20 5250045 ‘
21 7250025 -‘
22 8250013 Logiste Conhngenc«
23 350037l 4 e

Notes




< Mosaic Plot
1.00

“Mosaic plot” for pass/fail data a
: I IIII I |
III H II il
L L r Al 1 e

_ o Horizontal

Tests dimension is

y proportional
N DF  -LogLike RSquare (U) to sample
837 21 32.411285 0.0687 size
Test ChiSquare Prob>ChiSq
Likelihood Ratio 64.823

Pearson 62.018 =.0001

* Very strong evidence of differences among account managers

* Who represents best practice?

Notes




“Control chart” for pass/fail data

Analysis of Means for Proportions

* Red triangle (Contingency Analysis) — Analysis of Means for Proportions

Upper

o _ -1
03] ._T[_]T,.. t el
S Ty

TAT==3 - Proportion Fail

0.1 ] —3 ] ] ] ] ] ] ]
e 2'3[1]5 6'7'8'90"'10'11"12'13"14'15"16'17" 18" 19’20 21" 22
AcciMgr

* “Flying saucers™ are not available for pass/tail data

» AectMer 4 represents best practice (lowest failure rate)

* Find out what dcefMgr 4 1s doing. make 1t the standard

S Limit

F 4

P

&
7

uoL

Avg =025

LOL
"

N,

"

* Points outside the shaded region are signmificantly different from points inside

* Save vour analysis script to the data table, but don’t close the data table

Detection

Vertical
dimension is |
inversely |
proportional [
to sample |
size

4 Lower
Detection
Limit

Notes




Exercise 8.1 151

a) Analyze TAT<=3 as a function of BU. Give the P-value and mterpret the result. Is
there best practice? If so, where 1s 1t?

b) Analyze PO as a function of BU. Give the P-value and mnterpret the result. Is there
best practice? If so, where 1s 1t?

¢) Right click on the PO header in the data table. Select Column Properties —» Value
Ordering — Reverse —» OK. This reverses the Yes and No positions on the PO
axis. Most people focus on the PO hit rate rather than the miss rate.

d) Analyze PO hit rate as a function of 747<=3 . Give the P-value and interpret the
result.

e) Save your scripts, close and save the data table.

Notes




Exercise 8.2 152,

Data sets \ ATE data. If necessary, change the modeling types for part number (P/N)
and Tester.

a) Test for a difference between the part numbers (P/N) with respect to Result. Give
the P-value and interpret the results.

b) Test for differences among the testers with respect to Result. Give the P-value and
interpret the results. If significant differences exist, describe them. If possible,
suggest causes of the differences.

c) Test for differences among the P/N-Testrer groupings with respect to Result. Give
the P-value and interpret the results. If significant differences exist, describe them.
If possible, suggest causes of the differences.

d) Save your scripts, close and save the data table.

Notes




Tabulated pass/fail data

[153 J

Pass/fail data often comes 1n tabulated form

Each row may represent a
v" Production lot
v Work order
v" Time period
v Machine
v' Work center
v Part number. . .

This format 1s perfect for plotting % defective

However, it is the wrong format for comparing
populations in JMP

Notes




Data sets \ out-of-box failures

Plotting % fail

|. Create a new column called
% Fail

2. Defme it by the formula

Fail
—1+100
Total

3. To edit decimal places: Right
chick column — Column
Info —» Format to Fixed
Decimal and Dec =2

4. Use Graph — Legacy —>
Overlay Plot to create the
plot on the next shde

r
3l out-of-box failures « IMP

File Edit JTables Bows Cols DOE Anshze Graph Tgols View Window Help

w | out-of-box fail..
[P Source

{

| w Columns (5/1)
|t Process

| A Month

:“ Total

| A Fail

B Fail

| ! Rows
|All rows
|Selectad
|Excluded
|Hidden
{Labelled

LY

OO OO0 .

P

-

-

Process Month Total Fail
1a 01/2003 3920 109
2 A 02/2003 2667 70
3 A 03/2003 2511 61
4 A 04/2003 2556 79
5 4 05/2003 1730 49
6 A 06/2003 21% 71
TA 07/2003 21%0 68
g A 08/2003 2342 56
9 A 09/2003 3261 98
10 A 1072003 2971 97
11 8 1172003 2803 45
28 12/2003 4644 76
i3 8 01/2004 4547 75
14 8 02/2004 4160 58
15 B 0372004 3393 29
16 B 04/2004 2283 17
17 8 05/2004 2230 26
18 B 06/2004 2799 27
198 07/2004 1800 36
20 8 08/2004 2983 29
21 /C 00/2004 111 40
22.C 1072004 3372 30
23.C 172004 09% 48
24 C 12/2004 5245 35

2.78
262
243
3.09
283
323
311
239
30
3.26
161
164
165
138
0.85
0.74
117
0.96
2.00
0.97
097
0.89
117

0.6%

Notes




Plotting % fail (cont'd)

Out-of-box failure rate by month

- G00TAL0
0% L
= rO0T4L L
= FO0Z/0 )
= ¥00CA60
—+00ZM0
= pO0ZL0
= r00Zs80
- F0ZIs0
~ F00Ziv0
- rO0ZED
= FODZALD
= rOOC/LD
~EQDZTL
- E00TsL
= EDDCAO |
- EDOZIG0
~EDDZR0
- EDDTILOD
= EQOZHA0
= EDDLS0
= EQ0THD
= EOOZ/ED
-EQOZAZ0
FE0DZILD

pajied %

N
bacy
o

Nanth

Notes




Reformatting for comparing populations

1. Create a new
column called Pass
defined by the
formula

Total -Fail

9

.Go to Tables —
Stack

3. Use Fail and Pass
as the Stack

Columns

4. See next shide

3 out-of-box failures - JMP

| Eile Edit Tables Rows Cols DOE Analyze Graph Tgols View

-

| #iout-ot-box fail... ] 4
b Source v

I v Columns (6/1)
ol Process

A Menth

A Total

A Fail

A = Fail
amme

v Rows
|All rows

Selected
Excluded
Hidden
| Labelled

L)

0000 .

NOY WV R WD e

[V
V - O W e

Lol il
& WA

15

N NN NN -
& W= o

Proces Month Total

M A A M 0 0 0 W m o m e > 2 3 3 b

0172003
02/2003
03/2003
04/2003
05/2003
06/2003
07/2003
08/2003
06/2003
10/2003
1172003
12/2003
01/2004
0272004
0372004
04/ 2004
05/2004
0672004
07/2004
08/2004
09/2004
10/2004
1172004
1272004

3820
2667
2511
2556
1730
2196
2190
2342
3261
2971
2803
454
4547
4160
3383
2283
2230
2799
1800
2983
4111
3372
4096
5245

Fail
109
70
61
79
48
68
56
98
o7
45
76
75
S8
20
17
26

-~
27

36
29
a0

30

36

0.97
0.97
0.89
1.17
0.69

5209

Notes




Reformatting (cont'd)

6. Change the name of Fle Edt Isbles Rows. Coks DOE Anskvae .Graph  Tgols View . Window: Help
the Data column to <) out-of-box fa.. D] 4 - ; T o e P
- ToCen all e i
Freq ﬂﬂd the L(Ibel P S 1'A 0172003 | 3920 Dass ;sqn
Colunu-l to Resulr 2°A 01/2003 3920 Fail 109
3A 02/2003 \2667 Pass 2597
4A 02/2003 Fail 70
7. There are now two 5 A 0372003 42 Pass 2450
rows for each month z . o4 ik trd s 2
* ; ~ Columns (6/0) 7A 04/2003 09 Pass 2477
The Total and % Fail :,’;z;:‘ 8a 04/2003 109 fail 7%
columns are no longer A Total A i o tee | 3w
< A% Eail 10 & 05/2003 7 283 Fail 49
relevant, and may be th Result 11 A 062003 2% [ 3B Pes A
deleted. A Freg 12 A 06/2003 21 3.23 Fail 71
13 A 07/2003 21 311 Pass 212
4 A 07/2003 4 3.11 Fail €8
8. Save the new data table 2248 o e I ) L R
16 A 0872003 23 233 Fal 6
as ()Ilf-(?f-h().\'.ﬁ'll‘hll'c.ﬂ' 17 A 09/2003 101 Pass 3163
s[a(-ked 18 A 09/2003 3 3.01 Fall 98
19 A 10/2003 2 3.25 Pass 2874
20 A 1072003 3.26 Fail 7
218 1172003 1 Pass 2758
22'8 11/2003 1 Fail 45
A'" :':“ & 238 1272003 Pass 4568
Salected 0 24 B 1272003 Fal 76
Excluded 0 258 0172004 Pass 4472
Hidden 0 26 8 01/2004 5 Fal 75

-
E3l cut-of-bax failures stacked - IMP

Notes




Analyzing the data

Analyvze — Fit Y by X — set up as shown — OK

Select Columns

~ dProcess
Anonth

Logistic |Contingency |
V| b

Distribution of Y for each X Modeling types determine analysis
Cast Selected Columns into Roles

Y, Response

Notes




Data analysis (cont'd)

Mosaic Plot

Fassed

Co'l'lﬂﬂﬂiﬂcy Table
Resul
Count |Failed |Passed
Row %
A 758 25506 26344
- 288 9712
=B 418 M2A 1642
g 132 8868
ac 154 16670 16824
0982 8908
1330 73480 T4810
Tests
N DF JLoglike RSquare (L)
74810 2 14147383 00211
Test ChisSquare Prob>ChiSg
LikelinoodRato 282347 CE00010)
Fearson 201850 Exii5i

Very strong evidence that processes
A. B. and C do not all have the same
failure rate

The mosaic plot does not help us
determme where the differences are

Click on the red tnangle at the top of
the analysis window

Select Analysis of Means for
Proportions

See next shde

Notes




Data analysis (cont'd)

Analysis of Means for Proportions

0,030
=)
&
= 0.025-
r-
&
E 0.020 {uDL
5 ) Avg=0.01778
L -
=~ 00157 ] LoL
-
o
“ 00104

A - B '

Procaess

a=0.05

* This plot shows that Processes B and C are sigmificant improvements over Process A
« [t does not tell us whether or not C is a significant improvement over B
* Save your script, but don’t close the data table.

* You may prefer to display the Result as Proportion Passed: Click on Red Triangle by
Analysis of Means for Proportions and select Switch Response Level for Proportion

Notes




Exercise 8.3

|

161 |

a) Exclude the rows for process A.

b) Test for a difference between C and B. Give the P-value and interpret the result.

¢) Close and save the data table. (No need to save the script again.)

Notes




Exercise 8.4

Data sets \ molding process - stratification.

a) Did JMP assign the correct modeling type for Machine?

b) Go to Tables — Summary — use PN as the Group vanable — use Machine as
the Subgroup variable — OK.

-1 PN

GV0098
GV0101
GV0119
GV0129
GV0132

GY0251

SO M BN

[V
o W w
> G ')
e 9

S S
o
S N
-

N Rows
43
31
42
ga
64

EWU‘WW
e N W e g

N(O1)

0

WO 0 00O WO

o

N(02)

D‘OCJ':IO%GC'OO

N(03)

W
o 0 wvwo o

oo oo o

N(09)
0
30

N(10)
0

~-N O O 0O OO

oo

N1

—
N O NV O OO0 OO

W
L=

N(13)

o 00 o0o

L] L]
g OO

L= B

N(14)
11
0
0
88

L= 2R ~J

L=~ B~ B -}

N(15)
32
1
0

¢) Note that each part number runs on only one or two of the machines. A
comparison of part numbers could be biased by differences among the machines,

and a comparison of machines could be biased by differences among the part
numbers. Because of this, we should use the concatenated variable PN-Machine

as the X variable in the analysis.

Notes




Exercise 8.4 (contd) 163

d) Reformat the data for comparing populations (follow steps 1 through 7 i the
worked example).

e) Test for significant differences among the PN-Machine groupings with respect to
fraction defective. Give the P-value and interpret the results.

f) Which three PN-Machine groupings would be the best focus for an improvement
project? (Hint: highest fractions defective.)

g) Save your script, save the data table as molding process - stacked. then close 1t.

Notes




Appendix: Reformatting Data for Pareto Analysis | s

« Data on defect types or failure reasons often is available
only in tabulated form

* Each row may represent a production lot, work order, time
period, machine work center, part number,. . ., or some
combination thereof

» Common problem with tabulated data: wrong format for
Pareto analysis

Notes




Big example: molding process - Pareto

(Each row = Date, Machine, P/N, . .. ]

‘ Total parts run = Good + Bad ]

f

T

A B c D E F G H I J
Primary Regrind  Parts Total
1 Date  Machine PIN Primary material lot# Concentrate Concenlot# type palletized defective
2 | 03-Apr-06 9LSGVD101 CHEIL VE-1877S DrikGry 121642 NA NA 25 120 7
3 03-Apr-06 11 LSGYD251 CHEIL VE-1877S Blk 101200 NA NA NA 300 7
4  03-Apr-06 15 LSGV00SE CHEIL HF1690H DrikGry 122930 NA NA 8 372 18
S 04-Apr-06 2 LSGVO093 CHEIL VE-1877S DrkGry 121642 NA NA 25 288 6
6  04-Apr-06 3 LSGV0101 CHEIL VE-1877S DrikGry 121642 NA NA 25 600 2
7  04-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA 690 33
8  04-Apr-06 13 LSGY0307 CHEIL HF1690H LIGry 133232 NA MA NA 160 8
9  04-Apr-06 15 LSGV0098 CHEIL HF1890H DrikGry 122830 NA NA 8 524 0
10 ' 05-Apr-06 2 LSGV0102 CHEIL VE-1877S DrikGry 121842 NA NA 25 120 15
11 05-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA NA B850 21
12 | 05-Apr-06 13 LSGY0252 CHEIL VE-18T77S BlK 101200 NA NA NA 300 18
13 05-Apr-06 13 LSGY0307 CHEIL VE-1877S LiGry 133232 NA MNA NA 160 0
14 | 05-Apr-06 14 LSGY0308 CHEIL HF1690H LiGry 133232 NA NA Ha 240 25
15 05-Apr-06 15 LSGVO0S8 CHEIL HF1690H DricGry 122830 NA NA 8 336 17
16 068-Apr-06 2LSGV0102 CHEIL VE-1877S DriGry 121842 NA NA 25 780 0
17 = 06-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200  NA MNA Na, 800 7
18 | 06-Apr-08 13 LSGY0252 CHEIL VE-1877S Bk 101200 NA NA NA 500 49
19 | 08-Apr-06 14 LSGVO0130 CHEIL HF1690H DrikGry 122930 NA NA, 8 108 2
20 | 06-Apr-06 15 LSGV0099 CHEIL HF1630H DrikGry 122930 NA NA, 8 276 95
21 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 300 0
22 07-Apr-06 2 LSGV0102 CHEIL VE-1877S DrkGry 121642 NA NA 25 1020 5
23 07-Apr-06 11 LSGY0251 CHEIL VE-1877S Blk 101200 NA NA, NA 360 6
24 07-Apr-06 13 LSGY0252 CHEIL VE-1877S Bk 387487 NA NA NA 200 16
25 07-Apr-06 13 LSGYN252 CHEIL VE-1877S Blk 387487 NA NA NA 700 7
26 07-Apr-06 14 LSGV0130 CHEIL HF1690H DrikGry 122930 NA NA 8 12 0
27 07-Apr-06 14 LSGVO131 CHEIL HF1630H DrkGry 122930 NA NA 8 120 17
28 07-Apr-06 15 LSGV0O099  CHEIL HF1690H DrikGry 122930 NA NA 8 180 0

Notes




Big example (cont'd)

I Total defective x Cost per pe. ]
K L M N o P Q R s T 18] v W X Y rA AA
Cost per Total [Start- Weid Flow Short Burn Gas Color/ Broken

1 pe. cost up Sink Flash line mark shot Warp marks Silver marks carbon Oil part Scratches Bubbles
2 $289 $20.25 3 0 0 0 0 o 0 0 4 0 0 0 0 0 0
3 $508 $86.43 R 0 0 0 0 R 0 0 0 0 0 0 0 0 g
4 $i1 10 8319976 0 0 0 0 0 8 0 0 12 0 0 0 0 0 0
S $269 $1612 6 0 0 0 0 0 0 0 0 0 0 0 0 0
6 289 $579 0 0 0 0 0 0 0 0 2 0 0 0 0 0 v
7 $5.08 S$167.77 0 4 0 0 0 2 0 0 0 0 0 0 0 2 0
8 $355 $2844 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 $1110 $000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 $413 36200 6 6 0 0 0 3 0 0 0 0 0 0 0 0 0
11 $508 $10676 0 17 0 0 0 3 0 0 0 0 0 0 0 0 1
2] o496 seo28] 8 0 0 6 4 6 0 G 0 0 00 0 PN g
13 $355 $000 0
4l $897 $22436 Counts for each type of defect 0
15 $11.10 $Si8866 U P | ) e v 12 v v ] L U U o 0 0
16 $413 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 ()V 0 0
17 g£508 $3559 0 2 0 0 0 B D 0 0 0 0 0 0 1 0
18 $496 824304 3 15 0 0 0 0 0 0 0 0 0 0 0 4 27
19 $1033 $351.07 8 0 0 0 0 14 0 0 12 0 0 0 0 0 0
2 $14.19 31347 62 56 30 0 0 0 0 0 0 9 0 0 0 0 0 0
2] $13 $0.00 0 0 0 0 3} 0 0 0 0 0 o 0 0 0 0
22 $413 $20.67 5 0 o 0 0 0 0 0 0 0 0 0 0 0 C
23 $508 $30 50 4 0 0 0 o 0 0 0 0 0 0 o 0 0 2
24 $4 96 $7936 0 14 0 0 0 0 0 0 0 0 0 0 0 1 1
25 $4 96 $3472 0 0 0 0 0 1] 0 0 0 0 0 0 0 0 7
26 $1033 $0.00 0 1] 0 0 0 0 0 0 0 0 0 0 0 0 0
2 $1515 825756 8 0 0 0 0 0 0 0 1 0 0 8 0 0 0
28 $14 19 $0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes




Notes

One of the things we would want from a data set like this is a Pareto breakdown of
defect types by frequency of occurrence. For this, we need to calculate the total
number of defective parts for each defect type. With the format shown above, we
cannot do this by means of a pivot table. As an alternative, we could calculate the
totals for the columns representing the defect types. However, compared to a pivot
table, this method 1s extremely tedious for doing anything else, such as comparing
Pareto breakdowns for stratifications of the data set.

Another thing we would want from a data set like this 1s a Pareto breakdown of defect
types by total cost. It is not impossible to do this with the format shown above, but,
once again, 1t would be extremely tedious compared to a pivot table.

Notes




Small example

169

Open molding process - small (in JMP)

w 0 Cols ~

> AN Rows -
1 7'
2 17.
3 18|
JTs

This is what we have

This is what we need —

— How do we get there?

3 21 3 0
5 851 4| 4
LB 198 0] 6
w 40 Cols
v 1240 Costperpc | Defect |
1 3/ Start-up |
2{ _3[Short shot |
3 3| Siver
4 3|Bubbles
S 5/Statup |
6] _5/Short shot |
= 48 5/Siver |
8 5 Bubbles
8 11 Start-up |
10 11 Short shot |
1 11 Sitver
12 11 |Bubbles

Total defective | Cost per pc | Total cost | Start-up | Short shot | Silver | Bubbles |

4 0*
o 9
12| 0/

Freq _Total cost

9

- -

¢

b ihD b o w
=

4
!

1NN

25
m.c

oo ovls

-
ol 8o

Notes




Stacking a data table

Tables — Stack — Select the defect columns as the Stack Columns

Stack values from several columns into several rows in one

column

Select Columns Action
ATotal defective Start-up l oK
4Cost per pc Short shot .
ATotal cost Remove Silver Cancel
AStart-up Bubbles
AShort shot ;

Recal
ASiver
ABubbles Output table name | || Hep |
(] Multiple series stack New Column Names

Stack By Row Stacked Data Column| Data
() Elminate missing rows Source Label Column | Label
[] Drop non-stacked columns [ Copy hoiriis

[v] Suppress formula evaluation

[_] Keep dialog open

Notes




Editing the columns

=% Cois - | —
yap. .| Total defective | Costoerpe | Totsicost| Labsl | Dama | ) ./'1
1 7l al 21 Seatup al - :
2 1 3 21 [Shotshot| 0| Total defective and Total cost are W
: ;1 : = 31 xb'.,s = ; \ now incorrect row by row
5wl s esswtap | al ‘
8 17] 5 85 Shonshot| 4| ~
7 17 8§ 85 Siver 0
g 17| 5 05/cubtles | 8
g 18! 1] 198 Setup |0
10 18] 1 188 Shonshot| 6
i 18] 1| 188 Siver | 12
|t 18] 11 1ssBwbes | 0 |"g ACol~ Cost per l Total ] Defect |
1. Right<click on Data ﬂ -129 .| PpC. | cost | type | Freq ,
N 1 8|  elsttuwp | 8]
2. Select Column Info ~— 2 T 0/Short shot | 0l
3. Rename as Freq — OK 3 3 ',2;3?_'!5' | 4
4 3 O/Bubbles | 0]
4. Rename Label as Defect tvpe 5 3 20 Start-up | 4|
5. Delete Total defective 6| 5|  20/Shortshot| 4|
Bl 7 5/ olsiver | 0
6. Right-click on Total cost 8 5 45 Bubbles | g+
9 1 n'*swz tat-up 0
7. Select Formula — Cost per pc.*Fieq 2 4 =
perp P welw| e shotshat| 8|
8. Save as molding data small 1 1] 132 Siker ! 12|
stacked.xis 12 1| 0 Bubbles | 0

Notes




Pareto plot by frequency

Analyze — Quality and Process — Pareto Plot — set up as shown — OK

Ii. Pareto Plot - IMP

[ The Pareto Chart of Cause, opu'on;l!y grouped by X

Threshold of Combined Causes
Per Unit Analysis }
(requires sample size)

Select Columns Cast Selected Columns into Roles
* 4 Columns |'m_l ol Defect typa
ACost per pe. lf—_
Aol cost A GMJ
WhDefect :
AT | Weight |

=)

(T Untitled 4 - Pareto Plot of Defect type - IMP 2ok b

4 = Pareto Plot
Freq: Freq
4 Plots

20

15

Freq

10

Siver Shortshot  Bubbles

Defect type

Start-up

Notes




Pareto plot by total cost

=
. Pareto Plot - IMP

The Pareto Chart of Cause, optionally grouped by X

Total cost
__ Threshold of Combined Causes | Freq |
Per Unit Analysis | By |
[requires sample size)

fi. Untitied 4 - Pareto Plot of Defect type 2 - IMP

=5l

Select Columns Cast Selected Columns inte Role 4 Plot
— = Pareto
* 4 Col
ot L_?'E’_“’f _| W Defect fype Weight: Total cost
‘Cﬁ'ﬂ " PP ————
X, Growping| 4 Plots
200

150

Count

In this case the two plots
are very similar

Shortshot  Bubbles
Defect type

Stver

Hart-up

-
=

Notes




Cost Pareto without calculating the total cost column

=
(. Pareto Plot - JMP

Select Columns
¥ 4 Columns

_| Per Unit Analysis
{requires sample size)

The Pareto Chart of Cause éﬁuonal;y gtc:up;dibyix
Cast Selected Columns into Roles |

MCost perpe “

Aol cost X G“’MJ F
hDefect type — .

Arreq “AWeight | Cost per pe.

[l Tbtaholcm | Freq

| T

BT

i

- — o

fi Untitled & - Pareto Plot of Defect type 3 - JMP

[EEEY)

4 = Pareto Plot
Weight: Cost per pe.
Freqg Freq
4 Plots

200

S0

Siver Short shot
Defect type

Subbles

Start-up

Notes




Exercise: Appendix

Data sets \ molding process - Pareio.

Use the method described in this section to reformat the file for Pareto analysis. Save
the reformatted file as molding process - stacked. Create Pareto plots of defect types
by frequency of occurrence and total cost.

Notes
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1 Introduction to Regression

il

|
. |

—

Regression analysis is used to create an empirical model of the

relationship between process inputs (x’s) and outputs (y’s).
# It is the method for analyzing designed experiments.

» It can also be used with historical data to help identify some
factors for an experiment, or to develop an empirical model
with that data.

Topics:
* Terminology
* Purposes of regression analysis
* Data collection for use in regression analysis
* The line of best fit

* Simple Regression

Notes




Terminology B

* The term correlation 1s often used any time we speak of relating one vanable
to another

o Correlation 1s a measure of the relationship

o An mput/output relationship between the two variables 1s not required
(for example, two vanables measured at the same point 1n a process)

o As aresult, unrelated things can be “correlated.” Remember,
correlation does not prove causation.

* Regression analysis yields a model equation of the input-output relationship,
Y =f(X), which can be useful in prediction

o In the dataset, a series of mputs and their resulting output measures
are aligned

o Regression 1s used to investigate and model the relationship

Notes




Purposes of regression analysis

L]

The result of regression analysis is an empirical
model, created from the data/observations, that can
be used to:

» Understand and describe the relationship between Y
and X's

* Predict Y from X’s
« Determine best setting for X's (optimization)

* Reduce variation in Y by controlling X's

Notes




Data collection for use in regression analysis

Regression analysis is only as good as the data used.

Three basic sources of data are:
« Historical data (data that exists in routine collection systems)

« An observational study (data collected from uncontrolled processes for a
specific purpose)

« A designed experiment (data from structured and controlled tests)

Regression analysis is a very big statistical topic and is commonly the
analysis type for data from all three sources listed above.

Designs of experiments (DOEs) is the best strategy for many problems we
are trying to solve as it is constructed to eliminate many of the problems that
exist with the first two sources. However, historical and observational data
is often easier to get and can still give powerful insights, although care must
be taken with the analysis and conclusions drawn.

Notes




Considerations when using historical data B

Historical data is often plentiful and easily accessible.

« It may be useful in identifying some vanables that are critical to our process

However, there are several potential issues in using it:

«  Some relevant data is not available. such as values of critical x’s that are not
recorded as part of the on-going process

*  Rehability of the data 1s often questionable, including data being missimg or
lost

- The nature of the data is not helpful in solving the problem. as in situations
when an x variable 1s controlled, so its impact cannot be seen in the
regression analysis

»  Often. data 1s used in ways that were not mtended, such as using available
data as a surrogate for what was really needed

Caution: We will not be able to cover the many aspects of creating and
validating regression models from historical data in this course. If you
choose to do this, proceed with caution! Better yet, get additional help.

Notes




Considerations when using an observational study

In an observational study, we would observe the process,
with as little interaction or disturbance as possible, in order

to obtain the data.

«  With adequate planning, an observational study can yield accurate,
complete, rehiable data
These studies can lead to ideas on what might be impacting the
process

However, these studies often provide limited information about
specific relationships of interest, such as the impact of a variable that
1s tightly controlled in normal operation

Notes




“Simple” regression

Simple linear regression refers to the case when there is only
one regressor (variable) x used.

+ Insimple regression, the model equation is for a best-fit line

« The form of the model equation created is:
Y = by + byx; + error

where by is the intercept and b, is the slope of the line.

+  This may remind you of your early algebra days, when you learned
the equation for a line between two points:

Y=mx+b

*  Because there is variation (and more than two points to create the
line), there will be scatter around the best-fit line determined by
regression analysis.

Notes




Simple regression (cont'd)

|
-

|

Intercept Slope
l

Y =0.8387+ 0.4891 X + “Error™

0 20 40 60 80

Notes




The line of best fit

The best-fitting line is the one that minimizes
the sum of the squared “errors”

0 20 40 60 80 100

Notes




The line of best fit (cont'd)

* “Errors” are the vertical distances between each Y data
value and the fitted line

* The line of best fit 1s the one that minimizes the sum of the
squared errors

* This is the simplest example of least-squares model fitting

* The fitted line is often referred to as the predicted Y value

Notes




Finding the line of best fit

ol N N W

LSSV2 student files \ ANOVA linear fit
Worksheet \ Prediction & error ]

A 8 c.D E F G H J J
X data Y data Prediction Error

8 6.16 2790 2174

22 988 2790 -18.02

35 1435 2790 -1355

40 24 06 2790 -3.84

57 3034 = | 2790| * 244

73 3217 27.90 427

78 4218 2790 14.28

87 4323 2790 1533

98 48.76 2790 20.86

Sum of sguares (SS) 80013 = 70074 + 18939

Degrees of freedom (DF) 9 = 1 + 8

Root mean square error (RMSE) 15.39

AverageY 2790
STDEVolY 1539

KiL M N 0 F

Y =|27 9033/ +|0.0000 /X

Notes




Finding the line of best fit (cont'd)

In this worksheet we ignore the X variable completely, and use the average
value of Y as the prediction. This is just the calculation of the mean and

standard deviation of the Y variable. (The values incells 114 and E17 are the
same. )

(i

1%

The sum of the squared errors (cell 112) can be dramatically reduced by using
the X variable to “explain” more of the variation in the Y variable.

Notes




Finding the line of best fit (cont'd) H

Worksheet \ Prediction & error2

A B _lCliD E F G H n Joikith oMo Nl 0s iP
1
2 X data Y data Prediction Error Y = Io 8387 ] + [o 4801 ]x
3 8 6.16 475 1.41
4 22 9.88 11.60 472
S 35 1435 17.96 -361
6 40 24.06 20 40 3.66
7 57 3034 = | 2872 * 162
3 73 3217 36 54 -4 37
3 78 4218 3899 319
10 87 43.23 43.39 -0.16
il 98 48.76 48.77 -0.01
12 Sum of squares (SS) 89013 = 88380 + 633
13 Degrees of freedom (DF) 9 = 2 + 7
14 Root mean square error (RMSE) 3.007
15
30 ANRIagaY 27,80 Proportion of total Y variation caused
17 SIDEVY 1539 by ("explained by") X variation
18 Adjusted R square  0.962

Notes




=]

Degrees of freedom for regression

o i

total sample size

G = number of parameters in the equation
= DF for the prediction column
;\T - G = DF for the error column J

* The Error DF is more important than the Prediction DF
* It determines the accuracy of the predicted values

* When DF is mentioned without a qualifier, it usually means Error DF

Notes




Steps in Simple Regression ﬂ

I. Run Analyze > Fit Model in JMP to investigate the
relationship between y and x

(S

Check the p-value for the fit to determine whether the
regression is significant. If not, then no need to go further.

3. If the regression is significant, determine the strength of the
relationship, using the Adjusted R*

4. Check model adequacy by reviewing the residuals plots
» Residual Normal Quantile Plot
» Residual by Predicted Plot

» Studentized Residuals (in run order)

We'll go through these steps and additional analysis details,
for simple regression in the following example.

Notes




Simple Regression in JMP 16

Open: Data sets \ simple regression - generic

simple regression - generic - MP B o | SRR
File Edit Tables Rows Cols DOE Analyze Graph Tgols View Window Help
~ simple regression - generic q =
- X Y
1 8 616
w ! Columns (2/0) 2 2 988
ax 3 35 1435
A 4 0 2406
5 57 3034
> Rows 6 73 21
All rows 2 ? LTS
Selected 0 8 81 433
Excluded 0 9 98 4876
0
0

evaluations done

Notes




Simple Regression in JMP (cont'd)

Analyze — Fit Model — Set up as shown — Run

T et

4~ Model Specification
Select Columns Pick Role Vanables

¥ 2 Columns | P,
Ax
Ay

Personality: | Standard Least Squares
Emphasis | Minimal Report

|
|

| Macros ¥ _’
Degree Lll
Attnbutes ¥

Transform =
{77 No Intercept

Notes




Analysis details

Response Y
Regression Plot
50 . ( The Root Mean Square Error\
(3 A 19
j ; . " (RMSE) is the standard
< deviation of Y caused by factors
35 )
-
> 30 e other than X
25 . L
20 * It can be thought of as the
15 . standard deviation about the
‘; > fitted line (or model)
= )8 § 8 =8 3 « Also known as the “error” or
X “residual” standard deviation
Summary of Fit &Smaller 15 better j
RSquare 0.966581
RSquare Adj 0.961807 /
| Root Mean Squsre Eror  3.006084 J¢ ( ™
3 27.90333 2 x
oS SO 479033 » P-value indicates
Observations (or Sum Wats) 9 .
- - whether the regression
Analysis of Variance S
18 significant
Sum of =
Source DF Squares Mean Square  F Ratio e This low p-value shows
Model 1 1830.6557 183066 202.4624 h ik p A s ;
Error 53.2937 9.04 \_ that 1t 1s sigmificant )
C. Total 8 18939494

Notes




Analysis details (contd)

Summary of Fit R2
RSquare [ 0.966581 | >
RSquare Adj 0.961807
Root Mean Square Error 3.006984
Mean of Response 27.90333
Cbservations (or Sum Wgts) 9

“Coeflicient of
Determination™

Analysis of Variance

Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1830.6557 183066 202.4624
Error 7 63.2937 9.04 Prob>F
C. Total 8 1893.94%4 '

Y

~

'« Proportion of the variation in Y that )
1s “explained by” variation in X.
e Varies from 0 to 1.

 Larger 1s better

. * Umnitless /

Notes




Analysis details (cont'd)

Regression Plot

50 .
45 »
40 y
35
- -
5. 30
25 B
20
15 -
10 -
< -
e = = 2 @ =
X
Summary of Fit
RSquare 0.966331
| RSquare Adj 0.961807
Root Mean Square Error 3.006984
Mean of Response 27.90333
Observations (or Sum Wgts) Q
Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1830.6557 183066 2024624
Error 7 63.2037 9.4 Prob> F
C. Total 8 18%3.am

Adjusted R? also gives us
the proportion of Y variation
explained by the model (a
line in simple regression)
Varies from 0 to |

Larger 1s better

Always use the Adjusted R’
value, not R?

Adjusted R? takes the
number of model terms nto
account and penalizes for
mcluding insignificant terms

In this example, the simple
regression model explains
much of the variation in Y.

Notes




How R? and Ridi are calculated E

Distributions
Y
— = Summary Statistics
' 5 e ' Standard Deviation (STDEV)
SidDev | 15386477 ——
N ) of the data set
Minirum 816 - .
[ Masximiam 48.TH
Madian 3034
5 0 15 20 25 30 35 40 45 50
#.-" Rz == SSE:':'m -.I“.
SSTDMI

g2 _q_SSeror/(R=p) _ (RMSE )2
o SSrotat/(n— 1) STDEV

p = number of terms n the model (including the intercept)

n = sample size (number of measurements in the data set)

5570t 15 the sum of squares of the data (measurements n the data set)

SSirror 15 the sum of squares of the Errors or residuals

We saw the sum of squares calculations earlier, in the ANOVA

S e

Notes




A

Why use Adjusted R2? 22

I

There is a potential problem with R*:

» R? always increases when terms are added to a model, even when the
terms are not significant

» This is particularly a problem in multiple regression, as it can lead
to “overfitting,” giving false confidence in using the model, especially
for prediction.

» Adjusted R- corrects for this by considering the number of terms in the
model

» Adjusted R* can actually decrease if non-significant terms are added to
a model

Adjusted R*is the recommended statistic for determining the
proportion of variation in Y explained by the model

Notes




P-values for the ANOVA and individual model parameters ﬂ

Red triangle next to Response Y — Regression Reports — Parameter Estimates

* In regression of Y on a single X.

Analysis of Variance the Analysis of Variance P-value
San ol 1s the same as the P-value for
Source DF  Squares the slope of the line.
7
Modsl 3 AR * The P-value for the slope of the
Error 7 63.2937 Fe tidioates the evidence. of
C. Total 8  1893.0494 mne in }catcs the evidence of a
correlation between Y and X.
Parameter Estimates * Significance of individual
Term Estimate Std Error t Ratio Prob>|t] model lcr;lnshare ﬁe.lermlne‘d‘ .by
Intercept 0.8386661 2150023 039 _0.7081 s e Sy
X 0.4891205 0.034375 14.23 s B SR -
the t statistic. Hypotheses are:
Hoi b" =0
H1: b" = 0

* This 1s a test of the contribution
of the model term. given the
other terms 1n the model.

Notes




P-values for individual model parameters n

Parameter Estimates
_ Term Estimate Std Error tRatio Prob> |t
Estimates and P-values for Intet‘cepthl 9,3335551] 2.150023 0.39 (07081
the slope and intercept X "|0.4891205] 0.034375 14.23

Model: ¥ = 0.84 + 0.50X + error

* In this example, the P-value for the slope of the line indicates very strong
evidence of a correlation between Y and X.

* The P-value for the Intercept indicates that it 1s not sigmificant.
~ Best practice is to leave the Intercept in the model, whether or not the P-
value indicates that it is significant
o Regression equations are developed. and are only valid. over the region of the
regressor variables (x’s) contained in the data set
o Forcing the model to pass through (0, 0) by removing the intercept. can create
problems in the region being modeled

Notes




Using Adjusted R? and p-values

Both the Adjusted R? and the p-values must be considered,
in order to understandwhat has been learnedin the analysis.

When the resulting model has:

High Adjusted R? and significant model term p-values, this is ideal.
Factors driving the response have been identified and the vanation 1s largely
explained. A decent model has been created.

Low Adjusted R? and significant model term p-values, more work must be
done. Some significant factors influencing the response have been identified.
but the low Adjusted R* indicates that other important factors exist. These need
to be found. for the model to be useful.

High R?and insignificant model terms. this is usually due to the data
violating the assumptions of the regression analysis. There 1s more mnformation
on this scenario in upcoming slides.

Low Adjusted R? and insignificant model terms, no relationship between X
and Y vanables have been found. Usually this means that new ideas about
which factors influence Y must be developed. although it can occasionally be
due to missing higher order terms.

B

Notes
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2 Checking Model Adequacy E:j

In least squares fit regression (continuous Y), the analysis
methods used to calculate regressor coefficients and their
p-values, depend on certain assumptions being met.

Assumptions:

* Errors (residuals) are normally and independently
distributed with mean zero and constant variance (o?)

* Observations are adequately described by the model

Whether performing regression from “file cabinet” data or
analyzing the results of a designed experiment,
these assumptions must be validated.

Notes




Checking Model Adequacy (cont'd) =

To validate that these assumptions have been met,
the residuals are examined:

1. Normal Probability Plot of Residuals
«  Validate that the residuals are normally distributed
* In JMP, this is the Residual Normal Quantile Plot

2. Residuals vs. Predicted (or Fitted) Values
» Validate constant variance and mean (
* In JMP, this is the Residual by Predicted Plot

3. Residuals vs. Run Order
«  Verify independence of errors
*  There should be no patterns over the timeframe of the data
* In JMP, the best graph to use is Studentized Residuals

« The JMP data table must be in run order for Studentized Residuals to
graph the residuals in run order

Notes




Residuals Review

Predicted value

.

A

[ Predicted Y = b, + b X

[ ]
A

Residual (+) !

Predicted valge je—ssesismrmnnmams

29

Notes




Notes

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor vanables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value is the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual 1s the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contamn information about the magnitude and direction of vanability i the

data relative to the fitted model.

* An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

+ A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.

Notes




Residual Analysis 31

Residual Normal Quantile Plot
4

3

Y Residual

~N o - wy Q0 w©
> = < k=

09

"
o = =]

o

Normal Quantile

In viewing the Residual Normal Quantile Plot for the simple regression-generic,
we can see whether the residuals are normally distributed.

Notes




Notes H

If residuals are normally distributed, the plot will be approximately a straight line.
Emphasis should be on the central values of the plot, rather than the ends

It is common for plots to bend upward at the high end and downward at the low
end.

Small sample sizes, such as from experiments, often appear more non-normal

Use the “Fat Pencil” Rule: If a “fat pencil” placed over the central pomnts would
cover them on the plot, then the residuals are approximately normal (good
enough). Hyperbolic bands displayed in JMP plots give these bounds.

A curve throughout the plot is a strong indication of non-normality. In this case, a
transformation would be needed.

The plot above shows an error (residuals) distribution that 1s approximately
normal, so 1t 1s not concerning.

Notes




Residual Analysis (cont'd)

Residual by Predicted Plot

4 .

3 .
+ 1 . .
=
S 0 - -
é -1
> -2 1

4 . :

0 10 20 30 40 50
Y Predicted

In viewing the Residual by Predicted Plot for the simple regression-generic,
we can scc¢ whether the residuals have constant variance and mean 0.

Notes




Notes

Here the residuals are plotted against the predicted values. This is a good all-around
diagnostic plot.

“Healthy” residuals look like random scatter around (. There should be no
obvious patterns. The amount of “scatter” or variance (how high and low the plot
goes) should be consistent across the graph. This venfies the assumption of constant
vanance. If the vanance 1s increasing or decreasing across the graph, a transformation
is needed.

Notes




Residual Analysis (cont'd) 35

Studentized Residuals
3 4
=
e ¢ i . . .
‘g 0-1+— — —_— - -
E .n . .
& -
3
&5 -4
0 2 4 3 8 10

Row Number
Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in
green

In viewing the Studentized Residuals for the simple regression-generic,
the best form for checking residuals by run order,
we can see whether there are any patterns over the timeframe of the data.

Note that the data table must be in run order for this plot.

Notes




Notes B

Again, on this graph, healthy residuals look like a random scatter around 0.

Runs (pomnts 1 a row) of positive-negative-positive-negative residuals mdicate
correlation between runs. This implies that the assumption of independence has
been violated. In designed experiments, randomization protects against this!
Do it every time!

This plot can also show a change in variance over the time span of the
experiment. This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc. This type of problem would show as
an increase or decrease in spread or “scatter” of the residuals across the graph.
Increasing or decreasing vanance indicates the need for a transformation.

Notes




3 Using the Model: RMSE and Prediction Profiler ]i‘l

=

In this section. we’ll see how we can:

» Use the Root Mean Square Error (RMSE) in predicting our
future process variation,

» Use JMP’s Prediction Profiler to help us optimize our
process, and

+ Estimate our future % defective, using the t distribution
calculator.

Notes




Using the Model (cont'd)

When Y is correlated with a controllable X variable,

o W oun
L R == T ¥

40

L IV, ]

P a0

L= ]

15 .

L

=

0 10 20 30 40 SO &0 70 80 90 100110
A

how can we use the regression fo improve the Y capability?

Notes




Using the Root Mean Square Error (RMSE) 39

LSL

B/

0 10 20

-
i

uUsL

L

i

30 40 0 60 70

Suppose we are not happy with our current process capability
Mean = 27.9, Stddev =154
Defective in the data: 33.3%

Predicted from distribution curve: 35.8%

Notes




RMSE (cont'd)

If we control X at 80, the mean will change from 27.9 to 40

60- UsL
50 -
-
> 40— .1_. Target
- .
Current 30 -
mean .
20~ LSL
-
10 ]
L]
0 0 40 60 80 100 120 140 160

Notes




RMSE (cont'd) L)

LSL Target USL

/L\ Mean = 40.0
Std dev =154

Defective in the data: 22.2%
Distribution curve: 15.9%

e P

0 10 20 30 40 50 60 70 80
Y

* Moving mean Y to the center of the spec range does reduce % defective

* Is the mean the only thing that changes when we control X at 80?

Notes




RMSE (contd) L)

By definition, RMSE is the standard deviation of ¥
that would result from eliminating the variation in X

40+ A o = RMSE
35 = 2.84

0 10 20 30 40 50 60 70 80 90 100110
X

Notes




RMSE (cont'd) I-Ia

When we control X at 80, we don't just move the mean from 27.9 to 40
— we also reduce the standard deviation from 15.4 to 2.84 |

4 usL

>

Lo LsL

P
=]
da
&3
2
Lo o]
=]
Y
=
C

Pt
L=
¥

™
L=
L3
=

Notes




4. Introduction to the Prediction Profiler

JMP’s Prediction Profiler helps us use our regression model to
make predictions and optimize our process.

Prediction Profiler Follow these steps to access the
prediction profiler:

50

45+ " X

40 * Analyze > Fit Model > Y =Y,

' %S Model Effects = X > Run > Red
> [ 35 Triangle > Factor Profiling >
733] 20 Profiler
15
10
5

100

a5

Notes




Introduction to the Prediction Profiler (cont'd)

JMP’s Prediction Profiler helps us use our regression model to
make predictions and optimize our process.

Prediction Profiler

{ Mean of Y

—hah DO W
VOoOwmowmo

W

Confidence
Interval

100

» Calculates predicted mean Y as a function of X

* Calculates confidence intervals for predicted means

Notes




Simple example of prediction of Mean Y

47

=]

Continuing with the simple regression-generic data:

» Suppose we are interested in the predicted mean Y for X =60

* Click on the 55.333. change it to 60

Prediction Profiler

45
40

W
wn

C
-~
ik PO W
wWMoOoOwnmowmo

0
20
40
60
80

100

* Predicted mean Y (based on the data)i1s 30.19

* With 95% confidence, the population mean lies between 27.79 and 32.59

Notes




Simple example of optimization

* Suppose we want to find the X value that predicts a mean Y value of 25

» Red triangle next to Prediction Profiler — Optimization and Desirability —

Desirability Functions

Prediction Profiler

50
45
40

3 : /
> 7785 30 Vi

2
15

Lol =]
a
\a

z 075
f':a 555193 05 _/’;
a 0.25 i

D

EEXEELE N
’ a o

X :'ﬂulhzllt_,

_.» Double click in here (don't touch
the line plot)

* Modify the Response Goal dialog

as shown below
*Click OK

et

Ir 3
% Response Goal / .
['4
Match Target = |
Y Values Desirability
High: ][ oma3]
Middle: _ 25| j_ - _1!
P
Importance: 1
[0k ][ Cancel || Help _

Notes




Optimization (cont'd)

49

I

Prediction Profiler
50
a5
o
Red triangle : 3
next to 53
Prediction Profiler s
g
v :
Optimization and Desirability z 0.75
3
d e 05
Maximize Desirability 3 0.25
0

* Predicted mean Y of 25 is achieved when X =49 .4

* With 95% confidence, this population mean lies between 22.6 and 27.4

40

o B0

B8O

100

—

025

< J
L=
o

Desirabality

Notes




Confidence Intervals and Prediction Intervals

» The 95% Confidence Interval on the Mean Response gives the
range which will contain the “true” mean, p, 95% of the time

- For a sample, the confidence interval is calculated:

= s =

Y —to25n-1 N =Y +torsn-1

«  For a regression, calculation of the confidence interval is
similarly structured, but considerably more complicated,
involving matrix math.

» A 95% Prediction Interval gives the range which will contain
future individual response observations 95% of the time.
+  The prediction interval is wider than the confidence interval,
because it is to contain individual measurements, not averages.
+  Calculation of this interval is complicated, involving matrix
math.

Notes




Exercise 4.1

v

|5‘|
|

B

a) Continuing with simple regression-generic, find the X value that predicts a mean Y

value of 35. Give the confidence hmits for the predicted mean.

b) The overall standard deviation of Y 1s 15.39. The RMSE from the regression 1s

2.84. Which of these would be the standard deviation of Y if we controlled X to a

constant value?

¢) Save your script. close and save the data table.

Notes




Exercise 4.2 ﬂ

Data sets \ production vs capacity.
(a) Fit a regression for Production gty as a function of Capacity utilized (%6) (using Fit

Model. of course). Is there a correlation? Give the appropriate P-value and strength
of evidence.

(b) For this exercise, we will not review the residuals plots. Use your model to find the
capacity utilization level that predicts a mean daily production quantity of 3500.
Give the confidence limits.

(¢) The overall standard deviation of Production gty 1s 733.5 (not shown in Fit Model
output—calculated in Distribution Platform). The RMSE from the analysis in (a) is
409.732. Which of these would be the standard deviation if capacity utilization was
held constant?

(d) Save your scripts, close and save the data table.

Notes




Estimating Improved % Defective

Once we determine the level at which we want to control
our x, we can use the root mean square error (RMSE) and
other regression results to estimate the % defective in the
improved process.

Remember that by definition, the RMSE is the standard
deviation of the improved process, with x’s held at desired
levels.

The ¢ distribution calculator helps us calculate the future
% defective.

Notes




LSSV2 student files \ t distribution calculator E

A B Cc D E F G H
1. Enter the quantities m the YELLOW cells

.

2 2. The other values are calculated for you
3
4 LSL 20 LSL USL Total
5 USL 60 Population % out of spec 0.015| 0.015| 0029
B Mean 40 Population PPM out of spec 1451 1451 290.2
7 Standard deviation| 3 006984 f
g | |Desrees of keedom 7 PPM defective = 290
; /
These calculations can t;é:ii\'e to round-off error. Don't round off the mean
10 and standard deiation when you enter them into the calculator
11 / Analysis of Variance
12 Sum of

Error DF from the  Source DF  Squares MeanSquare F Ratio

13 Analysis of Variance  Modsl 1 18306557 183086 2024624
o 63.2937 904 Prob> F
C Youl 3 1893.94%4

15

Notes




Exercise 4.3 ;‘

Data sets \ production vs capacity.jmp.
In this process data, on 75% of the days production quantity fell below 3000,

Based on the best fit distribution, the Lognormal, the expected % of days that
production quantity will fall below 3000 1s 71.8%.

a) We found earhier that capacity utilization 52.1% gives a mean daily production
quantity of 3500. The RMSE was 409.7, the error degrees of freedom was 34.
Assumung 52.1% capacity utihization, use the 1 distribution caleulator to find the
predicted % of days on which production quantity will be less than 3000.

b) Save vour scripts, close and save the data table.

Notes




Exercise 4 .4

Open Data sets \ outgassing process. Current (the Y variable) 1s the current required
to heat a filament to a target temperature. Resisf (the X variable) 1s the electrical
resistance of the filament. Machine is the processing unit. This example shows how to
reduce % defective by separate optimization of each machine.

a) For this process, the % of Current data values that fall outside the interval (1.9,
2.1) is 8.87%.

b) Fit a regression for Cirrent as a function of Resist, using Machine as the By
variable. For each machine, give the RMSE, the error degrees of freedom, and
the resistance that predicts a mean current of 2.

Machine RMSE DF Resistance | % Outside
A
B
C

¢) Assuming we use the indicated resistance values, use the 7 distribution calculator
to find for each machine the % of Current values predicted to fall outside the
mterval (1.9, 2.1).

d) Save your scripts, close and save the data table.

Notes




5 Multiple Regression £

Multiple regression model

Examples

Fitting regression models

Interactive effects

Predicted values and uncertainty

Modeling and optimization

Notes




Multiple regression model

[ Y: bﬂ.+b1xl + b:x: FI o i J!‘bkxk ¥+ “EITGI‘"]

Y Xl* X:.. alilae XI': bU bl" b:, i A hL‘ “Error”
Dependent Independent Intercept Regression Residuals
variable variables coefficients
Mean =0
Response | Explanatory vaniables | Parameter Parameters Standard deviation = &
variable (RMSE)
Output Inputs Distribution = Assumed to
be Normal
Predictors
Regressors
Factors (in DOE)

Notes




Model and error components, one X

[Y = by+ b X + “ermr“J

120 —

HEI—\

0 — SO
Y When X 1s =
g0 — [ fixed. predicted '

g of Y = RMSE

Predicted mean Y (X = 146)

8 —
- 1
.
0 — - .
"
-
B0 — o -n
50 — "
| ] I I | I | | |
[t} BO g0 100 110 120 130 140 150 160
X

170

Notes




Model and error components, two Xs

When X, and

X, are fixed, P ey 52 4
85 - : : T ZFTIST
predicted ¢ of A
y ~ e A e ST et f T
804 [\ Y =RMSE e B e .
g AT et T =7 LT S
L B o B AN e

75 < P Predictedmean Y (X, = 150,X, = 1.2)

Notes




Multiple regression examples

Y % X, X, L X X;
Life of .
P RPM Tool type Matenal Feed rate
cutting tool '
= Displace- -
MPG SRS Horsepower Weight
ment
Salary Educanon Expenience | Performance | Seniority Gender
Vending Amount of Distance
machine product from truck to
service time stocked machine

Fill in examples of interest to you

Notes




Regression model equations

Y X4 X, X, > 0 X
MPG Displ(ag;mcm Horjcﬁ;)\vcr Vig\;vg)hl
MPG = b,+ bD + b,H + b;W + error
. X X2 X X4 Xs
wﬁ?’:glm Tcmp(v;r)aturc Dw«:l{l);ime TxD - -
|
Bond = b, + b,T + b,D + b.,TD + b,T* + b,D* + error

0

T

Response surface model (RSM) with two continuous Xs.

TD is the interaction term for T and D, T2 and D2 show curvature.

Notes




Linearizing nonlinear models

Nonlinear model Equivalent linear model

Y =b,(X, ) (X, ) | log(Y) = log(b, )+ b, log(X, )+ b, log(X, )

Y=b,(b, ] (b, | log(Y)=log(b,)+log(b, )X, +log(b, )X,

* In many cases, log(Y) transformations can successfully
linearize nonlinear regression models

* This greatly extends the application of standard multiple
regression models

Notes




Fitting regression models

Data sets \ teenage growth

Y

X‘\

Height

Age

Gender

Weight

Age

Gender

>
F3 Tesnage growth - IMP

| File Edit Tables

b Source

» Columns (5/0)
i Name

A Age

th Gender

A Height

A Weight

= Rows
le.y
{Selected
{Excluded
|Higden

:'.sbeiiea

v Teenage growth ¥

{Al rows 40

o

=S

Rows (Cols DOE Anslyze Graph Tgols View Window
Name Age Gender Height Weight

1 ALICE 13 F 61 107
2 AMY 15 F 64 112
3 BARBARA 13 F 60 112
4 CARQL 14 F 63 84
S EUZABETH 14 F 62 g1
6 JACLYN 12 F 66 145
7 JANE 12 F 55 74
8 OV 14 F 61 g1
9 KATIE 12 F 59 95
10 | LESLIE 4F 65 142
11 ULLUE 12 F 52 64
12 UNDA 17 F 62 116
13 LOuIsE 12 F 61 123
14 MARION 15 F 60 115
15 MARTHA 16 F 65 112
16 MARY 15 F 62 82
17 PATTY 14 F 62 gs
18 SUSAN 13 F 56 67
19 ALFRED AM 64 aa
20 CHRIS 14 M 64 aq
21 CLAY 15 M 66 105
22 DANNY I5 M 66 106
23 DAVID 13 M 59 79
24 EDWARD 14 M 68 112

Notes




Fitting models (cont'd) E

r— |
» Fit Model - IMP BNRCE X
|4 ~ Model Specification |
Say we w.ant to Select Columns Pick Role Vanables Personality [Standard Least Squares v
model Height as %5 Columns

Emphasis: | Minimal Report b/

a function of h Name ,
Age and Gender | 1‘2.3;,,,
4 Height
4 Weight
gralog open
Analyze
~1« Con
Fit Model
— cfoﬁs —
Nest
. Macros =
Degree 2
Attributes =

Transform (w=

| No Intercept

Notes




How to change options (for Fit Model ) during analysis

4 = Response Height

4 Regression Plot
= Line of Fit for Gender{F)
—= Line of Fit for Gender[M]

70

 Alt-click on Response

Height red triangle (This s - /;/f//'//
. - . -
technique works for may ® o B P
x 60 . /:/
JMP platforms) —
55 ’
* Set up as shown on next <
slide - R O TR U
ng!
 Residual by Predicted Plot
> Summary of Fit
4 Analysis of Variance
Sum of
Source DF Squares MeanSquare  F Ratio
Model 2 317.25956 158630 152592
Error 37  384.84044 10,39 Prob> F
C Total 39 701.90000
4 Parameter Estimates

Term Estimate StdError tRatio Probo |t|
Intercept 39416521 4945343 7.07

Age 1.6466542 0.352418 4.67

Gender[F] -1214858 0516245 -2.35 4

Notes




Default options for Fit Model (cont'd)

By
Regression Reports [_] Inverse Prediction Row Diagnestics
(v Summary of Fit [ ] Parameter Power (] Plot Regression
[¥! Analysis of Variance ] Correlation of Estimates [} Plot Actual by Predicted
[V] Parameter Estimates Effect Screening [] Plot Effect Leverage
[] Effect Tests [ ] Scaled Estimates [v] Plot Residual by Predicted
[] Effect Details (] Normal Plet [ ] Plot Residual by Row
[] Lack of Fit [ Bayes Plot (V] Plot Studentized Residuals
[] Show All Confidence Intervals [ ] Pareto Plot [v] Plot Residual by Normal Quantiles
[ AICe Factor Profiling (7] Press
Estimates (V] Profiles [_] Durbin Watson Test
[_] Show Prediction Expression [_] Cube Plots
|| Sorted Estimates [ ] Box Cox Y Transformation .
[ | Expanded Estimates [_] Surface Profiler
[ ] Indicator Parameterization Estimates
] Sequential Tests In the last column on the
7 Cuiskoies Vot right (not shown), select
[] Multiple Comparisons Effect Summary.

Notes




Handling categorical X variables in the model

|
2
I l

"Indicator” or "dummy"”
variables are used to
represent categorical

variables in regression.

Indicator variable
representing the

effect of Gender
in the equation

4 = Response Height
4 Regression Plot
| ine of Fit for Gender{F)
70 : ~ Line of Fit for Gender[M)
. :///
65 . 3~
% <
£ //)?
> i e
x 60 - ’/:/
55
50
= P S R < Ve | M oy
Age
 Residual by Predicted Plot
> Summary of Fit
4 Analysis of Variance
Sum of
Source DF Squares MeanSquare  F Ratio
Model 2 317.2595%6 156630 15.25%2
Error 37 384.684044 103% Prob>F
C Total 39 701.90000
4 Parameter Estimates
Term Estimate StdError tRatlo Probo |t|
“ Intercept 39418521 4,045343 1.97
N = 16466542 0352418  4.67
T GenderF]) -1.214858 0.516245 2.3 o4

Notes




Numeric coding for two-level categorical X E

In JMP, two-level categorical factors are coded +1 and -1

et = +1 1if Gender 1s F
SREElE] =90 1 Gender i M

Height = b,+ b,Age + b,Gender[F]

b,*+ b, +b,Age if Gender is F
b,— b, + b,Age if Gender is M

This results in one equation for Females and one equation for Males,
with equal slopes (b,) and different intercepts (b, + b, and b, — b,).

An additional indicator variable is added for each additional level of a
categorical variable.

Notes




Constructing the model equation

4 Regression Plot
~= Line of Fit for Gender{F]
70 ~ Line of Fit for Gender{M)
65 Height =
£
4 - N—— .
£ 60 3821 +165Age if Gender=F
" 40.63+165 Age 1f Gender=M
3
50
3 8 7 3 ¥ oW 5 =
Age - R
* Residual by Predicted Plot Height = 39.42 +1.65 Age — 1.21 Gender|F|
U Summary of Fit
4 Analysis of Variance
of
Source DF es MeanSquare  F Ratio
Mode! 2 72595 158630 15.2592
Emror <) Gomimpcescon 10.396 | Prob> F If you want to verify the equation:
ey -39/ 79190000 W Response Y Estimates
< Parameter — Show Prediction Expression
Term td Error  t Ratio Prob> jt|
Intercept| 30416521 podsus 797
Age 16466542 352418  4.67
Gender[FA -1214868 J0 516246  -2.35




The need for interaction effects

4 Regression Plot
w Line of Fit for Gender{F]
70 ¢ ~ Line of Fit for Gender{M)
RS - .
A * With this model, the growth curves
3 are parallel
» * This is an assumption of the model,
& not a result of the analysis (no
= & 4 '~’\ge‘—“~ = = =2 interaction terms were included in
Fit Model
> Residual by Predicted Plot )
> Summary of Fit
4 Analysis of Variance * How do we test for parallel curves?
Sum of
Source DF Squares Mean Square  F Ratio
Model 2 317.25956 158630 152592
Error 37 38464048 10396 Prob> F
C Total 39 701.90000
< Parameter Estimates
Term Estimate Std Error tRatio Prob> |t}
Intercept 32416521 4945343 797
Age 16466542 0352418 467
Gender(F] -1214858 0516246 -2.35

Notes




Interaction effects (cont'd)

—

72

Height = b, +b,Age+b,Gender|F]

This product term allows different slopes for M and F

+b,Age * Gender|F]

Notes




Adding an interaction effect

4 = Model Specification

sefect Colunns Pick Role Variables Personality: Standard Least Squares w

Name A Height Emphasis: |Mnima Report v

(_ 1. Highlight »
e Construct Model Effects
Add Age
— |2 g
(_2-Click Age" Gender

< -
Nest o o
( ~ 3. Interactive effect \—""'-)
Degree ‘"\\__j(icfmimf{el__,/’"
Altnbutes =
Transform =
[(INo Intercept

Notes




Non-parallel growth curves

4 Regression Plot
~ Line of Fit for Gender{F]
70 = Line of Fit for Geﬁdedpvﬂ
The result is one model equation
65 for Females and one for Males,
£ with different slopes and intercepts
£ 60
: 4662 + 104Age if Gender=F
55 Height = P
3230 + 224Age 1if Gender=M
S0
9 &% .8 Q& By B3
Age //

Height = 39.46+1.64 Age — 1.23Gendel F|- 0.60Gended F]* (Age —13.98)

> Analysis of Variance

4 Parameter Estimates To venfy the equation:
Term io Prob>|t| WResponse Y
Ftarcept 8.20 —» Estimates
Age 4.77 — Show Prediction Expression
Gender{F) -244 0.0196°
Gender(Fi*(Aqe-13.975\_-0. -1.75  0.0883

Notes




Testing the interaction effect

|4 + Response Height
© Actual by Predicted Plot
” Regression Plot ~EeEa
The p-value for Gender*Age
| mdicates some evidence that
Source LogWorth , Palue growth curves for girls and
Age 4518 [0 ‘ 0.00003 ' S o
S 1708 IO l 0.0195 boys have different slopes
Age*Gender 1.054 I 0.08832
Bemove Add Ed | FOR
" Residual by Predicted Plot
> Studentized Residuals
> Summary of Fit * From now on we will use Effect
| > Analysis of Variance Summaiy to find P-values. It gives
| 4 Parameter Estimates the same mformation and allows
Term Estimate Std Error t Ratio Probs> |t] model modification.
Intercept 30457057 4812681 820
| GenderF] 122754 0502444 2.4
| Age 1.6360307 0343014 477
(Age-13.975)"Genderl) -0.600896 0.343014 -1.75 [(0.0683
Summary of Fit without Interaction Summary of Fit with Interaction
RSquare 0.452001 v Adjusted R? went up RSquare 0.495046
RSquare Adj 0.42238 + RMSE RSquare Adj 0.452967
RootMsaan Squara Error 3.224234 wert down ReotMean Square Error 3.137708

Notes




Residuals Review

I ~
e
[0 i

Predicted value

.y

A

[ Predicted Y = by, + b X

L]
A

Residual (+) !

Predicted ke e—ssesissemesnmnsss

Notes




Notes

A fitted model, the equation generated during regression, gives the predicted mean
value of the response variable as a function of the predictor vanables. These predicted
mean values are also called predicted values, or just predicted for short. The residual
value is the data (observation) value minus the predicted value. Residual values are
called residuals for short.

These terms are easiest to visualize in the simple linear model shown above. A
predicted value 1s the fitted line evaluated at some X value. A residual 1s the difference
between a measured (observed) Y value and the predicted value at the corresponding X.

Residuals contamn information about the magnitude and direction of vanability i the

data relative to the fitted model.

* An unusually large residual might signal a measurement error, data entry error or
some other type of outlier.

+ A systematic trend or pattern in the residuals might signal an inadequacy in the fitted
model.

Notes




Residuals Review: Same thing for any number of X's

[ Predicted Y = b, + b;X; + b,X, ]

Predicted value .

Notes




Same thing (cont'd)

Plot of residuals by predicted for any number of Xs

40 —
| ¢ [ ]
30 — .
| .
20 il .
L
10 i - "
®
L)
3 0
? 10 — . ¢
= > .
| .
-30 —
| .
40
| T T | | T
60 70 80 90 100 110
Lower lefi-hand  Predicted Y values uUpper right-hand
quadrant of the quadrant of the
(X1, X2) plane (X1, X2) plane

Notes




Checking model adequacy

Residual Normal Quantile Plot

Jrenes
3 sa®
=2
QY 0
a U “'-f‘-
&
o«
&
(-2 . il
1] .
b o nt
5
-
-
-10
o~ W o N MY N O~ ® o0
Ogo c oo GCcoc o O

Normal Quantile

095

098

We can see points on the hyperbolic bands here, but there 1s not an obvious
curve through the data. Given the small sample size, this 1s not too conceming.

Notes




Checking model adequacy (cont'd)

81 |.

.|

Residual by Predicted Plot

5 -
2 -
5= - - L ™
E . .
é 0 s L e e
. L] L] L]
B . « s * » .
& =9
z .
L]
=10
50 53 60 65 70

Height Fredicted

In this plot, we can see that the vanance mn the residuals 1s decreasing as
height increases. This indicates the need for a transformation. We will see how
to do this a little later in the course.

Notes




Checking model adequacy (cont'd)

E

Studentized Residual
i. t,lu r'._s :n 5 = P L e
..

.

L ]
[}
.
®
-
-
'Y
.
-
.
-
L}
-

0 5 10 15 20 25 30 35 40
Row Number

There are no obvious pattemns in residuals in run order, and they scatter about zero.
There 1s no concern here.

(Pomnts outside the red limits are considered outliers, and should be investigated.
Pomts outside the green limits but inside the red limits are possibly outliers, but
with less certainty.)

Notes




Variance Inflation Factor (VIF)

When historical or observational data is used to generate a regression
model, an additional test is needed:

« The variance inflation factor (VIF) must be checked

« The VIF indicates whether the regressors (i.e. Xs or predictors) are
correlated with each other
» VIF = 1: regressor 1s independent of all other regressors
- 12> VIF = 5: regressor 1s moderately correlated to other regressors

» VIF > 5: regressor is highly correlated with other regressors

« VIFs in the final model need to be less than 5

When X variables are correlated (high VIFs), the analysis makes statistical
determinations based on the noise between the correlated variables. This
will often result in high R? values but insignificant p values.

VIFs are often lowered when insignificant terms are removed from the
model. and terms should be removed one at a time. The first term removed
should be the one with the highest p value unless theory implies removing a
different one.

High VIFs are not an issue in designed experiments. as the designs prevent
high correlation between terms/regressors

Notes




VIFs (cont'd)

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| VIF
Intercept 39.457057 4.812681 8.20 ;
Gender|[F] -1,.227546 0502444 -244 0.0196" 1.0154192
Age 1.6360307 0.343014 477 - 1.0155259

(Age-13.975)"Gender[F] -0.600896 0.343014 -1.75 0.0883 1.0004648

The variance inflation factors for all terms in the model are below 5.
There 1s no concerning level of correlation between model terms.

To display the VIFs, right click in the Parameter Estimates section, click
Columns, then VIE.

Notes




Predicted values and associated uncertainty

Prediction Profiler

R

701 :
£61.11892 651 o ;
L 62635 ‘ =
551
50-‘] T T 1 | IR S . T T
o ReRER =« =
14 F
Age Gender

Predicted avg. height in the population of 14 year old girls

61.12 ;

95% confidence interval for avg. height of 14 year old girls

[59.60. 62.64]
61.12 +1.52

Notes




Notes

BE

The model without interaction gave 61.25 = 1 55 (slightly larger margin of error).

Notes




Steps in Multiple Regression (backward elimination method)

Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

Check model adequacy by reviewing the residuals plots:
» Residual Normal Quantile Plot
~ Residual by Predicted Plot

» Studentized Residuals (i run order)
Transform the data and resolve other issues, if nceded.
Verify all VIFs < 5. Address the issue 1f any are over 5.

Remove insignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if'a
higher order term of that variable remains in the model).

Use Adjusted R? to determine the amount of variation in Y that
1s explained by the model.

o =
ﬂ

Notes




Notes

B8

Your instructor will go through Exercise 5.4 as an example.

Notes




Exercise 5.1 A

a) In the table below, record the Adjusted R? and RMSE from the analysis of Heighr in
this section. Also, record the P-values from Effects Tests. Run the same analysis for
Weight and record the corresponding results.

P-values
Response Adj. R? RMSE | Age | Gender | Age*Gender
Height
Weight

b) Which vanable (Height or Weight) has the greater proportion of variation explained
by Age and Gender?

b) Explain why it wouldn’t make sense to compare the two models n terms of RMSE.

Notes




Exercise 5.1 (contd) 0

d) Both dge and Gender were statistically significant for predicting Height. Is this true
for Weighr?

e) For Height we found evidence that the growth curves for girls and boys have
different slopes. Is this true for Weight as well? Give the P-value that 1s relevant to
this question and explain what it means.

[) Give the predicted average Weight in the population of 15-year-old boys. Give a
95% confidence interval for this average.

g) Save your scripts, close and save the data table.

Notes




Exercise 5.2

Data sets \ lead time 2.

a) Fit a model for Lead time including the terms
Process Step, Operator, and their interactive
effect. Be sure you have the correct modeling
type for Operator. (1f you got the upper right
profiler, the modeling type for Operator is not
correct. The lower right profiler 1s correct.)

b) Note anything concerning in the residuals plots.
¢) Remove terms under Effect Summary with P-

values exceeding 0.15 (Remove button). Which
terms are left? Any issues with VIFs?

Prediction Profiler

225

1 175
{1834653 15
19.76447] 125

10

Lead time

Prediction Profiler

(1872054 15
2127948 125

Lead time

d) Based on the profiler, which factor has the larger effect on
lead time (steeper slope)? Does this correlate with the P-

values? Please explain.

e) Save your script, close and save the data table.

Assernbily

Frocess

ATE

Cperstor

Operator

Notes




Exercise 5.3 ﬂ

Data sets \ number and size of defects.jmp.

a) Fita model for Max size including the terms Welder, # Defects, their mteractive
effect. and the quadratic effect for # Defects (cross 1t with 1tself). This 1s the
Response Surface Model (RSM) for one categorical factor and one continuous
factor.

b) Do you see anything concerning in the residuals plots?

¢) Using the Effect Summary, remove terms with P-values exceeding 0.15 (use the
Remove button). Which terms are left in the model? Do all remaining terms have
VIFs < 5?

d) Based on the profiler, which factor has the larger effect on Max size? Does this
correlate with the P-values? Please explain.

e) Save your script, close and save the data table.

Notes




Exercise 5.4 [Instructor to demonstrate]

In this example you will analyze data from an optimization experiment concerning the
removal of excess metal from castings by belt grinding.

The belt supplier had been recommending that belts be discarded when they are “50%
used up.” This rule was based on tests conducted by the supplier to define the usage
point at which the total of labor and belt costs will be mimimized. One of the grinders
thought the supplier’s rule caused grinders to discard belts too soon. Aside from being
suspicious that the supplier just wanted to sell more belts, he argued that the supplier’s
tests did not take into account the time lost to belt changes.

This gnnder developed a new standard under which belts would be discarded only
after they were “75% used up.” He wanted to do a comparative study to show that his
method was cheaper overall. After he explains the study with his fellow grinders, 3
additional factors are added to the experiment.

Each casting in the experiment was weighed before and after the gnnding operation. A
technician kept track of how many belts were used and how long it took the grinder to
complete ecach casting. From this information the total cost per umit of metal removed
was calculated for each casting.

Data seis \ belt grinding.

Notes




Exercise 5.4 (contd) [Instructor to demonstrate]

* Y variable: cost per unit of metal removed

* Xvanables: > Contact wheel land-groove ratio (LGR): Low or High
» Contact wheel material (MATL): Steel or Rubber
» Belt usage limit (USAGE): "50%" or “75%"
» Belf grit size (GRIT): 30 or 50

* Run the Fit Model script provided in the left panel, by clicking on the green
tnangle. This is the response surface model for 4 categorical X variables.

* Check the residuals plots. Any problems?

* Using the Effect Summary, remove insignificant terms not needed to maintain model
hierarchy. starting with the group of terms with P > 0.20, then one at a time. Which
terms are left in the model?

* Use the Prediction Profiler to find the mimimum cost factor settings.

» What do you expect the mean and standard deviation of Cosr to be after
implementing the optimal factor settings?

* Save your script, close and save the data table.

Notes




Exercise 5.5

In this example you will analyze data from an optimization experiment concerning the
bond strength of potato chip bags.

Chips ‘R' Us was receiving customer complaints about stale chips, especially from
customers on airplanes. They traced the problem to the bag sealing process. The
current process mnvolved a temperature of 150°C, a pressure of 100 psi and a dwell
time of 1.1 secs. The current average bond strength was about 85 psi.

Process Engineer Chip Kettle ran an experniment to increase the bond strength.
Production Manager Justin Thyme reminded Chip that he would very much hke to
avold an increase in the dwell time.

Justin 1s able to free up a bag sealer for only so much time each shift. Chip realizes he
will need two shifts to complete the experiment. He decides to include Shiff as an
additional vanable in the analysis just in case there 1s an operator and/or equipment
effect.

Data sets \ heat sealing 1.

Notes




Exercise 5.5 (cont'd)

2]

Y vanable: bond strength

X vanables and feasible ranges: . Temperature (TEMP): 120 to 180
~ Pressure (PRESS): 50 to 150
~ Dwell time (DWELL): 0.2 10 2.0
- Shift: 1 or 2

Run the Fir Model script provided in the left panel. This is the response surface
model (RSM) for 3 continuous X’s. Is anything concerming n the residuals plots?

Remove from the model msignificant terms that are not needed to maimntain model
hierarchy (P > 0.15), using the Effect Summairy. Which terms are left?

Use the Prediction Profiler to maximize the average bond strength. If your solution
requires a long dwell time, manually move things around in the profiler to find
another solution with a short dwell time.

What do vou expect the mean and standard deviation of bond to be after
mmplementing the optimal factor settings?

Save your script, close and save the data table.

Notes




Exercise 5.6 _

Data sets \ outgassing process. Current (the Y vanable) 1s the electrical current
required to heat a filament to a specified temperature. Resist (one of the X vanables)
1s the electrical resistance of the filament. Machine (the other X vanable) 1dentifies
which of three processing units was used. We want to develop a model for Current as
a function of Resist and Machine.
a) Fit a response surface model for Current. (The terms will be Resist, Machine, the
interaction term Resist*Machine, and the quadratic term Resist* Resist. To get the

quadratic term. highlight Resist both under Select Columns and under Construct
Model Effects, then click Cross.)

b) Do you see anything conceming in the residuals plots?

¢) Remove any terms under Effect Summary with P value exceeding 0.15. (Use the
Remove button.) Record the RMSE.

d) Use the Predicrion Profiler to find the predicted average Ciuvenr for each
machine 1f we always use filaments with resistance 32

Notes




Exercise 5.6 (cont'd)

e) The target value for Current 1s 2. For each machine, we want to find the
resistance for which the average current 1s 2. On the Prediction Profiler red
tnangle, select Desirability Functions. It should look like this:

Prediction Profiler
f) Double click in the upper right hand . i | \
panel of the profiler. (Try toavold — 50o¢ 8 7 g
the plotted line.) You should get the o 7
dialog shown below. '
£ 0.7 3 oot O
[ Resporce Goa a | S08338 05 — G
3 _ ;’.‘ | é 0.5
Manimuze -
Cument Volues Desirabiity \ < o >4, SRARR[3IR° ::: ; £ >
High: [j] 05619 tAschine Reust Deurabiiry
Mididie 1 Qi?i { Ei ~
Low: 1324 0.06% ,ltkff A L"-
Impodance: 1 Match Target « |
'—Uo‘-.j Concel ] Hep ) Carment Vahues Deswabidity
—— ——e High ”“wﬁg V“qu'uss
2 = Middle | 2 1
g) Modify the dialog as shown to the e S|
right, then select OK. Proceed to the imporance ]
next shide. [0k ][ concet | telp |

Notes




Exercise 5.6 (cont'd) E

h) On the Prediction Profiler red | ® Factor Settings X
tnangle, select Reset Factor Grid. ‘
; ) » . Factor Machine Resist
We want to lock the factor setting ool 5
for Machine, so check the Lock Mininum Seting 2947
Factor Setting box as shown Maximum Setting [ 5537
|

Number of Plotted Points

1) The vertical line for Machine should
now be solid instead of dotted. This
will hold the machine setting in

Current
S B
I
<|
\
\[

|
\f

place during Maximize Desirability, ~—  '* |

which allows you to optimize Resist ] ~

separately for each machine. On £ o%1 I\ / A\

the Prediction Profiler red tnangle, éw)ﬁ" :35 ‘ / \\;

select Maximize Desirability. 0 R N

Proceed to the next slide. R L AL S MR
Machine Resist Desirability

Notes




Exercise 5.6 (cont'd)

1) The optimal resistance value for
Machine A 1s 51.5. Drag the sohd
vertical line across to B. then click ¢ 200
Maximize Desirability to find the M T
optimal resistance value for
Machine B. Do the same for
Machmne C.

Prediction Profiler

Clatrent
T
|
I
4
1
-~
I
\ |
|
|
III
4

0.73

Deesirabiiery

Lin: P Waier Desirability
k) What will the average current be 1if
we always use the optimal resistance
values lor each machine?

1) What will the standard deviation of current be if we always use the optimal
resistance values?

m) Save your scripts. close and save the data table.

Notes




6 Dealing with Model Adequacy Issues

101

[n this section, we will cover the most common model adequacy
issues:

*  Outliers
» Pattern in run order plot of residuals
»  Multicollinearity (VIFs over 5)

» Unequal variance and non-normal residuals

Notes




Issue: Outliers

Outliers can easily be seen on the Residual by Predicted and

Studentized Residuals (residuals by run order) plots

4 Residual by Predicted Plot
10
L]
= ¢
E
8 6
& 4
3 2 .
-
0 —ev -
- - L] e - * L] .--
10 20 30 40 50 60 70 80

Yield Predicted

Remember, healthy residuals look like random scatter about zero.

Here, it looks like there might be a suspicious data point.

102

Notes




Issue: Outliers (cont'd)

* Investigate the data point.

o Ifit turns out to be just a data entry error, we simply enter the correct
value, then all is well. Most of the time it’s not that simple.

* If you have an outlier of unknown origin:
o Run the analysis with and without the questionable data point.

o Ifyou’re lucky, the results will be pretty much the same both ways,
hence no worries. Leave the data point in.

» If excluding the outlier does make a significant difference in the
results, then you have a hard decision to make.

o The official rule is: leave the data point in unless you can identify
the cause. The idea is to throw it out only if you can demonstrate
that it does not come from the population you want to study. This is
the “pure” approach.

o This should be tempered with the following practical consideration:

you don’t want your results to be unduly influenced by one extreme
outlier, even if you can’t explain it.

Notes




Issue:

104 |

=

Pattern in run order of residuals
I» 4
E' f o . —_ ® ."I
E 012 o2 - +? mBsa -. -t - ".
E .2 - Al . : " e
0 5 0 5 20 25 30 a5 40

Remember, healthy residuals look like random scatter about zero.

There are no patterns of concern here.

Notes




Issue: Pattern in run order of residuals (cont'd)

* Runs (points in a row) of positive-negative-positive-negative
residuals indicate correlation between runs in an experiment.
o This implies that the assumption of independence has been violated.

o Randomization of an experiment protects against this! Do it every
time!

* This plot can show changes in variance over the time span of the
experiment or data collection.

o This could be due to increased skill as the experiment progresses, a
process drift, operator fatigue, tool wear, etc.

o This type of problem would show as an increase or decrease in spread
or “scatter” of the residuals across the graph.

o Ifthere is x data available to support it, one remedy is to add a factor
(time since tool change, number of hours of operator work, etc.)

o Increasing or decreasing variance can also indicate the need for a
transformation.

Notes




Issue: Multicollinearity (VIFs > 5)

Parameter Estimates * One aspect of factonal design
Term Estimate StdError t Ratio Prob> |t} VIF cxperimcn[s (often called
Intercept 4868125 0157585 3089 . 7N S ot [
LGRILow] OE16675 OASTSES 350 : DOESs) 1s that lhcy are
Materal[Rubber] 1145625 0.157583 7.7 1 orthogonal designs. This results
Usage{50%) b s A ! in the model terms being
Grit]30] 0048125 0157585 031 07670 ' W lated.
LGRILow]"Git[30]  -0.316875 0.157585 -2.01 00752 ' compietely uncorrelated.
Usagel50%)°Git|30] 0.395625 0157585 251 0023 '

* Regressors that are completely

uncorrelated with others have

Parameter Estimates VIF = 1.
Term Estimate Std Error t Ratio Prob>|t] VIF
Intercept 14.044044 0291958 48N T - -
Process SteplAssembly] 48792135 0298829 1633 rosrang  © High ?0"?1“"0’1 15 only_ a
Operator{1) 06713483 0206356  2.26 45" 1.0478749 potential 1ssue when using

historical or observational data
in regression analysis.
Remember, VIF < 5 1s not conceming.

Notes




Issue: Multicollinearity (cont'd) m

Several strategies can be tried for resolving multicollinearity, but they may
not be satisfactory, especially if the model will be used for prediction.

«  Collect additional data in a way that breaks up the multicollinearity.
Historical data may contain only certain combinations of x-variables,
for example, only low levels of x; when x; 1s at a low level and only
high levels of x,; when x, 1s at a high level

o Note: 1t may not be feasible or possible to collect this additional data.

o In some cases, the factors (x’s) are mnherently correlated, for example as
may be the case with household income and house size.

+ Respecifying the model, can help.
o If x; and x, are nearly linearly dependent, use one term, x = x; + X,
which preserves the information content of the onginal vanables

Try removing the term with the highest p-value, and look at that model.
Then, replace it and remove the term with the highest VIF. See which
gives the better model.

« Use ridge or principal-component regression (way beyond the scope of
this course)

Notes




Issue: Unequal variance and non-normal residuals Mai

Residual by Predicted Plot

! .

3 L ]

:
%4 . *
2 0 " -
g -1
e - -
- .

-3 .

-4 @

-5

0 10 20 30 40 50

Remember, the variation in the residuals should be fairly constant across
the Residual by Predicted Plot. There 1s no issue here.

Notes
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Issue: Unequal variance and non-normal residuals (cont'd) 109
4 Residual by Predicted Plot T
40
R,
A L
-40 ) &
20 40 60 80

Actual Hrs Predicted

In this plot, we can see an issue.

gy proportional to mean Y — “sideways V*

Notes




Basic model assumption: constant variance

r.rf- 1s constant (does not depend on the X’s)

Notes




Most common violation of the basic assumption L1111 :

gy is proportional to mean Y

Notes




Issue: Unequal variance and non-normal residuals (cont'd)

Max size Predicted

Residual by Predicted Plot
g o
k- -
8 10 e
% S ., - o:
o o o
= 0 .6‘. . . o’
‘; 5 * . .o,
° .
-10
0 5 0 15
Residual Normal Quantile Plot
1S
10
=
3
-
g Ok
L L
b1
5 0 /
=
vt
=
...on
. -
.10
~ W - R BT - S
- e 'a ©C ocoogo o

Normal Quantile

08

30

Often, when there is
an issue with
constant variance,
there 1s also the
issue of non-normal
residuals.

This can be seen in
these two plots

Fortunately, they
usually both resolve
with the same
treatment—a
transformation.

Notes




Notes

The standard assumption in all comparison and correlation analyses involving a
quantitative Y variable 1is that the noise (unexplained/error/residual) vanation follows a
Normal distribution with mean 0 and a standard deviation that does not depend on the
X variables.

This simple model has served us well. However, when Normality or constant G is
grossly violated, something must be done. The most common remedy 1s to use log(Y)
or sqrt('Y') as the dependent variable mstead of Y. This 1s a transformation. This “trick
of the trade™ 1s simple and, in most cases, effective.

Notes




Transforming the Y variable

114

We want to see
how accurately
we can estimate
the time it takes
to do certain
tasks

Analyze

¥
Fit Model

Data sets \ actual vs estimated

: ® Fit Model
¥ " Model Specification
Select Columns Pick Role Var g
i Task ¥ 4 Actual Hrs
ikFesource i
ikFinich Date
AEstimated Hrs :
W
dactual Hrs oot

Freq

7

By

Construct Model Effects
[ aod Estmated o)

Transform =
(] Ne Intercept

Personality. Standard Least Squares v
Emphasis | Minimal Report hed

| Hep | [Runmogel |

I Recal
i Remove

Notes




Transforming Y (cont'd)

Response Actual Hrs

Residual by Predicted Plot

Regression Plot 80
100
50 80+
80 ¢
o 707 40
I 60 - J
T 5o - % 20
T 40- 3 @ Jdaia ;
< 30 S -
20 ll :
101 it S : =
I S S 0 =40
— N o 9 & © ~ 0o O
Estimated Hrs 80 - T T T T
Summary of Fit 0 10 20 30 40 S0 80
Actual Hrs Predicted
RSquare 0307347
RSquare Adj 0296178
Root Mean Square Error 16.95281 = o o
Mean of Responsa 12.23828 Y =0835+0632X Variation
Observations (or Sum Wats) 64 ——
1 ‘eases
Parameter Estimates
as average
Term Estimate Std Error t Ratio detial Hg,
Intercept 0.8352064 - .‘ Lt
Estimatec Hrs 21871 mcreases

Notes




Transforming Y (cont'd)

rE ® Fit Model

Select Columns
hTask
hResource
W Finish Date
A-shmated Hrs
Arctual Hrs

¥ “ Model Specification
Pick Role Variables Personality Standard Least Souares v

Oy proportional to mean Y

Wedt

Crrea |
| By 1

Construct Mode! Effects

|ﬁ Add  ||Estimated Hrs

Transtorm ~
{1 No intercept

Response Actual Hrs
> Model Dialog

~e Click on Actual Hrs

L+ Click on Transform
red triangle

» Select Log

* Run the model

Notes




Effects of log transformation

Response Log(Actual Hrs) Residual by Predicted Plot
Regression Plot
100 2 “ S .
80+ . i} ) .
80 O 14 I .
0 3 1 2
w 70 g - 51 :
¥ 60 T 2 .
o e < L] .
B 50 S o ¢
: 2 : SE
304 T 2_
204 . N .
A0 e :
0 izh : -1 7 7 : '3_
L e ———rrrey
-8 O 9o » ~ D & 2 3 45678 20 NN T
Estmated Hrs 1 10 100
- Actual Hrs Predicted
Summary of Fit
RSquare 0233276
RSquare Agy U 22091
Root Mean Square Error 1217933
Mean of Response 1576584
Qbservalions (or Sum Wgts) 64

Parameter Estimates

Term Estimate Std Error tRatio Prob>)t
intercent TO082207) 02186411 412 00001"
Estmaed Hrs 0 0376085 | 000E6S9 434 <0001 . - >

- Nonlinear model for Y

Loa(Y)=0.898 +0.038X Y = expl0.898 + 0.038X) = ¥ (&° J* = 2.45(1.04)"

Notes




Note on JMP notation, and impacts of the Log transformation

JMPs notation regarding Logs requires some clarification:

* Although JMP expresses the logarithm as “Log™, 1t is actually base e, or the
natural log, which 1s usually written as Ln. Itis not a base 10 loganthm.

* However. the plots that use a log transformed X-axis display use base 10 log
for the X-axis. This does not change the interpretation of the chart.

The impact of transformation on R? and p-values:

* In the previous example, a transformation was required because the
residuals variance wasn’t constant over the range of the predicted values.

» After the transformation. the R? value went down. This can lead to a belief
that the non-transformed model was “better”. However,

* Residuals showing this condition (heteroscedasticity) can cause p-values
and R? to be over or under stated.

*  When this condition occurs, the problem must be corrected. The resulting
model, even if R? is lower or p-values are higher, is the more “real” model.

Notes




Steps in Multiple Regression (backward elimination method)

l

I.  Run Analyze > Fit Model in JMP to investigate the relationship
between y and x’s. Use the Response Surface Model (all factors,
all interactions, quadratic terms for continuous variables/factors)

— 2. Check model adequacy by reviewing the residuals plots:
» Residual Normal Quantile Plot
~ Residual by Predicted Plot

» Studentized Residuals (i run order)

—— 3. Transform the data and resolve other issues, if nceded.

4. Verify all VIFs < 5. Address the issue 1f any are over 5.

5. Remove insignificant terms from the model, that are not needed
to maintain model hierarchy (main effects must be included if'a

higher order term of that variable remains in the model).

6. Use Adjusted R? to determine the amount of variation in Y that

1s explained by the model.

Notes




Exercise 6.1

Data sets \ number and size of defects.jmp

a) Fit a model for Max size including the terms
Welder, # Defects. their mteractive effect, and
the quadratic effect for # Defects (response
surface model for one continuous factor and
one categorical factor). You should see a
distinct sitdeways V. Do you see 1ssues in any
other residuals plots?

b) Select Model Dialog on the Response red
triangle menu, apply a Log transformation to
Max size, re-run the model. The sideways V
1sn’t completely gone, but close enough. Did
other residuals plots improve?

¢) Use Effect Summary to remove terms with P >
0.15.

Residual by Predicted Plot
15 =
{ .
3 10 *
:S.' .. ® -
2 ) 3 ar *
2 "o; . . . .
. S . '.
o .
-10
75 10 S
Mar size Precicted
Residual by Predicted Plot
LS 7
.
) -
—§ 5 - = z o.. .
2 <& . .2
= 05 ™ <
‘—-;v ~ e . .
3 -10 .

/ Max tize Preducted

Remember to change the x-
axis on the plot, as well.

Notes




Exercise 6.1 (cont'd)

d) Which terms are left m the
model?

Regression Plot

e) Now we have a log-linear simple
regression.

Max size

When you use a Log or square

root transformation on Y, it is

helpful to use same scale for
the ¥ axes of the plots

) Save your script. close and save the data table.

- . -
. * L
- *
., -
-
o * oy "
II‘ -
-
l. - -
-
-
-
= = = = =
— = ey - ™
# Defects

Notes




Exercise 6.2 Ez]

An aerospace manufacturer uses integral castings as structural components of jet
engines. Integral castings give design engineers more flexibility and simphify the
assembly process. Defect-free castings are known to have long cycle fatigue life, but
defects often anse in the casting process and must be weld repaired. The engine
manufacturer’s metallurgical team has proposed a fimishing process of the following
type to ensure adequate cycle fatigue life of weld-repaired castings:

Heat Treat [—| Polish |—| Peen

The team wants to optimize the first two steps in this process to achieve maximum
cycle fatigue life. Also, though other applications of similar processes have included
peening, they would like to see if it can be omitted to reduce processing time and cost.

Due to project time constraints and limited availability of test fixtures, the team can
perform at most 12 cycle fatigue tests for their experiment.

Notes




Exercise 6.2 (cont'd)

* Y vanable: Cycles (to failure)

* Xvariables: . Heat treat: Anneal or Solution/age
~ Polish: Chemical or Mechanical
- Peen: Yes or No

* Data sets \ weldment fatigue jmp.
* Run the Model senpt provided in the left panel, run the model.

* Notice the extreme sideways V on the Residual by Predicted Plot. Are there issues in
any of the other residuals plots? If ves, what are they?

* Rerun the model using a Log transformation on Cycles. Did residuals plots improve?

* Remove msignificant terms from the model (P > 0.15) that are not needed to
maintain model heirarchy.

* Use the Prediction Profiler to maximize the cvcle fatigue life.

Notes




Exercise 6.3

—
i124‘|

A Black Belt wants to minimize the /eak rate n plastic contamers ultrasonically

welded together. The X varniables and ranges are:

~ Force: 70 to 150

N

~ Energy: 275 to 325

» Amplitude: 70 to 90
* Data sets \ ultrasonic welding 1.jmp.
* Run the Model script provided in the left panel.

* What problems do you see in the residuals plots?

]

Notes
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Exercise 6.3 (cont'd) 125

Rerun the model using the Log transformation on /eak rate. (Be sure to change the
x-scale to Log on the Residual by Predicted Plot.)

* Rerun the model using the Sqrt transformation on leak rare. (Be sure to change the
x-scale to Sqrt on the Residual by Predicted Plot.)

*  Which set of residuals plots looks better? Use whichever transformation looks like
it worked better, going forward.

* Remove insignificant term(s) from the model (P > 0.15), while maintaining model
hierarchy.

» Use the Prediction Profiler to minimize the leak rate.

Notes




7 Simple Regression with Pass/Fail Y

=127r

|

When the response variable, Y, is binary (pass/fail, yes/no,
success/failure, etc.), the regression model used for a
continuous Y-variable canneot be used.

* A logistic response function must be used

* The resulting analysis yields an equation that allows us to calculate
event probability:

Pevent = [(X1,X3,...,Xy)

» This equation is used to answer questions such as:
o What is the probability of being in spec (at various levels of x)?
o What is the probability of getting the contract?
o What is the probability of a defect?

Notes




Probability Function for Pass/Fail Y

This probability function, the logistic response function, has a
much different behavior than a linear regression function:

Linear Regression

Event Probability

« The y values of a linear regression » The logistic response function is
can have any values an S-shaped function that can only
have values between 0 and 1

To be useful in prediction, the logistic response function must be
transformed into an unbounded linear function

Notes




Transforming the logistic response function (cont'd)

The logit transformation is used to linearize the model:

P
logit(Pevent) - ]n (ﬂ_) — bo + b1x1+ e +bnx7l

L= Pevent
Pepent = eb0+b1x1+ wtbpXn
1=Peyent
1

Pevent = 1 4+ e~ (bo+b1X1+ ..+bnXxp)

*  This 1s the form of the final equation in the regression analysis

The maximum likelihood method 1s used to estimate the parameters in this
probability equation . . . JMP does this work for us

We can use this equation (model) to predict the probability of an event for
various levels of x4, X2,...,X,

Notes




Using JMP for Simple Regression with Pass/Fail Y

0

=y
2]

|

We will see how to use JMP do the regression analysis when we
have:

a) Raw data — each row represents one part or transaction

b) Tabulated data — each row represents multiple parts or
transactions

Notes




Raw data

mcmo
<240 - |Targetspeed | Result | Data sets \ target practice
1 200 | Hit
2 205 | Hit )
3 210 He Fit Model
4 215 Hit i
- 5|  2oH |
B 225 | Miss Set up as shown
7 200 | Hit
8 235 Hit e e
() 240 | Miss = —
10 %5(Ht | = Mol Spociication
11 250 Hit { * 2 Columns
12 285 Ht | oriet pind
13 20/He | =
14 285 | Miss
15| 270|Miss |
16 275 | Ht
17 280 | Miss
18 285 Miss
19 280 Miss
20 285 Miss |
_ooaf  300He |
2 305 miss |
23 310 Miss
2 315 | Miss
25 320 | Miss

Notes




Analysis output

Logistic Plot

1,00

Mige

3 00
s e
Probability
of a hit
0.25 Hit
0.00 T g T
%030 HaRw Rl Ry » P-value for correlation
Target speed S .«
. (this is the one that
Parameter Estimates tters)
Term Estimate Std Error  ChiSquare Prob> ChiSq IASCLS
intercept  12.5297022 4.7931154 6.83 .
Target speed -0.0476836 0.0181939 6.87 « ’ery strong evidence of
or log odds of Hit/Miss . .
a negative correlation
| Effect Likelihood Ratio Tests |
= between the speed of the
Source Nparm DF ChiSquare Prob>ChiSq target and the
. 1 1 11.1939322 T " - 02 \

LRI s |(0oF] probability of hitting it

Notes




The prediction profiler

Prediction Profiler

Result

kit ps3

0.7

05

Desratulty
o>
n

o

180
200
220
240
260
280

300
340

320

Target
speed

025

03

Desirability

.
5

* Red Triangle —» Profiler — Prediction Profiler

™

-

Result

Desirability
o
w
wi
N
w

Prediction Profiler

180
200

220

260

240

280

Target
speed

300

320

340

Desirability

red triangle — Optimization and Desirability —
Desirability Functions

Double-click in the blank area. enter | for Hit
and 0 for Miss — OK — OK — next shde

Notes




Prediction profiler (cont'd)

Prediction Profiler red triangle — Optimization and Desirability —
Maximize Desirability

Prediction Profiler A
e * The target speed of 200 produces
.. a . . .y ~
SN the maximum hit probability of
= \ 0.952
oK 352 \ o
& \\‘..
N * The corresponding miss probability
E e is 0.048
07+ | "\
209522% 05 * The target speed of 320 produces
8 03 R the minimum hit probability of
2 0.061
RRRIBRB8F° R g9 2 -
RPN NN S 9o

* The corresponding miss probability
speed Desirability iS 0939

Notes




Exercise 7.1

=

135

Open Data sets \ guotation process.jmp.

a) Fit PO by TAT. Which P-value in the output is the most reliable?

b) Does the PO hit rate increase or decrease as the TAT increases?

c) Find the PO It rates for 3 day and 15 day umarounds.

d) Save your script, close and save the data table.

Notes




Tabulated data

Data sets \ cracking vs dwell time

B Source

! = Columns (3/0)

A Mins at temp
Cracked

A Mot cracked

| = Rows
All rows
Selected
Excluded
Hidden

[Z] cracking vs dwell time - JMP

file Edit Jables Rows Cols DOE Analyze Graph Tools View Window Help

|| = cracking vs dwe.. P

- Mins at temp Cracked Not cracked

1 2 0 100

2 - 1 g9

3 6 2 o8

4 B 3 97

5 10 7 a3

6 2 9 91

9 7 14 12 BB

o B 16 13 87

0 9 18 15 85
0

1) Tables — Stack

2) Use Cracked and Not cracked as the stack columns

3) Change Label to Result, change Data to Freq — OK

4) Save as cracking vs dwell time stacked

Notes




Stacked format

137

r[] cracking vs dwell time - stacked - JMP
| Eile Edit Tables Rows Cols DOE Analyze Graph Tgols Yiew Window
l v cracking vs dw... P| ¢ =
|p Source - Mins at temp  Result Freq
‘ 1 2 Cracked 0
2 2 Not cracked 100
3 4 Cracked 1
4 4 Not cracked ag
l w Columns (3/0) 3 ° Cracked 2
IAMins at temp S 6 Nc’.c—ra(ked 98
i Result 8 Cracked 3
1‘ Freq 8 8 Not cracked 97
\ 9 10 Cracked 7
10 10 Not cracked a3
11 12 Cracked 9
12 12 Notcracked 91
' 13 14 Cracked 12
| = Rows 14 14 Not cracked 88
| All rows 18 15 16 Cracked 13
|Selected 0 16 16 Not cracked 87
| Excluded 0 17 18 Cracked 15
";g:‘;; g 18 18 Not cracked 8s

Analyze

4
Fit Model

v

Sece next slide

L

Set up as shown

Notes




Fit Model
L

p= Fit Model - JMP

i1~ Model Specification
Select Columns Pick Role Vanables

¥ 13 Columns =

4 Mins at temp

Personality: | Nominal Logistic -

i Result Target Level: (Cracked -
4 Freg We‘BT‘ , — ""'{'”‘;; =
‘ ‘
In this data set, instead | | Fre@ i
of a row for each By : ‘ HoR Borg ope)
observation, the results | Remove |
are tabulated—there 1s | Construct Model Effects
a count of outcomes [ Add
for each level of the X | =
: Cross
variable. -
Nest
Using the Freq values Macros v |
tells JMP how many Degree | 2]
times to count each Attributes (@
TOW. Transform (=

No Intercept

Notes




Analysis output ?_::]

Effect Likelihood Ratio Tests

L-R
Source Nparm DF ChiSquare Prob>ChiS
Mins at temp 1 1 415372498 d

Very strong evidence of positive
correlation between dwell time

Prediction Profiler and probability of cracking
_g\lo:cracked D.951 Dwell time | Probability |
o : (mins) of cracking
5 0.020
10 0.049
o B 8 @ 8 15 0.114
Mins
at temp

Notes




8 Multiple Regression with Pass/Fail Y

* Project to reduce clogged nozzles
in print heads

» Comparison of four types of
adhesive and two print head
designs

* Each lot = 60 print cartridges

« “Pass™ = no customer detectable
print defects

* Data sets \ clogging pass-fail
* Run the Modei scnipt. If necessary,

bring the Model Specification to
the front.

[+ S0Cos ~ |
- 420 ~ Lot Adheswve | Pnnt head | Result FI"E‘I:I
1 1144 D2 Fail ]
2|  vm  m [Pass | 8]
= 3 2/M D1 \Fail | 1]
.| 4 1B {Pass | 58]
O ) (Fail 13
B 3)A2 D2 |Pass 47|
N 4 2 D2 @ Fal | 11
8 41A1 02 \Pass 48|
| - . '_L'l? i E_Fall 4]
10 5 A3 (D2 [Pass 56|
11 B/A4 01 |Fail 5|
12 6iAd D1 [Pass 56|
13 TIAl 02 Fal | 8]
14 71A1 D2 \Pass 52
15 8lA2 01 Fail 3]
18 BlA2 D1=  IPass 57|
SR | B | T I—| (2 ¥ ___|Fail 11
18 9iA3 b2 [Pass 58
19|  10/A2 D2 Fail 13
0| 10/A2 D2 |Pass 47! |
al nje o Fal | 1
22 111A2 (D1 |Pass 58|
| 1Al [=1] Fai 1
24 12/ A1 (=1 \Pass 50 |
25 13/a3 D1 Fal il

Notes




Example (cont'd)

|
4 = Model Specification
Select Columns
¥ S Columns
Lot
i Adhesive
A Print head
i Result
AFreg

Pick Role Vanables

Adhesive
Print head
Cro Adhesive*Print head

Macros »
Degree 2]
Attnbutes =
Transform «

No Intercept

Fersonality: | Nominal Logistic -

Target Level Pass ~ |

Switch the
larget
Level from
Failto
Pass, then
run the
model.

Notes




Example (cont'd)

Effect Summary
Source LogWorth
Adhesive*Print head 3. 721 & |
Print head 2254 I8 }
Adhesive 0.410 1}
Effect Likelihood Ratio Tests
L-R
Source Nparm  DF ChiSquare Prob>ChiSq
Adhesive 3 3 301536048 0.3893
Print head 1 1 7.68556658
Adhesive'Print head 3 3 19.7623242
Prediction Profiler
e — e S
s
?‘,Fass D.975
[+
e 5 2
Adhesive Pnn; head

PValue
0.00019
0.00557 ~
0.38926 *

*» The Adhesive factor was
insignificant, but we left it in
the model to preserve model
hicrarchy (Adhesive*Print head
is significant)

* On the Prediction Profilerred
triangle select Optimization and
Desirability — Desirability
Functions

* Sce next shide

Notes




Example (cont'd)

144

Prediction Profiler
PPt ——— -\
T——
5 Pass D.975
[+ 4
=3 0.75
a: ),
205 05
a3 0.25
0
& R X a a3
Adhesive Print head

* Double-click in
the blank area

* Enter | for Pass
and 0 for Fail —
OK — OK

Desirability

Notes

| E——"1




Example (cont'd)

* Prediction Profiler red tniangle — Optimization and Desirability — Maximize
Desirability

* The failure rate predicted from the optimization was 0.025 or 2.5% (current
state failure rate was 20% or more)

* Best combination was D1 with Al

Prediction Profiler
—— \ q
5
gPass P975 e
[
1 SRRy g
= 0.75
5 - =
80975 03
=
a 0.25
0
- ~ ~ - — ~ o v v N -
< < < 2 o [a N o ~
(=] o
Adhesive Print head Desirability

Notes




Exercise 8.1

A Black Belt wants to mmimize the occurrence of bubbles and nipples in the urethane
coating on truck nameplates. The X variables and ranges are:

~ Badge temp: 20 to 40
~ Mixing ratio:  92.6 10 94.6

~ Curing temp: 30 to 55

* Data sets \ urethane coating pass-fail

* Run the Model script 1n the left panel. In the Model Specification, switch the Target
Level from Fail to Pass, then run the model.

* Remove insignificant terms from the Effect Summary (P> 0.15).
* Use the Prediction Profiler to find a factor combination that maximizes the yield.

* The current state yield was about 95%. What is the predicted yield for the improved
process?

Notes
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1 Designed Experiments vs “File Cabinet” Data F |

| —

All experiments are experiences, but not all experiences
are experiments. — R. A. Fisher

File cabinet data DOE
Data sets Larger, “messy” Smaller, “clean”
Data collection Routine operation Controlled conditions
Information provided Correlations Cause and effect
Interactive effects? Maybe Definitely
Time period covered Longer Shorter

Notes




L]

Ronald Fisher was an English geneticist and mathematician trying to increase crop
yields i the 1920s. There were limited numbers of plots available for field tnals,
gradients 1n the soil, varniable proximity to water sources, differing amounts of sunlight,
and long lead times. To solve these problems, Fisher developed a body of statistical
methods known as Design of Expennments (DOE).

During World War I1, Fisher’s techniques were extended and applied to military
optimization problems. After the war, they were further extended and applied to
industrial problems like improving the quality and reliability of manufactured
products. For his lifelong contributions to science and statistics, Dr Ronald Fisher
eventually became Sir Ronald Fisher.

The quote above was Fisher’s way of emphasizing the difference between
observational studies (analysis of “file cabinet™ data) and designed experiments. This
distinction 1s as important today in Six Sigma as 1t was a century ago in agriculture.
After all, both are concerning with increasing yields!

Notes




Case study: structural jet engine components

P

Typical
jet engine

Notes




Case Study: Typical structural component of jet engine ﬂ

* Back in the day: many small
pieces welded together

* Now: one piece casting

* 3 to 6 feet in diameter

» Stainless steel, nickel alloys,
titanium alloys

Notes




——
Case study (cont'd) [

Value stream: investment casting of nickel alloy structural
components

* Process boundaries: shell making through backend processing

* Experiencing “orange peel” surface condition violating
customer smoothness requirements

* 12% scrap rate (big parts — big $9%)

* Y =f(X): analyze existing production data

Notes




Investment casting process

E,

Aluminam Die

Notes




A big signal

Castings:
% with
“‘orange peel’

70—

60—

H—

Furnace the shells were baked in

Notes




Notes

The strongest correlation in the database involved one of the pre-heat furaces used to
bake the ceramic shells before transfer to the casting furmace. Furnace 2 was new and
had come online just about the same time orange peel started occurring. Almost
evervone agreed the new furnace was the problem.

The casting area manager refused to take Fumace #2 off-line. He needed all six pre-
heats to keep the casting furnace running nonstop so he could meet his production
quotas.

Process Engineer Dave (shown above) was skeptical that Fumace 2 was causing the
problem. For one thing, the other pre-heats were also producing scrap castings. Also,
he had spent the better part of the past three months evaluating and qualifying the new
furnace.

Notes




Another big signal

60

Bake 40 —
time
(hrs)

20-

Furnace the shells were baked in

Notes




P

Notes S0
| T—

Dave pointed out that the shell bake times were much longer for Fumace 2 than for the
other furmaces. There was a mimmum required bake time, but no upper limit. Dave’s
theory was that orange peel was caused by long bake times.

Why did shells stay longer in Fumace 27

It tumed out there wasn’t room to put the new furmace next to the onginal five, so 1t
had to be located further away from the casting furmace. The fork-hft operators
wouldn’t drive over there unless they had no shells ready from the closer furnaces, so
shells tended to sit in Furnace 2 for a long tume.

Notes




Autopsy

The file cabinet data suggested some plausible hypotheses

* |t could not establish the cause of the defect

* The quantity of data was
not the problem =
f = -
? l'u-"
* The data lacked the
structure required to
determine cause and
cffect T
' ?

Furnace #2 Others

Short
bake

Long
bake

Notes




]

There was lots of data in the upper right-hand and lower left-hand cells i the table
above, but virtually nothing in the other two cells. Making sure that data tables like the
one above are completely filled out is one of the basic principles of experimental
design.

Subsequently, engineers ran enough parts mn the upper left-hand comer of the table to
determine that long bakes were indeed causing the problem. An upper limit on the bake
time was developed and put i place. Shells that exceeded this limit were scrapped.
This cost the company much less than scrapping the resulting castings.

The new procedure made the fork-lift operators’ job harder, but it made the orange
peel problem go away.

Notes




The Role of DOE in Process Improvement 13

Y=11X)

* DOE is an effective way to collect data for
identifying critical x’s, in a relatively short period
of time

analysis | In a Lean Six Sigma project, data collection in the
Measure phase may have produced little or no
useful information.
* May have multiple potential improvement ideas on
Developing | the table
the future
state | * POE is an effective way to evaluate these 1deas

prior to defining the future state

Notes




Example

* Titanium castings — strong & light

* Ti develops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

* Engineers developed a list of factors
for a DOE

Notes




Example (cont'd)

M
1

15
L

Current state | Possible future
Factor Levels X variable | state solution
Shurry for shell Batch 1 vs Batch2 v
Shell thickness 14 dips vs 18 dips v
Shell bake time 6 hrs vs 48 hrs v
Shell bake temp 1950° vs 2050° v
Alloy grade Low $ vs High $ v
Alloy status New vs Revert v
Heat shield steel Mild vs SS v
2400 vs 3200 v

Cooling fan speed

Notes




2 One Factor at a Time?

» In this approach, each factor is varied with all others held constant.
This way, it is felt, we can see the “pure effect” of each factor.

 This is one way to apply the scientific method, but it is not the only
way, and not the best way!

 For any proposed one at a time experiment, there is usually a
multifactor experiment providing:

v More information
v Better results

v'Same (or possibly smaller) total sample size

* One at a time trials are useful for determining feasible ranges for
factor in a DOE

Notes




e

Example: potato chip bags %

* The current average bond strength of our potato chip bags is 86 psi

» Based on customer complaints, we need to increase the bond strength

» The most important control factors in the bag sealing operation are
temperature and dwell time (see below)

* Secondary objective: decrease the dwell time 1f possible

Factor | Currentlevel | Feasible range
120 to 180

Temperature 150°

Dwell time 1.0 secs 02to20

Notes




One-at-a-time experiment #1 19

Vary dwell time over its feasible range while holding temperature at 150

100 —|

88
Bond 86

strength

60—

0.2 1.0 1.4 2.0
Dwell time

Notes




Notes @

L
Our process engmeer Chip Kettle first studies the effect of dwell time while holding
temperature constant. He seals and tests 9 bags using dwell times ranging from 0.2 to

2.0, Chip finds he can increase the bond strength by 2 psi by increasmg the dwell ume
to 1.4.

Our production manager Justin Thyme 1s not pleased with the prospect of a 40%
increase in dwell time.

Notes




¥ 7|

One-at-a-time experiment #2 21

—

Vary temperature over its feasible range while holding dwell time at 1.0

100

Bond
strength 86

120 150 161 180

Temperature

Notes




Notes <5

Chip now studies the effect of temperature while holding dwell time constant. He seals
and tests 9 bags using temperatures ranging from 120 to 180. Chip finds he can
mcrease the bond strength by 2 psi by increasing the temperature to 161.

Chip predicts that changing the dwell time to 1.4 and the temperature to 161 will
increase the average bond strength by 4 psi1 (2 + 2). However, 1t 1s highly likely that
Justin will oppose the increase in dwell time, in which case the increase in average
bond strength will be only 2 psi.

Notes




The multi-factor approach

2049 2 ®
v" O design points (e)
v 2 bags sealed at
each point
v Total sample size:
Dwell . & - 2 ° N=18
time
02 ¢ 4 *
120 150 180
Temperature

Notes




Contour plot of predicted average bond strength

Chip's prediction of
90 psiat 161" and 1.4
secs was way of f

Dwell
time
Bond strength
exceeding 90 psi
at 180" and 0.2
secs

120 150 180

Temperature

Notes




Why one-at-a-time doesn’t work

Bond

The 3D perspective

Notes




Notes 20

L

When we experiment with all factors, but one held constant. we optimize sequentially
over one-dimensional profiles. The sequence of solutions generated by this process 1s
highly dependent on the starting point. It has very hittle chance of finding a global
optimum, and often fails to move a significant distance from the starting point.

Notes




3 DOE Terminology

Experimental unit

The outcome of a single application of the
process being studied

Sample size
The total number of experimental units
(“number of runs")

Response variable
AY variable measured or inspected on each
experimental unit

Notes




Notes H

The expermmental unit 1s often a part. lot, batch or single transaction of some kind. It
may also be a test specimen or sample of matenal. It 1s important to identify the
experimental unit—t provides the basis for counting sample size, and sample size 1s
critical in determining the statistical significance of the results.

The experimental umt 1s determined by the process on which we are expenmenting.
not the measurement plan used to evaluate the results. For example, suppose we test
100 devices for product life. Suppose we measure a degradation parameter on each

device every 10 hours until the end of the test at 100 hours. The sample s1ze for the

study 1s the number of units (100), not the number of measurements (1000).

Notes




Example

* 11 silicon wafers were subjected to vapor deposition at various temperatures,

pressures, and Argon flow rates

* The thickness of the resulting layer was measured at 8 locations on each wafer

* What 1s the sample size?

Temp

180
180
180
160
160
160
160
200
200
200
200

Press

0.3
0.3
0.3
0.4
0.4
0.2
0.2
0.4
0.2
0.2
0.4

Flow

30
30
30
10
50
50
10
10
10
50
50

Thickness

29

Notes




Example (cont'd)

* The sample size is the number of experimental units, not the total number of

measurements taken

* The response variables of interest may be statistical summaries of multiple
measurements on each umt

Temp Press
180 0.3
180 0.3
180 0.3
160 0.4
160 0.4
160 0.2
160 0.2
200 04
200 0.2
200 0.2
200 04

Flow

30
30
30
10
50
50
10
10
10
50
50

Avg. Std. dev.

Notes




DOE terminology (cont'd)

Factor

An X variable controlled in an experiment,

varied on purpose to determine its effect
on the responses

Level

A particular value or setting of a factor to be
used in the experiment

Reguirements

All levels of each factor must be logically

and physically compatible with all levels of
the other factors

Notes




!321

Notes b

Vanables used as factors in a designed experiment may or may not be controlled in the
routine process. What matters 1s that they can be controlled for the purpose of

experimentation.

Notes




DOE terminology (cont'd)

]

T33|

Examples of continuous factors

Time
Temperature
Pressure
Energy
Voltage
Resistance
Concentration

Flow

Volume
Weight
Length
Width
Density
Rate
RPM

Intensity . . .

Notes




Notes E

* A factor 1s continuous if it can be varied within some range on a scale of
measurement

» Ttis generally preferable to use 3 equally-spaced levels (low, medium, and high)
for continuous factors

* Even though only two or three levels of a continuous factor will be used in an
experiment, it is advantageous to identify it as continuous, rather than
categorical

« Even when some levels of a continuous factor would not be applied to the process
after the experiment, it 1s advantageous to still treat the factor as continuous in the
experimental design and analysis

— Example: After an experiment, we find that the optimal temperature
setting 1s 117.13°. We may choose to set the temperature to 115° or 120°.
We still treat temperature as a continuous factor in our experiment.

— Example: We know that 1f we determine that the optimal Introductory
Time Peniod for an offer 1s 3.37 months, 1t wouldn’t make sense to offer
that to our customers. We would offer them an Introductory Time Period
of 3 months. We still treat this factor as continuous 1n our experiment.

Notes




DOE terminology (cont'd)

]

[is‘

Examples of categorical factors

Method

Tool set

Material

Supplier
Operator
Color

Size

Old or New

1,2o0r3

A,B,CorD

X, YorZ

Bob, Carol. Ted or Alice
Cyan, Magenta or Yellow

Small, Medium or Large

Notes




» A factor 1s categorical 1if 1t 1s not possible to have 1t at all values on a measurement
scale

» Treating a factor as continuous mmplies that any value n the range can be used mn
the process

* If the levels used n the experiment are the only possible values, even when the
categories are described by numbers, the factor should be treated as categornical

— Example: Pizza pan sizes of 107, 127, 147, 16”7 (10.26” doesn’t exist)

— Example: A control parameters for certain electron microscopes has to be a
power of 2.

— Some JMP DOE platforms now have the option of Discrete Numeric. in
addition to continuous and categorical, to better handle these cases

Notes




DOE terminology (cont'd)

Categorical factors

Continuous factors

Any number of levels

Discrete set of design points

Test for significant differences

Select best design point

Usually 2 - 3 levels

Region in factor space

Response surface modeling

Interpolate between design
points

Notes




DOE terminology (cont'd)

Control factors

Noise factors

\
l

Can be controlled in the
routine process

)
Type of material

Temperature
Pressure
Method
Time

Cannot be controlled in
the routine process

)

Ambient conditions
Raw materials
Operators
Suppliers
Batches
Setups
Shifts
Lots

Is it good practice to include noise factors in experiments?
Why or why not?

Notes




DOE terminology (cont'd)

Desion point

A particular combination of levels
of the factors.

Desion matrix

The set and sequence of design
points to be used in the experiment.

Full factorial

The set of all possible design points
for a given set of factors and levels.

Temp Press

120 50
120 150
180 50
180 150

v Full factorial
v 4 design points
v No repeats (replication)

v’ Sample size = 4

sim  [eyuauradyyg

Notes




DOE terminology (cont'd)

Replicate run
An experimental unit created independently
of other units at the same design point

Replicate
A set of replicate runs, one for each unit in
a given set (usually a replicate of a full

factorial)

False repeat
* Repeated or multiple measurements on
one unit

* Units in the same batch, when
optimizing a batch process for which
there is very little within-batch variation

Temp Press

120 50
120 150
180 50
180 150
120 50
120 150
180 50
180 150

v Full factorial

v’ 4 design points
v 1 replicate

v’ Sample size = 8

Notes




Exercise 3.1

A bank wants to increase the yield of its credit card offers. It plans to collect VOC data
by means of a DOE involving the factors i the table below. The bank plans to send out
1000 offers for each combination of the factor levels. Based on the data, they will
determine the combination with the greatest % yield.

(a) What 1s the Y vanable?

(b) What 1s the experimental umit? (Consider how Y will be measured)

(¢) How many design ponts are m the full factonal?

(d) What 1s the sample s1ze?

(e) For each factor. decide whether you would treat 1t as quantitative or categorical (give
your answers and reasons in the table below).

Notes




Exercise 3.1 (cont'd) |«
Factor i Levels Continuous or categorical?
Introductory APR 0,2.5or 5%

Introductory time

betiod 3, 6 or 9 months

1iPhone, 1Pad,
Gift microwave or
espresso machine

Notes




4 The Full-Factorial Design

The full-factorial design contains all possible combinations of the
specified factor settings

Above is an image of a 2% full-factorial with center points (continuous factors)
* The full-factorial requires one run at each design point (8 for this 2%)

*+ 3 -5 center points are recommended in a 2% design

* Total runs required for this full-factorial are 11-13

A 2* full-factorial design can estimate main effects and interactions

Notes




Full-Factorial Design (cont'd)

B . T
|

Above is an image of a 32 full-factorial

* The full-factorial requires one run at ¢ach design point

* “Centerpoints” are part of the design points (the middle level of the factors)

* Total runs required for this 33 full-factorial is 27

« This type of design is useful when some factors are continuous, and some are
categorical (there could be 3-level categorical factors in the picture above)

A three-level full-factorial (3%) design can estimate main effects,
interactions and quadratic effects, but is an inefficient design.

Notes




Main Effect of a Factor in a Factorial Design

L]

High (+)

Factor B

Low (-) —

L)

% %
Low High

(-) (+)
Factor A

Main Ef fect of A = Avg Response A (High) — Avg Response A (Low)

Main Ef fect A
2

Coefficient A= B, =

Notes




Example: Main Effect of a Factor

S P
High (+) -+ S50 72
Factor B

Lt g 60

1 1

| I
Low High
(-) (+)

Factor A

Main Ef fect of B = Avg Response B (High) — Avg Response B (Low)

50472 _ 40460 _ 122 100 _ .,
2 2 2 2

What is the Main Effect of Factor A in this example?

Notes




Example: Coefficient of a Factor

High (+) -+ 50 72
Factor B

Lt g 60

| |

I |
Low High
(-) (+)

Factor A
- Main Ef fect B 11
Coefficient B = p; = =—=2>5.5

2 2

What is the coefficient for Factor A in this example?

Notes




Example: Interaction Effect

Factor B

c 5
S RO K A
Low (-) + 40 '(,0
= 1
Low High
() (+)
Factor A

A*B Interaction Effect = Avg Response A « B (High) — Avg Response A * B (Low)

A-B Interaction Effect =

72+40 _ 50+60 _ 112 _ 110 _ 1

2 2

Notes




Example: Interaction Effect

To determine which values are for A¥*B High and Low,

it can be helptul to refer to the experimental design matrix.

Multiply the + and — in the A and B columns in the design matrix
to get the + and — for the A*B column.

Factors
Run | A B | A*B | Response
1 - - - 40
2 - + - 50
3 + - 60
4 + ~ 72

Notes




Example: Interaction Effect

32

High (+) - 60 X

Factor B

MW TF 4 50

= 1
Low High

(-) (+)

Factor A

What is the A-B Interaction Effectin this example?

Factors
Run A B | A¥B |Response
1 ;
2 ||, .
3 :
4 -

Notes




Interaction Plots

Interaction Plots graphically show interaction

« B+

70+ _
60 -4 ' s B-
s0f o« 7
404

1 1

| |

= -

Factor A

Interaction Plot for the first
example

No interaction—slopes of
lines are approximately equal

604 o
50 == B -
401 o
304 B+
1 1
1 |
Factor A

Interaction Plot for the data
on the previous shde

Interaction present—Ilines
have different slopes

Notes




Creating a Full Factorial Design

a

DOE — Classical = Full Factorial Design

l. Define responses, factors, numerical ranges for continuous factors, and levels for

categorical factors.
* Full Factorial Design
£ Responses
|Add Response ~|| Remove | INumber of Responses...|

ponse Name < Lower Limit

Upper Limit

Importance

% Yes | [Maximize |

4 Factors

Continuous ] [Categorical | [ Remove | Add N Factors [ 1]
Name P._o!e Y,

W

AInto APR Continuous 0 2
A Time Penod Continuous 3 6

o Gift Cateqorical None |iPhone

1

rac

|Espresso ]

Specify Factors

Add a Continuous or Categornical factor by clicking its button. Double click
on 3 factor name or level to edit it.

Notes




Creating a full factorial (cont'd)

2. If desired, add extra center poinls'. request one
or more replicates** and’or pre-sort the matrix.
For a 2*full-factorial, center runs are
recommended. When you are ready, click Make
Table.

3x3x4 Factonal
Output Options

Run Orden Randomize 4

Number of Runs: 36

Number of Center Points: 0 3 B
—— 2

*
Each center point = one additional row (run)

=X
Each “replicate” = one additional set of 36 rows

Pattern lntro APR - Time Period

%
9

w

Oy

3 Egpresto

I I TR

i9ad
None
P30
Espresto
1P one
MNeone

i"nona

§ Nene
3 Py

e O

o>

Pad
None
Nene

: Phone

Espresso
i”ad
Ezpreso
Pas
Espresse

¥ Vad

9 Lspremin

Phane

9 Nene

B R

Notes




Simulating response data (so we can see how analysis works) ﬂ

3. Create two new columns called . PV o ISR BRI S| =
Sent and Returned. i : ety b X
30 G 6 Espresso * 1000 .

. 41 3 Pad e 1000 R

4. Click on the Sent header — 3]s 23 ¥ iPore . 1000 .
. 62 25 0 None o 1000 .
double-click on the Sent header 7/134 0 9 Espresso . 1000 .

-~ R 8 322 b O Phone 1000 .
Column Properties—> select 9 333 3 iPhone . 1000 .

10 2 23 3 bBpresse * 1000 .

Formula —» enter the value 1000 e e T ae :
in the little box —» OK — OK 2 hed v s :

14 34 5 3 Espresso e 1000 .

s = - 15 32 § (Pad . 0 .
5. The Returned column 1s where we 16 32 6 Nore . 1000 .
17123 & iPad s 1000 .

would enter the number of offers 18 3% 5 Espresso . 1000 .

% 19 13 G 9 Phone . 1600 .

accepted. To simulate the data, 2 21 23 3 Nene . 1090 g
double-click on the header and o = 2 e %1 X
name the column —» Column = 2 i e 3
Properties — Formula — Edit b ; onsn s 1
F())'mllla :; \_, 1; : -Fmrnq . ”:vl .

29 373 5 3 r‘;_: . 0 .

” 30 334 5 9 Espresso o 1000 .

6. Enter the commands shown on o b 2 e 500 :
the next slide. then click OK. e i e X

34 2 2 @ Dipresso o 1000 .

35 122 6 Fhone 1000 .

35 O Neose e 1000 .

Notes




Simulating response data (cont'd)

w Jx3ed Factonal

Formula: Segn  Su3wd Factoral

b Mode
P Saluate Detign

Random b DOE Dialog
d

Random Integer[nl]

Random Integer[50]
OK — OK I' Colurmns (/1)

o fanen 3
7. Define % Yes byt
o - [ NeUE 3

with the formula AStad®

A Sent
y A Setuned
Retume +100
Sent

8. Run the Model
script provided
in the left panel. = fom

Al rons

o A % Selected
(Chick on the Exchded
ragen

green triangle) abeied

o

1o

G Nore

Sprenss
¥ Phone
3 None
Ehone
3 None
3 Pad

2 Pad

3 None

Nore

Phone
6 Zzpresso
3 Pad

9§ Sspresic

Faz

3 Zspesio
9 Paz
Espresso

Phone

None

Sert Returned
1000 41
y
29
<4
4 1
1000 1
1000 7
1000 32
1000 17
16700 =
Y000
1000 s
1000 33
1000 43
1000 44
1000 42
1020 41
1000 33
o0 a3
-
2
21
200 5
1000 €
1000 4€
§000 21
000 3
1000 48
1000 50
100 &
1000 0

Notes




Analyzing the simulated data

|4~ Model Specification

Select Columins Pick Role Vanables Personality: | Standard Least rTm—-
w7 Columns f Y A% Ves
& Pattemn =N Emphasiss | Minimal Report v
A Intro APR
4 Time Period r Weughl i 7H_dp = ﬁR_.u.'l, >
Gift - S ——
4 [Frea | [ Recall_| ] Keep disiog open
A Sent oBral Remove N
4 Retumed ) e

Construct Model Effects

[ Add || Intro APR

' . Time Period

[ Cross. | Gifs

I a1 Intro APR*Time Period
e — | Intro APR"Gift

| Macros » | Time Period"Gift

Degree | 2|
Attributes
- 2

Transform (=

|1 No Intercept

When you click Run, JMP will use regression to create a “model” for the
process, that includes the terms under Construct Model Effects.

Notes




Getting to “yes”

2

* Point and click to find the combination with the highest % Yes

= Because i1t is simulated data:
o vour profiler won’t look exactly like this one

o don’t be alarmed 1if vour “best” combination doesn’t make sense

~ Prediction Profiler

5
-
; |

R 3
> [2.08973 =
A - o -
4.06583] c
1
0

O -~ N M e WMennO~NDOO & & T O

s 8 & P

= £ &

— v

—

Intro APR Time Period Gift

Notes




5 Statistical Assumptions o)

Average Y as a function of X has no jumps or corners
(assumption of smoothness)

Continuous
Y

Continuous X

Notes




Notes

A hypothetical smooth response function.

We never know the true response function, but often we have information about its
general properties. For continuous X and Y. smoothness of the Y = f(X)
relationship 1s one such property. It means the function can be well approximated
over sufficiently short mtervals by a polynomial, usually linear or quadratic. This
1S necessary in optimization experiments where we want to inferpolate between the
expernimental design points.

These experiments are designed for continuous Y response. If you have a pass-
fail response, see if you can turn it into a continuous response. Here are a few
ideas:

* If you measure something on a continuous scale, but only record whether 1t
passed or failed m your normal operation, record the actual measurement
during the experiment.

* Ifyou typically use a go-no go gauge, actually measure the part during the
experiment.

* Record the size of defect instead of whether there 1s or 1s not a defect.

* Other 1deas?

Notes




Non-smooth response function

Average Y as a function of X has jumps and/or corners

Quantitative
Y

Quantitative X

Notes




Notes

A hypothetical non-smooth response function.

A function with jumps or sharp comers will not be well approximated by low-order
polynomials in neighborhoods of the associated X values. This 1s a problem n
optimization experiments because we want to mterpolate.

It may or may not be a problem in screening experiments, because there we are merely
trying to 1dentify factors with large first-order effects. Accurate approximation
throughout the X range 1s not required, although we may not be able to see the impact
of the factor under certain circumstances. (You can see in the picture above that the
response. Y, is at nearly the same level across various X values.)

Jumps and sharp corners often occur outside the feasible operating range of the
process. In fact, such discontinuities often define the feasible operating range. A
smooth response function is usually a safe assumption as long as we are not operating
too close to a “cliff.”

Notes




Occam’s razor

“One should not increase, bevond what is
necessary, the number of entities
required to explain something.”

William of Occam, medieval philosopher

S
h’

—

Exact “French curve” Linear plus noise

Notes




Notes [ 64
be ]

Occam’s razor represents a preference for simple explanations over complex
ones. This reflects a belief that simple hypotheses are more likely to be true
than complex ones. This belief 1s not always justified, but 1t is efficient in that it
leads to models with just enough complexity to explain a given set of
observations.

We can always find a sufficiently complex curve passing exactly through any
given set of data points. The predictive ability of this “over-fitting” method
is motoriously poor. The more successful “Occam™ strategy 15 illustrated by
random variation superimposed on a simple linear model.

Notes




Standard assumptions on the response function 65 |

vY = (X, X5, X3,...) + error

v Can’t assume f(X) explains everything (hence the error term)

v Can’t assume f(X) is linear, but quadratic model is almost
always sufficient

« f(X) may include second order interactive effects
« f(X) may include quadratic effects

v Don’t need cubic or higher order models
« Don’t need higher order interactive effects

Notes




Review: Least squares model fitting

ﬂ

For each of 18 potato chip bags, we have data on

T = bonding temperature
D = bonding time (duration)
Y = bond strength

The best fitting response surface model (RSM) is the one whose
parameters
by, by, bs, by, by, bs

minimize the sum of squared residuals:

3 [¥ - (b, + b,T +b,D+b,TD + b, T* + b,D?)|*

{18 bags|

Notes




Least squares fit of Response Surface Model (RSM)

Avg. Y =87.2+83(T)+7.7(D)-31.8(TD)—16.1(T*) - 13.2(

A B C D E 3 G

i __TEMP _ DWELL | BOND Prediction Noise

2 -1 -1 110 10.08 092

3 -1 -1 89 1008 1.18

4 -1 0 639 62 B0 110

5 A 0 604 62,80 240

o 1 1 032 89 07 413

7 1 f 835 89 07 257

8 0 1 857 66 30 080

9 0 1 677 66 30 1.40 .

- p o st i least squares
1" 0 0 88.0 87 20 0.80 modelin g.xls
12 0 1 820 8185 035

13 0 1 785 81,65 315

14 { 1 88 1 90 37 227

15 1 -1 921 90 37 1.73

16 1 0 172 79 45 225

17 1 0 810 79 45 155

18 i 1 39.5 4208 258 6 terms 1n model
19 1 1 459 4208 382 /’amation shown above)
20 Sum of squares (SS)| 9387658 = 93792 ’f/o/ﬁ
21 Deagrees of freedom (OF) 18 B 6 + 12

RMSE | Squara ront of noise (SS/DF) 285—— 2.65 = v 84.18/12

3 N

Notes




6 Statistical Models

69

BOND

Linear in the Xs

Average Bond = 67.2 + 8.3(TEMP) + 8.3(DWELL)

O O O =N N o @
C O O O O O O O
1 TSR RN R S

e e

o

Notes




Notes | 70 [

Response surface: tilted plane.
Simple linear models like the one shown above are used in screening designs. In many
cases, simple linear models fit the data poorly, and do not give accurate predictions.

They should not be used for optimization experiments.

Simple linear model: Y =by+ byxy + byxo + -+ b X,

Notes




E

Linear interaction model 7

Avg. BOND = 67.2 + 8.3(TEMP) + 8.3(DWELL) - 31.5(TEMPx DWELL)

100
80
80
70

BOND o

40
30

R o SR

150 »
TEMP 160 170 49

Notes




Notes l 728

Response surface: saddle.

Linear interaction models like the one shown above usually fit the data much better
than simple linear models.

They include all main effects and all interaction effects.

They are good for optimization experiments where all factors are categorical. but they
should not be used for optimization experiments mvolving quantitative factors.

Linear interaction model:

Y —- bu + blxl + bz.‘f: + Pl + b‘-:l',- + blz.rixz + 5131‘1:{‘3 + it + brjx!'.-t}'

Notes




Response surface model (RSM)

Avg. BOND = 86.8 + 8.3(TEMP) + 8.1(DWELL) - 32.4(TEMPx DWELL)
-15.5(TEMPxTEMP) - 12.9(DWELL xDWELL)

|4 I/
(714 Vil
Iy A 7
/
BOND A K
7/
)

Notes




Notes

Response surface: ndge.

The response surface model (RSM) shown above 1s the standard model for
optimization experiments.

It differs from the hinear interaction model n that 1t includes quadratic (squared)
terms for all continuous factors, in addition to all main effects and interactions.

Quadratic terms are never used with categonical factors.

In experiments involving continuous factors, the RSM may fit the data much better

than the linear interaction model. In other words, the response surface model may

be a better model of the process.

Response Surface Model RSM):

Y= bo -+ blxl i bzxz + 200 4 b,'x,' + bllexZ + b13x1,‘(3 + eo0e 4 b,'jx,'xj

+b11x12 + bzzxzz + .00 + b“xlz

Notes




RSM for a different data set (process)

s

Avg. TENSILE = 22.5- 3.3(RATE) + 3.4(RPM) - 3.6(RATE xRPM)
- 4.8(RATE x RATE) - 5.6(RPM x RPM)

20

TENSILE
15

300

Notes




Notes

Response surface: hilltop.
Other response surface shapes include inverted saddles, inverted ndges, and bowls.

You can’t tell from the plot alone, but in this example the RSM model does not fit the
data very well.

Notes




RSM plus quadratic interactions

Avg. TENSILE = 22.4 - 8.5(RATE)+ 8,6(RPM) - 3.2(RATE x RPM)
- 6.1(RATE?) - 4.8(RPM?) - 7.0(RATE2x RPM)
+ 8.1(RATE x RPM?)

20 - ji
TENSILE .
15 - "/
~ 200
10 -
300 150° matE

Notes




—

Notes 78

The shows a more complicated quadratic model fit to the same data as on the previous
page. This model turns out to fit the data well.

Model terms like
RATE x RATE x RPM
RATE x RPM x RPM
RATE x RATE x RPM x RPM
are called quadratic interactions. Adding one or more quadratic interactions 1s a good

thing to try when an RSM model does not fit.

[t 1s also possible to add other higher-level terms (cubic, three-way interactions), if the
sample size 1s large enough to support the extra terms . . .

Notes




Higher-order polynomial models?

79

3" order polynomial (cubic)
A\’g. Y — bﬂ“l’ hEX -+ b:XZ -+ quj‘

4" order polynomial (quartic)
Avg. Y = by+ b, X + b, X% + b; X? + b, X*

Notes




Notes

Even though third- or higher-order models may fit the data better than quadratic
(second-order) models, they are rarely used in DOE. Why? They require much larger
samples sizes for any given set of factors.

It 1s much more common to use quadratic models n an iterative fashion. A quadratic
model may not fit the data well over a large mitial factor space, but 1t almost always
tells us which subset of the imtial factor space 1s most likely to give the results we are
looking for. The next step 1s to run another quadratric experiment in the smaller
region. The smaller the factor space, the better the quadratic model will fit the data.

This concept 1s itllustrated on the next page.

Notes




lterated quadratic experiments

First experiment, wide ranges — “big picture”

Y L] ff'
(response to be /

minimized) First quadratic
approximation

True
response
B function

Low X Medium X High X

Notes




lterated quadratic experiments (cont'd)

|az
l.'l_'—ﬁ_—“-

Second experiment, narrow ranges — accurate modeling

Second quadratic
approximation p

1 1 [
LowX Medium X High X

Notes




Review: Models for categorical factors 83

Two-level categorical factor

MATL = Steel or Rubber

w, if MATL = Steel

Average COST =
i, if MATL = Rubber

5 o o= - - -y -
”

—
v

Notes




Equation form of model

Categorical factors are represented by indicator variables
(also known as dummy variables)

Average COST = b, + b; MATL|Steel]

1 if MATL = Steel
MATL[Steel] = .
-1 1if MATL = Rubber

Notes




Simple linear model with all factors categorical

Avg. COST = b,

4.868125

4 bl LGR[Low] "High" =-0.616875
+ Match| LGR)| "Low" =0.616875

+ b, MATL|[Steel] else =

"Rubber” = 1.145625
+ by USAGE[50%] |+ Match| MATL]| "Steel” =-1.145625
else =

"50%" = 1.054375
+ Match| USAGE || "75%" =-1.054375

+ b, GRIT[30]

['Analogy: blue book pricing of used car;\ else =
» Base price + extra for power windows "30"=-0.048125
+ extra for air conditioning + Match[ GR/T] "50"=0.048125
+ extra for cruise control dlog:>
etc.
- 7

Notes




Categorical interaction model

Avg. COST = b,
+ b, LGR[Low]
+ b, MATL[Steel]
+ b; USAGE[50%)]

# Factors

5 ) + bsGRIT[30]

Full factorial (FF)

16

32 64| T bsLGR[Low] x MATL[Steel]

Min. sample size

"

16 22| + byLGR[Low] x USAGE[50%)]

% of FF

69

50 34 + b,LGR[Low] x GRIT[30]

+ by MATL[Steel] x USAGE[50%]
+ by MATL[Steel] x GRIT[30]
+ by, USAGE[50%] x GRIT[30]

Notes




7 Design Principles

.y
| 87

Bold strategy

-

Replication

Randomization

“Blocking™

“Control group”

Notes




Bold strategy

Linear approximation

Continuous
¥

e «—— (X Y)datapoints

True response function

s Continuous X

|
High

Notes




Not bold enough 8

* Low and high levels of X are too close together

* We mistakenly conclude that X has no effect on'Y

Continuous
X

Low High
Continuous X

Notes




“Control group”

For each factor, one of the
levels should match the
current process

Ideally, this is the nuiddle
level for continuous factors
At least one run in the
experiment should match the
current process settings, for a
“sanity check”

In these types of designs, we
don’t usually refer to this as
a “‘control group”

Temp

Press Dwell Mat'|

120
120
120

150

150
150

180

180
180

50 \A\
100 \11}
150 2.0 c
50 (1.4
100) 20 (—l
150 0.2

2.0 B
[1J 02 C
150 [(11] [A]

Notes




Notes a

The units involved in a DOE may tum out to be uniformly different from those mn
current production — either better or worse. This can be due to the effects of noise
variables on production units, or to special circumstances surrounding the creation
and handling of experimental units.

For each factor, one of the DOE levels should match the current state value of that
factor. This allows valid comparisons between current state and experimental process
settings. This is especially important when non-routine measurements, tests or
inspections are applied to experimental units.

Notes




Replication

Use a replicate or a
replicate run to
quantify the error

in the experiment.

This improves estimates
of coefficients and
precision in determining

factor significance.

Experimental
Temp Press  units
120 50
120 50
120 150
120 150
180 50
180 50
180 150
180 150

Notes




Py
93

Notes

Replication forces redundancy mto the experiment. This 1s necessary for two reasons:

* To quantufy the magnitude of error n the experimental data — differences between
units at the same design point are, by definition, due to error (vanation in the
process that 1s not accounted for m the factors).

« To reduce the influence of error on the experimental results by estimating “pure
error.” This increases the signal-to-noise ratios.

Assume that you are the person responsible for running the experiment and for the
validity of the results. Is there anything about the run order shown above that makes
vou nervous? Please explain.

Notes




Randomization

Use a random number
generator to determine
the sequence in which
experimental units are
created and tested

(JMP does this for you.)

Experimental
Temp Press units
120 150
180 50
180 50
120 150
180 50
120 150
180 150
120 50

Notes




=

Randomization 95
Benefits

* Reduces the chance of biased results due to nuisance variables
(factors not included in the experiment that may be changing while
the experiment is being conducted)

-Doesn't require control of nuisance variables, which may be

unknown or uncontrollable

-Results are more convincing to skeptics

What happens if vou don t randomize?

- Nuisance (noise) variables may be changing during your experiment
* This increases the chance of drawing the wrong conclusions from
your experiment (significant factors, best levels, etc.)
» Randomization guards against this

Drawbacks
* Impractical when some of the factors are hard to change

We'll see what to do about this later

Notes




Blocking

Blocking allows you to
account for some nuisance
variables

* Nuisance variables or
factors are used to divide
the experiment into
homogeneous "blocks”

* Effects of nuisance factors
are separated from effects
of other factors, for more
accurate analysis of factor
significance

Experimental
Temp Press unit
120 50 ' Block 1
0 Bob
120 150 g b
Machine | A
180 150 Material | Lot 6
180 50
180 150 Block 2
180 50 Ope;ticf)tr (ziarol
Machine | B
120 50 Material |Lot 7
120 150

Notes




o —

Agricultural origin of “blocking” o7

» Want to increase crop yields
 Experimental units are plots of land in a field

» Compare vaneties, fertihzers, etc.

* Need 50 plots (runs). not 25

» Have to use a second field

=
> Plots _ _ ==
- « Differences in the so1l will
«“ cause differences m yields
l
Block 1 ' *-.%-h
' — More plots
| o
Block 2

Notes




Why use blocking? o0 |

» Use blocking when experimental runs cannot be completed within a
timeframe (shift, time allotted on a machine, etc.) or some other
constraint (batch of material, space, etc.)

* Blocking systematically eliminates the effect of known, controllable
nuisance (noise) factors
o Makes predictions more reliable
o Quantifies the effects of nuisance variables

* Improves precision with which treatment means are compared,
without increasing sample size

o Makes identification of important (significant) factors more
reliable

* Protects against variation due to known factors not included in the
experiment

Notes




8 The Custom Design Process %

We saw the Full-Factorial Design earlier, and learned:

A 2F full-factorial design can estimate main effects and
interactions, but cannot estimate quadratic terms

* A three level full-factorial {_3") design can estimate main
effects, interactions and quadratic effects, but is an inefficient
design.

Let’s look at some other designs.

Notes




Response Surface Designs

The central composite design (CCD) is a 2¥ factorial
with added axial or star runs.

It is (was) the most used response surface design when all factors are continuous

Above are images of two and three factor CCDs

* The CCD requires two axial runs for each factor, plus the 2* design runs

* 3 -5 center points are recommended

* Total runs required for the 3-factor CCD are 8 + 6 + center points = 17-19.

A Response Surface Design can estimate main effects, 2-factor interactions
and quadratic effects, with more efficiency than the 3% full-factorial.

Notes




Response Surface Designs (cont'd)

Box-Behnken designs (left) are spherical, and do not have any points on
the corners of the “cube™ contained by the limits of the factors.

The face-centered cube (right) is a variation on the Central Composite
Design, with axial points on the centers of the faces of the cube (for k=3).

* 3 —35 center points are recommended for each of these designs
* Total runs required for the 3-factor Box-Behnken design is 15-17.

* Total runs required for the face-centered cube is the same as the CCD (17-19).

As Response Surface Designs, these can estimate main effects, 2-factor
interactions and quadratic effects.

Notes




Custom Designs

JMP’s Custom Design platform uses modern computing power to employ a
coordinate-exchange algorithm for determining the best set of points to use in
a Response Surface Design, creating an “optimal design.”

Often, fewer runs are required than the classical designs just presented.

When you look at the points chosen for your experiment, you may notice:

* Center points--all continuous factors at the middle level of the range given

* Points at the comers of the “cube™--all factors at high or low levels

* Points in the centers of the “cube™ edges (Box-Behnken) or faces (face-centered
cube)—some factors at the middle level, others at high or low levels

*  You will not see axial runs extending beyond the “cube,” as in the original CCD

Because fewer runs are used in these designs,
there will be some correlations and aliasing between terms.

(See Design Evaluation > Color Map on Correlations)

Notes




Steps for Creating a Custom Design

1.

2

)

6.

. Specify the Factors.

. Specify the statistical Model (usually RSM).

Specify the Responses and general goals (maximize, minimize, or match target).

* For continuous factors, specify the high and low levels.

» For categorical factors, specify each level to be mcluded in the experiment.

Specify the blocking factor, if blocking 1s needed. (Click RSM again)

* Enter the maximum number of runs that can be completed in one block (timeframe.
batch of matenial. etc.).

« JMP will evenly split required runs mnto blocks no larger than the number specified
Create the design matnx. (Make Design)
If desired, use Design Evaluation > Power Analysis to determine sample size.
Back up to make changes (Back), or create the data table (Make Table).
Save the table.

Later: Run the experiment in the order given. Enter results into table.

Notes




1. Specify the Responses and general goals

4 = Custom Design

|Add Response

DOE — Custom Design

Remove | [Number of Responses.. |

Resp&nveh\ =

Lowwer Lirmit

Upper Limit

importance

band \“ Match Target
print [ Manimize
—
4 Factors

fﬁdd Factor 1'| Remove Add N Factors

MName

Fole Changes Values

Notes




2. Specify the Factors

4 = Custom Design

4 Responses
frhdd Response 'FJ Remove | INumber of Responses...
Recponse Name Geal Lewar Limit Upper Limit Impertance
bond Match Tanget
print Maximize

4Factors Do not use this opﬂoD

move | Add N Factors | 1

Rolas hpeaee—  /8lU2s
ontNUoUS Easy 10 b
Continuous Eagy 50 150
Continuous 0.2 2
S

Specify Xactors
Add a factdngy clicking the Add Factor button. Double click on a
factor name or [ewel to edit it.

| Cﬂﬂtlry\

Notes




3. Specify the statistical Model (usually RSM)

4 Model
Main Effects| interactions v|[_RSM_]| Cross |[Powers v|[Remove Term|
Name ¥ Estimability
Intercept Necessary
temp Necessary
press Necessary
dwell Necessary
temp temp Necessary
temp'press Necessary
press’press Necessary
temp dwell Necessary
press dwell 5ary
dwell*dwell Necessary
> Alias Terms
4 Design Generation
|| Group runs into random blocks of size: 2
Number of Center Points: 0
Number of Replicate Runs: 0

Response Surface Model

Number of Runs: g
Do not label your blocks until

Minimum 10 '
® Default 16 after you have done this!
User Specified 16

Notes




4. Specify the blocking factor, if blocking is needed.

Once you specify the Model, the Default and Minimum Number of Runs
are displayed.

Use this information, or User Specified Number of Runs (another
sample size you've determined), to decide whether Blocking is needed.

It’s not a bad idea to split your experiment into blocks just in case, if it is
likely to take several hours or more to complete. For example, you may
have a block size equal to half of a shift, just in case there’s an
evacuation, or the machine goes down, or you get called away urgently,
and cannot complete the experiment all at one time.

If Blocking 1s needed:

1. Click User Specified Number of Runs, even if you want to use the
Default (this prevents JMP from increasing the sample size to a
multiple of the block size),

Go back up to Factors to enter a Blocking factor,

Specify Model (click RSM) again.

w2 2

Notes




4. Specify the blocking factor, if blocking is needed. (cont'd) E

» Select User Specified Number of Runs to prevent an increase due to
blocking

< Design Generation

Group runs into random blocks of size:

Number of Center Points

Number of Replicate Runs:

Number of Runs:

Minimum 10
\ Default , 16
o User Specified te

Make ﬂﬁlgﬂ.

* Go back up to factor specification:

Add Factor > Blocking > Select the maximum runs possible per block
If your maximum 1s not listed,
select Other... to Specifv Number of Runs per Block

\ B Plewse Eoter 0 Wumiber

Spetily Mumbr & Rund e Dlack "

Ok || Canest |

Notes




4. Specify the blocking factor, if blocking is needed. (cont'd)

* Name the Blocking factor, so you will recognize it in the Design Matrix and Table:

4 Factors
[Add Factor »][ Remove | Add N Factors
Name Aole Changes Values
A temp Continuous Easy 120 180
Al press Continuous Eagy 50 150
il dvaell Continuous Easy 0.2 2
o Shif Blocking Easy | 2

* You do not need to be concemed about how many “levels™ are shown under
“Values.” JMP waill handle thus when 1t creates the design.

* Re-specily the Model. (Click RSM again.) Chck through JMP comments
about categorical and blocking factors in RSM models.

Notes




4. Specify the blocking factor, if blocking is needed. (cont'd)

DO NOT use this option for setting up a blocking factor!

4 Model
[Main Effects![interactions ~][ RSM ][ Cross | [Powers +][Remove Term
Name Estimability

Intercept Necessary

temp MNecessary

press Necessary

dwell Necessary

temp”temp Necessary

temp”press Necessary

press'press Necessary

temp*dwell Necessary
> Alias Terms
4 Design Generation NO!
——GroupTonsmtoramdonrbtocks of s 2 e ? "

Don’t do it!

JMP will generate uneven block sizes. if this option is used.

Notes




5. Create the Design Matrix.

2 Model
Mein Effects] intevections =|| BSM || Gross | Power: =] Remove Term| 2 Design
- h"':"’ "'1""‘_L‘""5 Run  temp  press  dwell Shilt
nbercept Netettary 1 1% 100 5 2
temp Hecesary H et _" 2l ’
prass Meceszary - 120 0 oz 1
dvrell Mecessan 3 180 150 p2 1
Shaft Meceitary 4 &0 S0 2 1
tempt temp HNecessary 5 180 50 p2 1
temppres Mecessary " 120 50 = =
press” press Necessary x e e =
s " chwed! Mececrary / 180 150 l <
press dwasl| Mecessary 8 150 100 02 2
chell™ derall Meceizary -] 150 100 1.1 1
7 Alias Terms 10 1527 50 2
11 150 GBS 1.1 2
4 Design Generation = e =
"4 LAl 100 i
13 150 150 1 1
Mumber of Cener Points a 14 120 150 02 2
Mumber of Replicate Runs g 15 20 150 2 2
16 180 100 1.1 F
Number ol Runs: b ign Evaluation
Wi M 1a Output Cpbons

Defauk

» Lnes ‘JFﬁ:dlfd E 4 Data Table nﬂlm

[Make Dﬁﬁn.d—-———'-_—__-__-__- ] Save X Matrix

| Simulate Responses
| Inchade Run Crder Column

| : : Run Craen | Randomize within Blocks =
Don’t worry about the order of the blocking i o
| A

factor (Shaft). This will be reordered when et
you Make Table. L8

Notes




6. If desired, use Power Analysis* to determine sample size.

Design Evaluation > Power Analysis

4 Design Evaluation
4 Power Analysis
Significance Level | 0.05
Anticipated RMSE

Anticipated
Term Coefficient Power
Intercept 1 0402
temp 1. 0.706
press 1. 0.706
dwell 1 0.705
Shift 1 0.865
temp*temp 1 0.262
temp press 1 0.623
press*press 1, 0262
temp*dwell 1 0.623
press dwell 1, 0.623
dwell*dwell 1 0263

* Details of this procedure are presented later, in the Determining Sample Size section.

Notes




7. Back up to make changes or create the data table.

* Chick Back to back up

and adjust sample size.

*  Adjust User Specified
Number of Runs
» Click Make Design
Output Options
4 Data Table Options
Save X Matrix

__| Simulate Responses
include Run Order Column

Run Order:  pandomize within Blocks ~

!MiktTib'://
" Back !

Once the design is as needed:
» Check Include Run Order Column
» click Make Table

JMP creates an editable table.

Qutput Options

4 Data Table Options
[ ] Save X Matrix
[ ] Simulate Responses

[¥] Include Run Order Column

Run Order:  pandomize within Blocks ~

[Mgke Tgblg

[ Back |

Notes




8. Save the table.

[

* You can reorder columns and adjust any odd factor levels by entering the
desired value

o Odd levels are an artifact of the procedure JMP uses to create custom designs

o Before creating the table, you can also back up to create another design, and

see 1f that takes care of 1t

o In this example, temp of 152.7 would be changed to 150, press of 98.5 would
be changed to 100

= Custom Design

Design  Custom Design
Cntenion | Optimal

P Model
P Evaluste Design
P DOE Dialeg

l w Columns (7/0)
A temp X

A press Xk

A dneti R
Sk

A bend

A pont R

4 Run Order

l » Rows
All rows
Selected
Excluded
Hidden
Labelied

L=

-

2O D N W

SR O G

=N

temp press  dwell

150
180
150
120
180
180

150

100
150
150
100
0
50
30
100
100
150
150
985
130
50
50

AA
Vo

02
02

Shift  bond

1

print

Run Order

B uf ab et wh
O U e W e

Run your experiment in
the order specified and
enter data into this table.

If data 1s entered directly
into the table as the
experiment 1s performed,
1t’s not a bad 1dea to print
a copy of the table and
keep a hard copy also, as
you go . .. just In case.

Notes




Exercises

Use the Custom Design process described on the previous slides to create Response
Surface designs for the exercises on the following pages. In addition to special
mstructions given in each case, follow these general mstructions

* Determine whether each factor 1s continuous or categorical
* Use the sample size given to determine if blocking 1s needed.

* For each exercise, have the instructor review your matrix when you are finished.

* Make and save each design table.

Notes




Exercise 8.1

l‘ 116
Le

Control factors Levels
Heat treat Anneal Solution/age
Polish Chemical Mechanical
Peen Yes No

» Response variable: Cycles fo failure

Blocking factor: none

» Experimental umit: one small test piece

Sample size: 12 (constraint due to availability of test fixtures)

Notes




Exercise 8.2

17

Control factors

Contact wheel land-groove ratio (LGR)
Contact wheel matenal (Material)
Belt usage limit (Usage)

Belt gnit size (Grif)

» Response variable: Caost

* Expenmental unit: one large casting

Blocking factor: Time of day (moming vs. aftemoon)

Sample size: Use the default sample size. Enter it here

High
Rubber
850%

Blocking: At most, 10 runs can be completed 1n a morming or an
aftemoon. You want to split the runs evenly between two blocks.

Notes




Exercise 8.3

Control factors Ranges
Force 70 to 150
Energy 275 to 325
Amplitude 70 to 90

Response variable: Leak rate

Blocking constraint: Due to production needs, a maximum of
20 contamers can be molded mn each tool cavity

Blocking factor: Cavity (parts are molded from 4 tool

cavities)

Experimental unit: one welded plastic container

Sample size for experiment: 68

118

Notes
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9 Determining Sample Size for an Experiment 19

|T——

Sample size, N, is the total number of “runs” in the experiment.

How should sample size be determined?

» First, you must have at least one run for each model term.

More factors and more complex model = more terms and more runs

» Second, yvour purpose must be clear for a given experiment.

Process optimization with RSM require more runs for each factor than
experiments for screening for important factors

Less ambiguity in results = more runs

* Bevond that, there are several answers to the gquestion of how to determine
sample size. Two are presented on the following slides.

Notes




How should sample size be determined? (cont'd) EJ

1. The quickest answer that most statisticians experienced in
experimentation give, is that the sample size depends on your budget.
Run the best designed experiment you can, within your budgetary
constraints.

*  Think through your expenimental strategy before running vour first
experiment

*  Don’t use more than about 25% of your entire budget on your first
experiment

* Compare potential designs with Design Diagnostics > Compare Designs
o Fraction of Design Space Plot. when prediction using the model, 1s a goal
o  ColorMap on Correlations, whenever less thana full-factorial is used

Notes




How should sample size be determined? (cont'd)

2. Use JMP’s Design Evaluation > Power Analysis to ensure that:

Main Effects (e.g. Temp. Dwell, X1) have a Power of 0.910 0.8
Interactions (e.g. Temp x Dwell. X1*X2) have a Power of about 0.8
Quadratic Terms (e.g. Temp x Temp. X1*X1) have a Power of about 0.5

Use the Power Analysis as 1t 1s when you opent. without changing Anticipated
RMSE or Coefficients (this allows good detection of effects with 8, > RMSE)

Adjust Power by going Back and changing the User Specified Number of Runs

4 Design Evaluation
4 Power Analysis

Significance Level
Anticipated RMSE

Term
Intercept
X1

X2

X3
X1*xi
X1°X2
X2°X2
X123
X2°X3
X3°3

Coefficient Power

0.615
0.962
0.962
0.962
0.547
0.899
0.547
0.899
0.899
0347

Notes




—

Example: Using Power Analysis to Determine Sample Size E

Set up Responses, Factors and Model, then click Make Design

# = Custom Design
& Factors

4 Define Factor Constraints

s None
Specily Linear Constimnts
Use Daallowed Combinations Filter
Use Dallomed Combmations Script

4 Model

Mairt Fffexts Inderactions v | RSM || Cross | [Powess +| Remave Term
Name Estiabitety

niercept Necessan
temp Necessary
press Necessary
Onell Nec essan
termptemp Necessan
ternp”peess Necessan
press’ press Necessary
ternp dwell Necessan
Alias Terms

4 Design Generation

Geoup runs into random blocks of size

MNumber of Center Points

Number of Rephcate Buns

Number of Runs:
Minirnun

& Defau 16
User Spectied

Mabe Deugn

Notes




Example: Using Power Analysis to Determine Sample Size (contd)

Click on the triangle next to Design Evaluation, then on the triangle next to
Power Analysis to open the Power Analysis report:

. ) & Design Evaluation
Review the Power Analysis to 4 Power Analysis

determine if all: Significance Level | 0.05
Anticipated RMSE
*  Main Effects (e.g. temp, dwell, X1) Anticipated
> Term Coefficient Power
have a Power of 0.9 to 0.8 \,mmm Al
temp 1 0.7
press 1 0.7
dwell 0.7
temp®temp 0.2
temp*press 1 1065

* Interactions (e.g. temp*dwell,
X1#*¥X2) have a Power of about 0.8

*  Quadratic Terms (e.g. dwell*dwell,

press”press 1/ 10.278
X1*X1) have a Power of about 0.5 temp*dwell 1 |oes?
press dwell 1 | 0.657
dwell*dwell 110278

In this example, all Power values are too low. The sample size needs to be increased.

Notes




Example: Using Power Analysis to Determine Sample Size (cont’d)E

» Click Bactk.
» Select User Specified and increase the Number of Runs.
* Click Make Design 4 Design Generation

| Group runs into random hlocks of tize

Number of Center Pomts

Number of Replicate Runs

Number of Runs:

Minirnum 0

Default J6
® User Specified | |
Moke Design|

» Review the Power Analysis report again, to determme whether the power
levels meet the requirements.
o This may require several iterations
o If you overshoot, go back and reduce the number of runs

Notes




Example: Using Power Analysis to Determine Sample Size (cont’d)

[t took 25 runs for all model terms to exceed the desired power.
(Because every design is a little different, it’s possible that a design of 24 or 26
runs could (eventually) be generated that exceed the desired power levels.)
An experimenter may choose a slightly smaller sample size, as the desired
power levels are approximate (“about 0.8”") and are usually conservative.

4 Design Evaluation
4 Power Analysis

Significance Level | 0,05
Anticipated RMSE 1

Anticipated
Term Coefficient Power
Intercept 1/ 0.615
temp 1, 0.962
press 1) 0,962
dwell 1] 0.962
temp*temp 1 0547
temp*press 1/ 0.899
press*press 1 0.547
temp*dwell 1/ 0.899
press“dwell 1/ 0.89%8
dwell*dwell 11 0.547

Notes




Power Analysis with Categorical Factors at more than 2 Levels

When categorical factors are at more than two levels,
the Power Analysis report gets a little messy.

< Design Evaluation
< Power Analysis
Significance Level | 0.05
Anticipated RMSE

* Use the upper part of the Power Analysis, as Anticipated
before, for all continuous factor: N, SR o~
ntercept 0442
o main effects Intro APR 1 08
h . s Time Period 1 0877
O Interactions Gift 1 1| 0575
. Gt 2 -1 0.6
0 quadratic terms Gt 3 10578
Intro APR*Intro APR 1 0297
Intro APR* Time Period 1 0838
Time Period”Time Period 1 0307
Intro APR*Gift 1 1. 0477
Intro APR*Gift 2 -1 0477
Intro APR*Gift 3 1 0477
Time Period*Gift 1 047
Time Peniod*Gift 2 -1 0476
Time Peniod*Gift 3 0476

* Use the little table below for all categorical factor: S e
O main effects Effec Power

p ‘ - . = =t Gift 0.763
o interactions that mclude categorical factors —— mcarran 06

Time Period" Gt 0.629

Notes




'] F_-.
Exercise 9.1 127

| —

We are planning an experiment to optimize a monofilament extrusion process with 4
contmuous factors X1 to X4. The response vaniable 1s fensile strength.

* Optimization experiment = Response Surface Model needed

* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required n this expeniment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels.]

Notes




Exercise 9.2

We are planning an experiment to optimize an ultrasonic welding process with 3
continuous factors and a 4-level categorical factor. The response variable is
the weld depth.

* Optimization experiment = Response Surface Model needed

* Use the Custom Design platform to design this experiment

* Using the Power Analysis method, determine the sample size (number of runs)
required 1 this experiment [For consistency among class participants, find the
smallest sample size that puts all factors over the recommended power levels. |

Notes




__10 DOE Workshop
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Notes




11 Experiments with Hard-to-Change Factors 138

Sometimes it’s not feasible to completely randomize,
because a factor is hard-to-change

There are many situations when this is the case. Here are a few examples:

« Temperature in a furnace takes a very long time (hours) to stabilize after
changing

» Special material needed (a factor) are made in large batches and cannot be
stored, or it is run in a continuous flow through the process

* Matenal or part used in a machine 1s difficult to change, requiring a
complete breakdown and cleaning

*  Type of irrigation on a plot of land 1s very difficult and costly to change (an
example of the origin of split-plot designs)

What are examples in your workplace?

Notes




Experiments with Hard-to-change factors (cont'd) [

When you have hard-to-change factors that cannot be randomized,
vou need to create and analyze your experiment as a “split-plot™ design

[f you don’t do this (1f you design and analyze as usual), you are more likely to:

* Conclude that unimportant factors are important among the hard-to-change factors
o You think that a factor (X) 1s impacting your response (Y). when it is not
o This is a Type | error
o Hard-to-change factors are those in the “Whole Plots™ or main treatments. that
were not randonuzed

+ Fail to recognize factors that are significant among the easy-to-change factors

o You think that a factor (X) 1s NOT impacting your response (Y). when it is

o This 1s a Type Il error

o Easy-to-change factors are those m the “Subplots™ or sphit-plois. that were
randomzed

Notes




Experiments with Hard-to-change factors (cont'd) gl

The decision to consider a factor as “hard-to-change”
should not be taken lightly

* Subplot (easy-to-change) factors are compared with higher precision
o Usually, subplot error 1s smaller than whole-plot error

0  Whenever possible, the treatment(s) or factors we are most mterested mn
should be assigned to the subplots

* To increase the precision of the test on whole-plot (hard-to-change)
factors, additional replicates of the experiment or additional whole-plots
are needed
o Clearly, this takes more time and resources
o Several (3-6) replicates could be needed to gain an adequate level of

precision

o So, you could be back to changing that hard-to-change factor many times

Notes




Creating a Split-Plot Design

*  DOE > Custom Design

* Enter the factors as usual, except double-click on *“Changes™ and change to
Hard for the hard to change factor

* (Click Continue

4 Factors
AAdrq Factor vj' Remove | Add N Factors
Name Role Changes Values
ATemp Continuous Hard 120 180
A Dwell Continuous Easy 0.2 2
v Matenal Categorical Easy A B |c

Notes




Creating a Split-Plot Design (cont'd)

* (Click on RSM.

* JMP will suggest a reasonable number of Whole Plots for the number of
factors and levels entered

* The number of Whole Plots shows the number of times the hard-to-change

factor will need to be changed in the experiment

* Click Make Design «Mode

;Mllﬂ ER«!;? linteractions ' [ RsMm Cross Powers v | [Remove Term
Name Estmability
ntercep?t Necessary
Temp Necessary
Dwell Necessary
Materal Necessary
Temp“Temp Necessary
Temp™Dwell Mecessary
Dveeli*Dwell Necessary
Temp*Matenal Necessary
Alias Terms
4 Design Generation
Number of Whaole Picts S
Number of Runs
Minimum 12
Default 20
o User Specified
Make Design

Notes




Creating a Split-Plot Design (cont’d)

* The design is presented.

* As before, click Back to make adjustments. Click Make Table.

* Run the experiment in the order shown in the table.

136

Design Table:
Run Whole Plots Temp Dwell Material
1 1 150 13 A Whole Plots Temp Dwell Material
2 150 02 C ! 150]  11A
3 1 150 02 B ’ o L 35
4 1 150 2 B ! 150, 926
S 2 180 02 A 2 ool G
6 2 180 11 C 2 J0L_San
7 2 180 1.1 : A 9 &
8 2 180 2 A 0 .
2 180 2 A
9 3 120 02 A : C, =t
10 3 120 1.1 c : STt
" 3 120 2 A 3 120 2 A
12 3 12 1.1 : : S22 e
13 a 150 17 8 > ;t' . 3
'14 -: .ISO 03 C r aiq :,': c
15 4 150 2 C 4 150 2 ¢
16 4 150 1.3 A 2 150 TIA
17 5 150 02 8 5 150 28
18 5 150 1.1 A 5 150 TiA
1 5 150 2 8 5 150 28
20 5 150 2 C 5 150 2 ¢

Y1

Notes




Blocking in a Split-Plot Design

What if there are too many runs to complete in one day (or lot of material, or
by one tester; etc.)?

* Once you see that there are too many runs, click Back (before making the table)

* Add a Categorical Factor with the number of levels as the number of batches or
days or shifts, etc. needed for the experiment (In this example, two days will be
needed to run the experiment, so a 2-Level Categorical Factor was added.)

* Name the factor something that you can easily pick out of the lists of terms (Here it
1s named REMOVE.)

* Set Changes for this factor to Very Hard

* (Click Continue

Factors
édd Factor ;1 [-Remove;] Add N Factors | 1
Name Role Changes Values
ATemp Continuous Hard 12 180
A Owell Continuous Easy 0.2 2
v Matenal Categorical Easy - |8 IC
AREMOVE Categorical Very Hard |L L2

Notes




Blocking in a Split-Plot Design (cont’'d)

* Click RSM

* Highlight the term then click Remove Term N

Remove from the Model every term that contains the Categorical factor that
you added

Model
[Main Effects! [Interactions v| | RSM Cioss | |Powek v | [Remove Term|
Name Estimab h:)\
Intercapt Necessary
Temp Necestary
Dwell Necessary
Mateial Necescary
(remove  [CFNER
Temp*Temp Necessary
Temp'Dwell Necessary
Dwell*Dwell Necessary
Model \
Main Effects, interactions v|[ RSM_ || Cross | [Powers »] Remove Temn)
Name Estimabality
Temp Temp Necessary
Temp ' Dwell Necessary
Dwell* Oyl Necessary
Temp*Matenial tNecessary
Dwell*Matenal Necessary
Termp "REMOVE
Dwell'REMOVE
Material*REMOVE

Notes




Blocking in a Split-Plot Design (cont'd)

* Change the number of Whole Plots to the number of levels of the

Categorical Factor
* In this example. two days were needed
* So, a 2-Level Categorical Factor called REMOVE was added

* Now. the Number of Whole Plots is changed to 2

* Click make Design

Design Generation

Number of Whole Plots

Number of Subplots 6

Number of Runs:
) Minimum
e Default
User Specified

-t
00~

b | b

|| Hard to change factors can vary independently of Very Hard to change factors.

138

Notes




Blocking in a Split-Plot Design (cont'd)

* The Design is developed

*  Whole Plots show the number of days required

* REMOVE is still in the table, as it was entered as a factor
* (Click Make Table

Design

i

Run Whale Plots  Subplots

i
i
1

A e s s b N R R

Temp
120
120
180
180
180
150

150

Dwwell
02

Material

A
B

A

If you get this warning,
it’s okay to ignore it, IN
THIS CASE, because you
are not trying to estimate
effects of the whole plot

Notes




Blocking in a Split-Plot Design (cont'd) 141

* The table is generated
* Click on the column of the Categorical Factor (“REMOVE" in this example).
* Cols > Delete Columns to delete the column from the table

Whole Plots Subplots  Temp Dwell Material REMOVE i

120 02 ¢ L .
1 120 ? A .
! 120 g L .
2 180 C .
2 180 02 A § . ; M
™ 130 8 o Whole Plots Subplots Temp Dwell Material Y1
: 1 1 1200 02¢ ¥ .
3 150 C .
1 L o -~ 4 8
< = 2 - 1 20 € L
3 150 ' B P ; ;:} y L
1 ¢ .
1 120 3 L . - = 80 02 ;
0 A .
2 4 120 02 A . . = — ) .
2 4 120 2 ¢ L . ' z - 4 0 .
. = s ; : ' 3 50 < L1
2 5 150 ¢ L . ! 3 150 A ) .
g <f M ' 1 3 150 & L .
150 - | . - 2 -
3 6 180 5 L 3 2 4 20 B (9 ) .
> p 180 A . 2 4 2 02 A L .
2 ‘ 180 02 C L . : ~ e &€ i :
2 3 150 028 ] .
2 3 150 11 ¢ L .
2 5 150 11 A 4 .
2 6 180 11 8 ] .
2 - 180 2 A 0 9
2 L %0 02¢ 3] .

Notes




Blocking in a Split-Plot Design (cont'd) 142

* Ifyou open the Column Info for Whole Plots, you’ll see that the Design
Role is Random Block (JMP is pretty smart!)

* Rename the Whole Plots column with the name of your block

u-f Day - IMP - O x
‘Day’ in table ‘Split Split Plot Example Table oK
Column Name i'r‘m'hclt Plots B | Cancel |

] Lock L_Apply
Data Type Character | Help

Modeling Type | Nominal

'Column Properties »|

Desan fore R

I
ekt demng Deslgrl Role indicates how the column is

|
used as a factor in a model for an
expenmental design
Random Block
uwc |
I
|

Notes




Blocking in a Split-Plot Design (cont'd)

This shows the final table, with Whole Plots renamed to Day
This experiment is designed to be run in two days

What you actually have now is a split-split-plot design

NN NV N NN N N st s ar i b b o

Subplots Temp Dw

e

(- . - RV R RV R S S SR PV PR P

ell
02

02

Material

N 0 B M O MNP 0 mWBAO®E OO RN

Y1

I )

143

Notes




Analyzing the Split-Plot Design

» For the Split-Plot or the Split-Split Plot design, click on the green triangle

next to Model after entering data into the table.

&

ide W d L8 OSHEL»P.
w Split Spiit Plot Eaa : - 2
Design  Custorn Design | o D Subplots Temp Dwell
Critenon | Coptimal 11 . 130 02
Mogel _.: —
P Evsluate Design ! o *
b 0OE Dideg it ! 120
4 . 180
$ 1 2 180 02
» Columns {6/1) 61 > 180 ]
k. Sy * 71 3 150 11
ik Subplots ¥ g1 3 150
A Terrp % oie - ven >
' )
A Dyell - - g A
th Material 3K 1012 4
A% 1.2 4 120 <
1222 4 120
13 2 5 130 02
42 3 150 !
* Rows 1S5 2 S 150
All rows 18 162 [ 160
Camart 0
sy - 2 6 180
Exciuded 0 e 2 2
Hicden 0 18 2 é 180 02
Labelled 0

Y1

eioloiele

144

Notes




Analyzing the Split-Plot Design

* The Fit Model window will look a little different. Leave as is!

* Click Run

* Analyze the residuals and remove terms as with other experiments

.

4 =~ Model Specification

Add

Degres 2
Attributes =
Transform =

| No Intercept

Select Columns Pick Role Variables
%6 Columns i Y AN

“

i Subplots

A Temp r .

4Dvwel L Wesgh

& Matenal | Freq

Fi: ¢

B

Construct Model Efects

Doy & Random

= | Subplots & Random

Temp & RS
Dwell & RS

' Matenal

Temp Temp
Temp ' Dwell
Dweli*Dwedl
Temp* Material
Dwvell*Material

Personality

Emphasis

Method

' Unbounded Vatiance Components
Estimate Only Yariance Components

[ Help

{

Recall
Remove

Standard Least Squares
Marmimal Report

REML (Recommended)

“Run

Keep dualog open

'
«

Notes




12 Multiple Response Optimization

* Experiments may have more than one response
variable

* You can optimize each response separately . . .

* ... but you will get different answers for each
response!

Notes
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Notes l_“ﬂ

It is not uncommon to have multiple response variables in a DOE. If you think you
have just one, you might want to solicit feedback from one or more knowledgeable
colleagues.

In this section we introduce and 1llustrate the most widely used technique for jomt
optimization of muluple responses.

Notes




Example 1: heat sealing process

Response Bond
2 4 . Effect Tests
* DOE Participant Files \ Sy
heat sealing 2.jmp Source Nparm DF  Squares FRatio Prob> F
Shift 1 1 3578 08499 0.3671
; Temp(120,180) 1 1 1540835 366.0070 .
* Run the Model script Press(50,150) : g 8439 20046 01715
Dwell(0.2,2) 1 1 1606813 381.6793
; Temp™Temp 1 1 1363630 3239142
* Response variables: Temp"Press 1 1 14607 34697 00766
s Press*Press 1 1 1385 0320 05724
v' Bond (bond strength) Temp"Dwell 1 1 20235249 4806642 .
7 Pring (hi ¥ Press* Dwell 1 1 0759 01804 06754
Print (higher-is- Dwell"Dwell 1 1 715715 170.009
better cosmetic Response Print
quality rating) Effect Tests
Sum of
* Shifi is the only factor we Source Nperm: DE ' Squares. . FRatio Prob> F
i Shift 1 1 0137812 17253 02032
can eliminate Temp(120,180) 1 1 6821113 B5.392 «00¢
Press(50,150) 1 1 25625986 320.8095
¥ Dwell{0.2,2) 1 1 2121674 26.5611
» All other factors are Temp*Temp 1 1 2148242 26.89%7
. .- . 0 T
sgnificant foratleast one e 1 1 pwmy 7 o
response Temp"Dwell 1 1 1613751 20.2024
Press*Dwell 1 1 1065140 133344
Dwell*Dwell 1 1 1372401 17.1810

Notes




Example 1 (contd)

150

I

* The Effect Summary
displays the lowest
p-value from each of
the response’s
Effects Tests

* This makes it easy to
find terms to remove
from the model

* Remove
insignificant terms,
as before, using the
Effect Summary

Effect Summary
Source LogWorth
Temp® Dwell 25.559
Dwiell(0.2,2) 14233
Temp(120,180) 14.041
Temp*Temp 13.515
Press{50,150) 13473
Dveell Dwvell 10.809
Press”Dwell 2.827
Temp*Press 1.180
Press “Fress 1.061 ||
Shift 0.652

Palue
0.00000
0.00000 *
0.00000 ~
0.00000
0.00000
0.00000
0.00149
0.06606
0.08689
0.20319

Notes




Example 1 (cont'd)

We want Bond = 80 and Print as large as possible.

Here is a solution based on manually exploring the Prediction Profiler.

Prediction Profiler
100
80 - T pa
- B : 60
§ [77.7497
g2.2s08) 40
20

wno

| G

. 434845 5
£ 14.0323

4.66461] 2
1
0

RISHRRESL8IR/E 2 9 1

v e ot el e e et R (. < e e

Temp Press Dwell

Notes




Notes

In this example 1s it easy to find solutions by manually exploning the Prediction
Profiler.

v' Press should be set to 150, because this increases Print without significantly
affecting Bond.

v" The baselime value for Dwell was 1.0. Reducing thas to 0.5 increases
throughput while staymg above the lowest feasible dwell time (0.2)

v Once these settings are n place, we can manipulate Temp to achieve
something very close to 80 psi1 for Bond.

Jomnt optimization of response variables was not needed in this example. In most
applications, however, manual optimization will not achieve the desired results.
Extreme versions of this are illustrated in the next two examples.

Close the analysis window and the data table without saving.

Notes




Example 2: extrusion process ﬁ

(Vise, Temp, Rate, RPM) =~ (80, 297, 100, 243)
Ductility = 13

Prediction Profiler
35000
—  H2038688) o500 | ==
KA § 1277529 20000 :
~ & 300808 15000 :
10000
5000 :
)J48 ‘
P &
{-\i t:; 110.5 20
(@] 10
0

Data sets | extrusion 2

Notes




Notes 154

This example 1s based on data from an experiment to optimize the mechanical
properties of an extruded plastic matenial. We want Strength to be as high as possible
while mamtaining a lower bound of 20 for Ducrility.

The solution for Strength (29367) shown above was found by visually exploring the
Prediction Profiler. However, this approach resulted i an unacceptably low Ductility

(13).

Notes




Example 2 (cont'd)

Lal

55

(Visc, Temp, Rate, RPM) = (64, 260, 200, 300)
Strength = 6080

Prediction Profiler

35000
20000
25000 -
20000
15000
10000

05
30

20

Dur:t.ll' Streni

0

10 ; ;

Notes
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Notes ! 156

—

The solution for Ductility (35) shown above was found by visually exploring the

Prediction Profiler. However, this approach resulted m an unacceptably low Strength
(6080).

Notes




Joint optimization of responses

Each response has a goal (minimize, maximize or target)

Define a “desirability function™ for each response

Combine the individual desirabilities into a single overall
desirability function

Maximize the overall desirability to jointly optimize all
responses

Notes
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Notes 158

Desirability 1s a unitless quantity between 0 and 1, defined so that higher 1s better. ]MP
supphes default desirabilhity functions based on the expenmental data for your response
vanables. You must redefine the deswrability functions so that they represent your
objectives for each response variable

You start by setting the general goal for each response: Maximize, Minimize or Match

Targer. Then you specify low, middle. and high data values to fine tune the shape of the
desirability functions.

Notes




Default desirability functions

]
]

150

1—

0.5

/

Maximize

Low

|
Mid

0.5

|
High

/I\

Match Target

i

]\

0.5 Minimize

0 I I T
Low Mid High

\

[
Low

Mid  High

Notes




Notes 160

The desirability function 1s increasing for Maximize responses and decreasing for
Minimize responses. It s bell-shaped for Match Target responses.

For Minimize responses with a lower bound of 0, 1t 1s a good 1dea to make the Low

value equal to 0. Examples are number of defects, fraction defective, cycle time,
standard deviation, cost of waste, etc.

The low and high values for a March Target response are used to define the allowable
deviation from the target value.

Notes




Overall desirability

J

161

|

* The overall desirability function for the response variables (Y,
Y, :-1)is

(Yl desirabilily)><(‘Y2 desirabiliy)x O

* It 1s the geometric mean of the desirability functions for all the
individual response variables

* With a geometric mean, the overall desirability will be zero
whenever any individual response desirability is zero

Notes




Notes 162

A weighted geometric mean can be used. The weights (called importance in IMP)
allow users to specify relative prionties for the responses. The higher the importance.

the greater the influence the response has in determiming the overall solution found by
the optimization algorithm.

The vast majority of users do not go nto this level of detail.

Notes




Example 2 (revisited)

DOE Participant Files \ extrusion 2.jmp — Model script — Model
Specification — Run

Select Columns

¥ 6 Columns
A \Visc
A Temp
4 Rate
A RPM
4 Strength
A Ductility

4~ Model Specification

Pick Role Vanables
1 Y | M Strength

'| A Ductility
Weight |
Freq |
o Y]
Construct Model Effects
i Add Visc& RS
— Temp& RS
[ Cross Rate& RS
RPME RS
 Nest Visc*Visc
Macros Visc*Temp
Temp*Temp
Degree 2| |Visc*Rate
B — | Temp*Rate
Attnibutes = Rate'R
late"Rate
Transform (v
No Intercept

Personality; | Standard Least Squares

Emphasis: | Minimal Report

Help | Run
Recall | [ Keep dialog open
;RAemave ‘

m

Notes




Example 2 (cont'd)

3 extrusion 2 - Fit Lea.. e S NS

4 = Least Squares Fit

4 = Response Strength
 Residual by Predicted Plot
o Summary of Fit
 Analysis of Variance
> Parameter Estimates
" Effect Tests
» Effect Details

4 = Response Ductility
' Residual by Predicted Plot
U Summary of Fit
-~ Analysis of Variance
> Parameter Estimates
U Effect Tests
o Effect Details

b« Prediction Profiler

3 v

* Alt-click on Response Strength red triangle —
uncheck Parameter Estimates, Effect Details, Plot
Effect Leverage — OK

* Repeat for Response Ductility

E% Select Options and click OK

Regression Reports Parameter Power Row Diagnostics
¥ Summary of Fit Correlation of Estimates Plot Actual by Predicted
V| Analysis of Vanance Effect Screening Plot Effect Leverage
Parameter Estimates Scaled Estimates W Plot Residual by Predicted
V| Effect Tests Normal Plot Plot Resicdlual by Row
Effect Details Bayes Plot Plot Studentized Residualy
Show All Confidence Intervals | | Pareto Plot Press
AlCc Facter Profiling Durbin Watson Test
Estimates . Profiler Save Columns
| Show Prediction Expression Interaction Plots Prediction Formula
Sorted Estimates __ Contour Profiler __| Predicted Values
Expanded Estimates Cube Plots Residuals
Sequential Tests Box Cox Y Transformation | Mean Confidence Interval
Custom Test Surface Profiler Indiv Confidence Interval
_| Multiple Comparisons _| Studentized Residuals
__| Joint Factor Tests . Hats
Inverse Prediction Std Error of Predicted

Notes




“Pruning” the models

* The Effect Summary
combines the P-values for all
responses

* Removing terms here applies
to the Effects Tests for one or
more responses

* The usual threshold 1s P >
0.15

Effect Summary

Source LogWorth ; PValue
Rate*RPM*RPM 1.277 = =—1] 0.00000
Rate"RPM = 0.00000 ~
Rate(100,200) 6.383 ] 0.00000 *
Rate*Rate*RPM 6.300 ) o 0.00000
RPM(150,300) 6.165 | ] 0.00000
Rate*Rate 539 = ——=us 0.00000 *
RPM*RPM a8 = ——1) 0.00002 +
Temp(260,320) 3.121 . 0.00076
Visc{60,80) 2,913 [N 0.00122
Temp"RPM 1.805 [ 0.01565
Visc*Visc*Temp 1,568 [ 0.02705
Visc*Rate 1.559 0.02763
Visc"RPM 1.549 ) 0.02822
Visc*Temp*Temp 1.52 0.02980
Visc*Visc*RPM 1420 N 0.03723
Temp*Temp Rate 1.212 9 0.06143
Visc*Visc"Rate 0.844 I 0.14308
Temp Temp*RPM 0.826 = 0.14926
Temp*Rate"Rate 0.808 T 0.15550
Temp*RPM*RPM 0.792 [ 0.16134
Temp*Temp 0.668 [ 0.21486 *
Visc*Rate*Rate 05718 0.26852
Visc Temp 0470 8 0.33863 *
Temp*Rate 0.358 | 043877
Visc"Visc 0.2091 0.50227
Visc*RPM*RPM 0215 F0E F S 0.6088S
Remove Add Edut FOR Senctat affects with containing #ffacts aDove them

Notes




“Pruning” the models (cont'd)

Effect Summary

Source LogWorth i - PValue

Rate*RPM "RPM 11.346 I =] 0.00000

Rate"APM 10,330 ERjEE— 0.

Rate"Rate"RPM 10.023 [Sie=VF—=-5 0.00000

Rate(100,200) 9.762 I e 0,00000

RPM(150,300) 9741 EE——1 0.00000

Rate'Rate 8.7} [ Ea=] 0.00000

RPM'RPM 7.572 0.00000

Visc(50,80) 6.093 ] 0.00000

Temp{260,320) 4727 . 0.00002

Temp"RPM 2.347 I 0.00440

ViscRPM 21388 ll 0.00727

Visc*Visc"RPM 1935 0 001163
Effect Tests for Strength (< Tl e — J01I%  Effect Tests for Ductility
Source Prob > F Visc"Rate 1.815 :‘: 0.01531 Source Prob> F
Vise(60,80) Visc*Visc Temp 1493 10 0.03171 Visc(60,80)
Termp(260,320) Temp Temp*RPM 1238 8 0.05774 Temp{260,320)
Rate{100.200) Temp*Temp*Rate 1197 8 006350 Rate{100.200)
RPM(150.300 Temp*Rate'Rate 10748 0.08435 RPM(150,300) Lt
Visc'Rate 00153 Vise"Visc"Rate 1.000 8 ! 010006 Visc*Rate 04524
Rate*Rate Rate*Rate 0.8364
Visc*RPM Visc*RPM 0.5440
Temp*RPM Temp*ROM 0.7358
Rate*ROM Rate*fAPM
REM*RPM ] RPM*RPM 0.4084
Visc*Visc " Temp 0.O317 Visc*Visc*Temp 0.0527
Visc*Visc"Rate 0.100m Visc*Visc*Rate 08954
Visc*Visc"RFM 116* Visc*Visc*RPM 0.8700
Vist *Temp*Temp 140 Visc*Temp*Temp  0.81M
Temp*Temp®Rate  0.0635 Temp'Temp™Rate  0.9857
Temp*Temp*RPM 00577 Temp' Temp*RPM  0.34383
Temp*Rate"Rate 0084 Temp*Rate"Rate 0.3080
Rate'Rate'RPM 1 Rate*Rate*RPM 0.0424
Rate*ROM*RPM Rate*RPOM*RPM 0.5257

Notes




Example 2 (cont'd) ﬁ

/" Desirability ™,
: = % 3 J
Prediction Profiler -..E_fﬁlfﬂc‘horl‘f,. -
35000 .
O 30000 p
£2063313 25000
G (196762 20000 - oo | et .
& 215803) 15000
10000
500!
'\L ."n
2 73 8561 ié /s
€ (22400 2D e
8 253029] 13 /
5
0
_ 1
- 0.75 —
£0.553439 05 _“‘\\ /f/_— Dvgra“
a8 0.5 deslrablllty
0
B2 P L ERRIIEINWELERE 8 & 8° QgL ~
Visc Temp Rate APM Desirability

Notes




Notes 168

Here 1s the default Prediction Profiler for the four-factor extrusion experiment. The
individual desirability functions are shown in the nght-most column. In this case

they are both increasing functions because our general objective for both responses is
Maximize.

The overall desirability 1s a function of the experimental factors, and 1s shown m the

bottom row. By default, it 1s the unweighted geometric mean of the individual
desirability functions.

Notes




Example 2 (cont'd)

[Optimization and DesirabilityJ1

:{ Maximize Desirability J

/

Prediction Profiler
35000 B
~ 30000 :
g (243255 20000 A
& 275355 15000 : /
10000 : /
5008 d
4 : P
272 30 3
gl 20
b ]
Q< 10
0
o 1
5 0.75
£0.606035 05
gg 0.25
0

Visc

80

260
270
280
290
300
310
320
100
120
. 140
160
180
200
150

3

Rate

8 o OO VI W i e
w o N o ~
~ ~ m o o
RPM Desirability

Notes




Notes 1708

—

Shown above is the Prediction Profiler after selecting Maximize Desirability from the
red triangle menu. We have increased average Strength to 25930, and decreased
average Ductility to 21.5.

~4

Notes




Example 2 (cont'd)

Using a Match Target objective (see next slide)

Prediction Profiler
35000
— , 30000 _ 2
.5‘ $358 5 :‘S(m // = -
S (237365 20000
£ 260809 15000
10000 :
5000
40
3 e
0D 288480 10
0
1
o
= 0.75
2
g

0.817515 0.

© WV O wn O OO0 O O O O 00
O W N~ NN DO NO N T O ©
~N M= = = ™ = N

>
\

Notes




Notes EJ

To obtain the results shown above, double-click in the individual Desirability pane
(on the night) for Ductilify. Change the specifications as shown below, click OK, run
Maximize Desirability again.

. X r&r Response Goal @‘
Predicted average Strength is now
3:359, predicted average Ductility is (Match Target =)

Ductility Values Desirability

The 95% confidence interval is High: A 23] 0.0183]
(19.5, 24.4). This 1s an 1improvement Middle [ 2] 1]
over the previous confidence interval Low | 21| | 0.0183 |
(19.0, 24.0), which would have Importance: [ 1
allowed Ductility to vary a little further —— —

below 20. g ko0 Concel, || obtolp. o)

! e——SE_——— -

Note: Due to the iterative process used in the prediction profiler, results may
vary shghtly from what’s shown n the above shde.

Least Squares Fit red triangle — Save Script — To Data Table —» Save Script As —
Name: Fit Least Squares — OK.

Notes




Exercise 12.1

(a) DOE Participant Files \ heat sealing 2. Run the model script. Use the Effect
Summary to remove model terms with P > 0.15.

(b) Go to the Prediction Profiler. Our target for average Bond 1s 80, with a tolerance
of +5. The highest possible value for average Print is 5. Average Prini must exceed
4. Modify the desirability functions for Bond and Print accordingly. Click
Prediction Profiler red triangle — Optimization and Desirability — Save
Desirabilities.

(¢) Click Prediction Profiler red tnangle —» Optimization and Desirability —»
Maximize Desirability.

d) The Production Manager 1s unhappy with our solution. It achieves excellent bond
strength (80) and print quality (4.8). but the proposed increase n dwell time would
reduce throughput from 300 to 50 bags per minute!

To look for a compromise, select Reser Factor Grid on the Prediction Profiler red
triangle. We want to hold Dwell at a low value, say 0.5. Type 0.5 for Current Value,
check the Lock Factor Setting box, then click OK. The vertical line on the Dwell
profile should now be solid.

Notes




Exercise 12.1 (cont'd)

e
£% Factor Settings

Lock Factor Setting:

.

Factor Temp
Current Value 155.942
Minimum Setting 120 |
Maximum Setting 180
Number of Plotted Points 41
Show v

)

Press Dweell
[ 150]]
=
15‘6”‘ 2
41 41

2| n

0
0

]

|_OK || Cancel

e) Run Maximize Desirability again. The optimal factor settings are shown in the
Current Value row. The response averages are 80.08 for Bond and 4.35 for Print.

f) Save your script, close and save the data table.

Notes




Exercise 12.2

a) Assembly of mkjet print cartridges includes an ultrasonic welding operation with
X vanables Force, Energy, Amplitude, and Cavity (1dentifies the tool cavity in
which each plastic cartridge was molded). The response vanables are Weld depth
and Leak rate.

b) DOE Participant Files \ ultrasonic welding 2. Run the model scnipt. Use a Log
transformation for Leak rate. Use Effect Summary to prune the models.

¢) Go to the Prediction Profiler. The target for average Weld depth 1s 0.20, with a
tolerance of + 0.05. The lowest possible value for average Leak rate 1s 0. We
require mean Leak Rate to be no larger than 0.10.

d) Modify the desirability functions for Weld depth and Leak rate accordingly. Clhick
Prediction Profiler red tnangle — Oprimization and Desirability — Save
Desirabilities.

e) Click Prediction Profiler red triangle — Optimization and Desirability —»
Maximize Desirability. See next slide.

Notes




Exercise 12.2 (cont'd)

176

Prediction Profiler

wm
r
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L= 1=

Weld depth
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Desirability

) Least Squares Fit — Save Script — 1o Data Table — Name: Fit Least Squares —»

OK
g) Save data table.

Notes




Exercise 12.3 (Homework) [jj

a) DOE Participant Files \ electron microscope. Run the Model script. In this case, 1t
will take you directly to the Model Dialog. Apply Log transformations to all 4
response variables, then run the model.

b) Click Least Squares Fit red triangle — Effect Summary — prune the models. See
shde below.

¢) Go to the Prediction Profiler. We want to mimmize all 4 responses, Use the same
desirability functions for all 4 responses: High = 2, Middle = 1, Low = 0. Click
Prediction Profiler red tnangle —» Optimization and Desirability — Save
Desirabilities.

d) Click Prediction Profiler red tnangle — Reset Factor Grid — Factor Settings —
click the Lock Factor Setting box under Tool — OK. See next page.

e) Run Maximize Desirability separately for each Tool (A, B, C). Give the average
values of the 4 responses for each tool. See next page.

f) Save vour script, close and save the data table.

Notes




Exercise 12.3 (cont'd)

Source

Tool

Total Dose(2,16)
Bias*Tool
Bias(-10,10)

Total Dose*Tool

W Time*Bias

W Time(30,90)

Total Dose*Total Dose
Bias"Bias
Integrations

W Time*Tool

Total Dose*W Time
W Area(4,16)

W Area*Tool
Integrations*W Time
W Time™W Time
Integrations™W Area
Polish Time(5,20)
W Area"W Time

W Area"Bias

(b) Effect Summary
LogWorth

19.514 |

7.057 I
S.140 R ‘
4892 |1
3.203 N
2.204 )
2.232
2.220 )
2,003 I
1.961
1.957 I
1.915 =
1.858 T}
1.596
1.499 11
1.483 [
137110
1.247 80
0.950 &
0.941 0

PValue
0.00000
0.00000
0.00001
0.00001
0.00063
0.00509
0.00586
0.00590
0.0099%4
0.01004
0.01103
0.01216
0.01388
0.02536
0.03172
0.03288
0.04255
0.05662
0.11211
0.11449

Notes




Exercise 12.3 (cont'd)

179

|

(d) Reset Factor Grid

”
£% Factor Settings

Factor

Current Value:

Minimum Setting
Maximum Setting:
Number of Plotted Points:

Show
Lock Factor Setting

Total Dose Integrations W Area

[ 10.2766 |
16 |
a1

J

W Time

[ 16][89.953 ||

|
15:;
a1|

)|
90 ||
“.!

-
<

4

5

Polish Time Bias

S |

0
1

|
\
{

b o

Tool

Notes




Exercise 12.3 (cont'd) 180

(e) Average responses by tool

Tool = S-Height

S-Width | D-Height | D-Width

A 1.33 1.15 1.10 0.95
B | .41 0.76 1.36 1.08
C |.48 1.32 1.94 1.57

Notes




13 Screening Experiments

Optimization

Screening

Smaller number of factors

Main and interactive effects

Quantitative factors have 3 levels

[dentify the best factor levels

Larger number of factors

Main and interactive effects if
categorical factors at only 2-levels;
otherwise main effects only

All factors have 2 levels (usually)

[dentify the “active™ factors

Notes




About screening experiments

They are usually conducted early in the process of optimization
* They involve a relatively large number of factors

* Their objective is to identify a smaller set of influential factors for
further experimentation

* It is likely that many factors considered have little or no effect on the
response (sparsity-of-effects)

* They use the smallest feasible design for the given number of factors —
saves time and money

* They are based on main-effect models, although with some designs,
factors with interactions and quadratic effects can be identified

* They usually consist of factors at only two levels

* They rank the factors by the size of their estimated effects

Notes
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Bold strategy 183,

|

Levels of X are far enough apart to quantify the effect

y -
¢ _ .- Data points

[ |

A 23

Two-level categorical X

Notes




Not bold enough

L 184

Levels of X are too close to quantify the effect

Two-level categorical X

Notes




Example

* Titanium castings — strong & light

* Tidevelops surface oxidation during
the cooling phase

* Large Ti castings were failing the
customer O, requirement

* Analysis of file cabinet data yielded
no significant correlations

Notes




Example (cont'd) 186

Black Belt
“We should brainstorm factors
for a DOE.”

Plant manager
"We can't experiment with such
an expensive part!

Ti metallurgist
“The problem doesn't replicate
on smaller parts.”

Part engineer
"What have got to lose? It's
been weeks since we shipped
any of these!”

Notes




Example (cont'd)

‘ 187
—

| Currentstate | Possible future
Process area Factor Levels . Xvariable | state solution
|
Slurry Batch 1 vs Batch2 v
# Dips 14 vs 18 v
Shell making
Bake time 6 hrs vs 48 hrs v
Bake temp 1950° vs 2050° v
Alloy cost Low vs High v
Alloy status New vs Revert v
Casting
Heat shield Mild vs Stainless v
Fan speed 2400 vs 3200 v

Notes




Example (cont'd) 1aa,:;

Above 1s the list that emerged from the brainstorming session.
« Three of the factors are variables in the current state

* The other five are possible improvement 1deas for the future state.
* Total: 8 factors

¢ Plant manager agreed to 16 castings

* All factors are at two levels

Notes




Steps in creating a Screening Design

1) DOE -» Classical —» Two Level Screening —» Screening Design
2) Responses —» Response Name —» 02 —» Goal —» Minimize

3) Factors — Add all factors as in previous designs (continuous or
categorical, number of levels for categorical)

4) Enter factor names and levels from the table on the previous page —
Continue

5) Choose Screening Type —» Construct a main effects screening design
—» Continue — Make Design — Make Table

6) (The matrix below has been sorted by Slurry, # Dips, Bake time and
Bake temp)

7) Save as Ti casting alpha case

189

Notes




Design matrix

"% Ti casting alpha case - JMP i = | @
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help
4 30Ck -
v 180 Shurry #Dips Bake time Bake temp Alloycost Alloystatus Heat shield Fan speed 02
1 Batchl 14 6 hrs 1950 High New Mild 3200 .
2 Batchl 14 6 hrs 1950° High Reven Stainless 2400 .
3 Batchl 14 6 hrs 2050° Low Revert Mild 3200 .
4 Batchl 1 43 hrs 2050* High New Stainless 2400 .
S Batchl 18 6 hrs 2050 Low Revert Swinless 2400 .
6 Bakchl 18 48 hrs 1950° High Mew Mild 2400 .
7 Bawchl 18 48 hrs 1850* Low Revert Stainless 3200 .
8 Barchl 18 48 hrs 2050 Low New Mild 3200 .
9 Bawch2 - 6 hrs 2050* Low New Mild 2400 .
10 Batkch2 14 48 hre 1950* Low Revert Mild 2400 .
11 Beich2 14 48 hrs 1950° Low New Stainiess 3200 e
2 Batch2 14 48 hrs 2050 High Revert Stainless 3200 .
13 Batch2 18 6 hrs 1950° High Revert NMild 3200 .
14 BatchZ 18 6 hrs 1850° Low New Stainless 2400 .
15 Batch2 18 6 hrs 2050° High New Stainlass 3200 .
16 Batch2 18 48 hrs 2050 High Revert Mild 2400 .
-

Notes




Analyzing the Screening Experiment . . . m

... two months (and many sleepless nights) later. ..

DOE participant files \ Ti casting alpha case with data

I'§l Ti casting alpha case with data - IMP =
File Edit Tables Rows Cols DOE  Anslyze Graph Tgols Yiew Window Help
v Ti casting alp. q =
Design Custom Desi | ¥ Slorry  # Dips  Bake time Bake temp  Alloycost  Alloy status  Heat shield  Fan speed 02
b Model 1 Batchl 14 a8 2050 High Aevert Mild 3200 191
2 Batchl 14 a8 2050 Low New sS 2400 91
= 3 Bacht 14 5 1850 High New SS 3200 76
=)Colums (9 4 Baehl 14 : 1350 Low Reven Mild 2400 90
h Slurry 3% —
& *Dios % S Batchl 18 48 1950 High Revert S 2400 134
& Rake tione 3 6 Bawchl 18 a8 1950 Low New Mild 3200 132
e Bake temp ¥ 7 |8atchl 18 6 2050 High New Mild 2400 144
th Alloy cost %k 8 Bachl 18 6 2050 Low Reven 33 3200 197
i Alloy status 3 9 Bach2 14 48 1850 High New Mild 2400 174
: :“‘ shield ** 10 Batch2 14 48 1950 Low Revent 55 3200 128
qc s 11 Batch2 14 6 2050 High Revert ss 2400 166
) 12 Bawch2 14 5 2050 Low New Mild 3200 255
v Rows 13 Bach2 18 48 205 High New s 3200 318
All rows 15 14 Bateh2 18 48 2050 Low Rever Aild 2400 186
g"'l‘i g 15 Batch2 18 § 1950 High Revert Mild 3200 111
clu
;:. Py 0 16 Batch2 18 E 1950 Low New s 2400 213
Labelled 0

Notes




The model dialog

= Model Specification

Select Columns Pick Role Variables Personality: | Standard Least Squares v |
* O Columns ? 1| A02 = . :
& Slurry Emphasis | Minimal Repor 3
i = Dips
Bake tim 7 3
b a_e Ume Weight
ik Bake temp :
it - | Help Run
i Alloy cost Freg -
i Alloy status | Recall i
. K didl
i Heat shield g}. = i v b
th Fan speed | Remove |
402 Construct Model Effects
* Carit aralyze
— 2 Dips inferactive
e GipEby] | Bake time or quadratic
Nt Bake baivp effects in
e LIWE Alloy cost thi
Alloy status 1S .
Macros ¥ | eat shield screening
Degree | 2| Fanspeed experiment
Attnbutes =
Transforrm = i JUST Clle on
No Intercept Run
~ s -

Notes




Analysis

’. Red triangle |<—Response 02

| Effect screening

v
[ Pareto Plot ’—>

Big hitters”
Slurry
Bake temp
# Dips

1* e Effect Screening

The parameter estimates have equal vanances.
The parameter estimates are not correlated.

Lenth PSE
14625
Pareto Plot of Estimates
Term Estimate
Sturry{Batch 1] -27.87500 | F
Bake temp[1950]  -27.50000 |
= Dips{14) -19.62500 )
Fan speed{2400]  -10.00000 [
Bake time[48] 9,50000 |

Alloy status{New) 9.37500 =
Heat shield[Mild) -5.62500 [
Alloy cost{Low] -4.50000 1

* Shury 1s a variable m the current state

* The O, values for castings made from Batch | shells were much lower

than those from Batch 2

* The operators did not report any differences in the make-up of the two

batches

Notes




Notes

194

To mterpret screening experiments, use the Effects Screening analysis element as

shown above. It shows showing the relative magnitude of the factor effects. The idea is

to use the factors with the largest effects i a subsequent optimization experiment.

The nteractive and quadratic effects are left out of the model. This biases the signal-to-

noise ratios downward. The P-values are not to be trusted. so factors appear less
significant than they really are.

Notes




Ideal follow-up plan | 105

* Do a screening experiment in the shell-making area

* Include Bake temp, # Dips and the important shell-

making variables in an optimization experiment

Notes




What actually happened

196

1
gl

4

* They changed Bake femp to 1950 and # Dips to 14 (easy)

* The problem immediately went away

« 13 of the 16 DOE castings were good to ship as is

* Only | eventually scrapped

« Worst-case annual cost avoidance: $20.8M

* No immediate follow-up

Notes




Root causes

* Investigation of the slurry effect eventually lead to the root
cause of the problem

— The density of the ceramic powder used to make the
shell had increased over time, resulting in heavier shells

—» The increase had been noted, but no action was taken
because the densities were still within spec limits

— At the time, shell weights were not monitored

* Why no significant correlations in the “file cabinet™ data?

— The O, data in the engineering database was post rework
rather than first pass

Notes




Control limits vs. spec limits ;;3

USL

Density

UCL

________________________________________________________ _ LCI

LSL

* The data was frying to tell us something

* Disaster could have been averted

Notes




Exercise 13.1

a) Create a standard screening design matrix for the 10 factors shown below.
Note: A sample size of 16 would have been adequate, but the project team
decided to use a sample size of 24.

b) Save the table of factors for use in the next exercise:
Click the red triangle next to Screening Design > Save Factors (table opens)

File > Save as... > extrusion design factors
¢) Save your design matrix as extrusion design 1. jmp.

d) DOE Participant Files \ extrusion 0 with datajmp. Analyze the data as
shown for standard screening designs.

e) Based on the results for Srrengrh and Ductility, find the best set of 4 factors for
a subsequent optimization experiment.

Notes

199




Exercise 13.1 (cont'd)

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

0.0 to 05
20 to 40
60 to 80
0.1 to 025

260 to 320
260 to 320
260 to 320
260 to 320

100 to 200
150 to 300

Responses are Strength and Ductility of the extrusions

Notes




Another way to analyze

mk

The experiment in the previous example was conducted years ago.

JMP can now analyze this experiment differently,
giving more information!

The O2 experiment can be analyzed using JMP's Fit Two Level Screening

Requirement for this type of analysis: All factors are at 2 levels
Reports and interpretation are very different

Based on the assertion that relatively few of the effects are active
Most are mactive (insignificant), meaning their effects are negligible
Often, in screening experiments, there are no degrees of freedom for
CITOor

Estimates of mnactive effects are used to estimate random error in this
analysis

Some information can be gained about 2-factor interactions

2-Factor interactions are aliased with each other

Notes




Fit Two Level Screening

E

DOE participant files \ Ti casting alpha case with data

DOE > Classical > Two Level Screening > Fit Two Level Screening

Set up as shown (all factors are cast into X)

Click OK

H Fit Two Level Screening - IMP

Looking at lots of effects to help decide which to put in the model.

Select Columns

* 0 Columns

AFFERFEERF

Cast Selected Columne into Roles
_ X |02

X | dSlumy
h=Dips
i Sake time
ik Sake temp
peeeBpe-}

Notes




Fit Two Level Screening (cont'd)

Below is the Contrasts report:

+  Contrast column shows the regression parameter estimate
An asterisk shows estimate is not the same as the regression estimate
An asterisk would indicate that we need to use the Fit Model platform
o There are no asterisks i this report
» Individual p-Values indicate significant effects
»  Bar Chart shows terms significant at the 0.10 level
« Analysis may not be exactly the same if re-run, due to the analysis process
* Note that there is an interaction that is significant!
o  We cannot tell if the significant interaction is Bake temp*Fan speed
o It could be any of the interactions under Aliases
> The estimate of the effect (Contrast) is actually the sum
of all of the aliased interactions
o This is because this is a screening design
o Additional experimentation is needed determine the active interaction

Notes




Contrasts report

4 Contrasts

= Dips E— <

Fan speea 10.0000 | Eil 053 03618 50000

akce time 9500 | | . 079 04068 1,0000

Alloy status -9.3750 | | : 078 0413 1.0000

Heat thield 562%0| | | 047 06557 1.6000

Alloy cost a5000| E 0y 0730 1.0000

Shurry* Bake ternp 98730 | | o d3Em 10000 & Dips*Sake time. Fan cpeed”Alloy status, Heat thisid " Alloy cost
Swurry*s Dips -6.5000| 1 & R 06237 10000 Baketemp'Sake time, Alloy status™™eat shield Fan speed*Alioy cost
Baka temp™= Dips -18790 | | Il .16 0887 10000 Sumy*Bake tme Fan spead™™eat shisld, Alloy status*Alloy cost
Slurry* Fan cpeed -0.87 { { . 0.947 ) % A 'm..a. Sakumt'uwm-c‘u ’D s Alloy cost
Sake temp"Fan tpeed 3 3 b, &

= Dips*Fan speed s10| | i M ‘ 051  0.6434 0000 Bake time* Alioy status Bake temp'Heat shield s‘.m, *Alloy cost
Fan specd”Bake tme 6.7500 : B 056 06115 1.0000 #Dips*Alloy status. Slurry"Heot stueld Bake temp®Alloy cost

Notes




Fit Two Level Screening (cont'd) me

The Half Normal Plot graphically identifies significant effects

+ Significant effects or terms fall off (away from) the blue line
« The additional pomt off the line i1s # Dips, which was near the cut-off
« Here, it appears to be significant

+ One could choose to carry this term forward

< Half Normal Plot
40 =
= Bake temp Fan speed
. + '
35
0 El,;rr-}
4 B -
2 25 Bake temp
B
a 3
g 20
[
-
=
Qo
v
8 10
g
o
3
00 05 1.0 1.5 20 25

Half Normal Quantile
Lenth PSE-12.0038
P-Values denved from a simulation of 10000 Lenth t abios
Make Model [Run Model|

Notes




Fit Two Level Screening (cont'd) 208

« Click Make Model

»  Fit Model window will come up
Significant terms have been carried forward
o Terms can be added to the model
# Dips could be added (probably should be. based on Half Normal Plot)

B Selected Model - JMP - =

4 = Model Specification

g - = B e
select Colurmng Fick Rode Vanables Penionality:  gndard Lot St
= 5§ Coherns r 402 -
il Slurry Emphast | Effect Scresning
= Dips L :
il Eske e Wright Heip Min
_-f:rq Recalt | Kerp dislog open
By Remave
402 Construct Mode! EHects
Add | Sum
4 Bake temp
Cross Bake terap Fan speed
Hest |
Matros = |
Dty

Attributes =
Trarsianme

N Intercegt

Notes




Fit Two Level Screening (cont'd)

« Chick Run
« This familiar report comes up
« This analysis got us further

Presence of interaction

Need higher level terms

« Additional experimentation to:
Determine interaction
Optimize

% Report: Fit Model - P v o
4 = Response 02
4 Effect Summary
Source LogWorth
Bake tempFan spesd 2 860 = 0
Sharry 2074 | 000644
Bake temp 2.008 | 0.00913 *
Femave Add fde | FDR GencTes 4TNCTI Y CONIIING WYeCT 00w e
 Lack Of Fit
4 Summary of Fit
RSqusre 0.75372
Réquare Ady 0.69213
Root Mean Square Enoe 1544587
Mean of Responte 166
Otservations (or Sum Wats) 16

Analysis of Variance

« Parameter Estimates
Term
Intercept
Sluery{Batch 1)
Bake temp{1950)
Bake tampf 1950 "Fan speed] 2400
Effect Tests

Effect Details

Estimate Std Error tRatio Prob> |tf
166 B.857419 187
27675 BEEIG AT
275 BBEI419 3.0

575 BEH9 415

PValue

0.00133

=

Notes




Definitive Screening Design

A Definitive Screening Design is a very effective screening design

»  Factors must be either continuous or two-level categorical

» Itcan be a good alternative to a Custom Design when six or more factors

“A minimum run-size DSD is capable of correctly identifying active terms with high
probability if the number of active effects 1s less than about half the number of runs
and 1f the effects sizes exceed twice the standard deviation. However, by augmenting
a minimum run-size DSD with four or more properly selected runs, you can identify
substantially more effects with high probability. . . . Extra Runs substantially
mcrease the design’s ability to detect second-order effects.”

~-From JMP’s Overview of the Fit Defimtive Screening Platform

. i : TS b
“Effect sizes exceed twice the standard deviation”™ = — > 1,
a

which means that the difference between the average response at the high level and
at the low level i1s 26, or 2 * std dev. (Remember, the coefficient is the effect/2.)

“Second order effects” include 2-level interactions and quadratic terms.

Notes




Example

Using the same situation as in the previous example:
«  Enter response and factors, as usual

«  Set up Design Options, as shown. (4 Extra Runs are recommended!!")

B DOE - Definitive Screening Dasign - IMP - 0 x
File Edt Tables Rows Cols DOE Analyre Graph Tools View Window Help
& ~ Definitive Screening Design
4 Responses
Add Resporme w | Remove | |Number of Respomes..

Rewponse Name Goal Lowes Linmit Upper Limit
T I ] ]

mpoctance

4 Factors
HName Role Vahies ;
A Bshe temp Continuout 1838 2050
[ Categoeical Low Hich
i Alloy Categoncal MNew Reven
i Hest thisdd Categorical Mitd Stamilets
A Fan speet Continvous 2400 3200
< Design Options
No Blocks Required
® Add Blocks with Center Runs to Estimate Quadratic Effects

Add Biocks without Extra Center Runs ‘
Number of Biocks ‘

Number of Exta Rune | 22

Maks D)

Notes




Example (cont'd)

This Definitive Screening Design requires 22 runs
* In the previous example, only 16 runs were required
* However, a follow-on optimization experiment was needed
The Definitive Screening can be run, then augmented, if needed
«  This requires many fewer runs (and other resources) overall
» Block Slurry #Dips  Bake time Bake temp Alloy cost Aoy status  Heat shield  Fan speed o2
LI Sach2 18 27 2000 High Revert Seainless 2800 .
2 Satch2 W - 2050 Low Reven Stainiess <800 o
3 Batch ' 18 ] 1950 Lov New Snless 3200 .
s Baizh? 18 48 1950 Low toen Stainless 1200 o
- SschY W -] 2050 Wigh Revert Mia 2400 .
] Botch ! W 48 20% Migh Nea Sainless 3200 .
7 Satch! 18 4z 1950 High New Mild 2800 &
8 Satzh? 18 27 2050 Hgh Rever Samniess 1200 .
e Barch d 7 2000 Low - Ml 2800 .
0 Bach2 W 48 2050 Migh Rever Mild 2400 .
" Bawch2 18 § 1950 Low Revert Mg 24m ®
121 dacht W 27 1950 Low Nen Mdd 2400 .
132 Batch 2 18 48 2040 Low ten Stnnless 2400 .
4.2 Baicht 1% [ 2050 Low New Suniess 23 ®
153 Satch2 T8 a5 1550 Hwgh Revert Kanless 2400 e
161 Satch ! 18 L 2050 Llow Revert Mg 1200 .
1712 Batch ' W 6 1950 High Revert Mg 31200 .
182 Batch ! 14 6 2050 Low tew Mila 3200 .
192 Satchi ™ 40 1930 High Revert Mia i2W e
2012 Satch2 W 6 1950 Hugh Fen Stanless 2800 .
1 SBatch ' M 48 2000 Ltow Revert Stainless 2400 .
Satch2 18 6 2000 High Nen Mila 3200 .

Notes




Analyzing the Definitive Screening Design

When you create a Definitive Screening Design in JMP,

the Table will contain a script for analysis

Help > Sample Data Library

* Run the
experiment

» Enter data mto
the table

[§ estractiond Dats - IMP

Design Experiment / Extraction 3 Data

Fle Edt Tables Rows Coks DOE Analyze Graph Toch View

(i o D 2

w Extraction3 Dsta
Locked File C\Program File
‘:‘fsa;l‘ Definitive Screenin

Note These fictional Sata w

P Fit Definitive Screening
~1° /§ Evaluste Design
* Click on the b OCE Dalog

green triangle to
analyze the data
(run the script)

*  You must use
Fit Definitive
Screening for
the analysis, to
take advantage
of the design
structure

* Columns (8/0)
lok

A Vaethanol %
A Ethanci R

A Propanci
A Boancl R
Aok
RT3

A vids ¥k

w  Rows

All rows 8
Selected 0
Hidden 0
Labelled 0

IO REBEEL .

‘ . Methano

- Lot | Fthanol
2 b 0
3 10 10
41 o 0
£ > 0
61 10 0
~ o 10
] 0 9
G 0 0
10 p 5
9 . 10
12 10 o
13 10 S
14 0 S
15 2 10 0
e O O
18 0 0

Window

Propanol

w

OCWOoOOoOwwoOo DO DO

L~ - I -

0
10

0

Help

pH

-
@ o wehraown

‘
n o a

S V00 W

Time

Yield
5340
6507
TN
3558
4680

6819

0.7
4520

15.85

2239
3604
8.65

3206

Notes




Analyzing the Definitive Screening Design (cont'd)

« JMP does all the work:
Stage 1 tests Main Effects

Stage 2 tests interactions and
quadratic terms of significant
Main Effects

Combined Model includes both

4 Combined Model Parameter Estimates

Term Estimate
Intercept 34.568
Lot{1] 17.197
Methanol 9.7133
Ethanal 23166
Time t4079%
Methanol*Ethanol -0.367
Methanol"Time 0.5266
Ethancl"Tirme 9.8258
Methanol*Methzanol 7.637
Ethanol*Ethanol -1.440
Time Time -3.297

Statistic  Value

RMSE 1.60
OF

17

[Make Model| [Run Model

Std Error

1.0452
0.6023
04251
0.4281
0.4281
0.5534
0.5534
0.6627
1.1581
1.14

1.1489

t Ratio
33.074
28.552
22.691
54118
9.5307
-0.663
0.9516
14828
6.5945
«1.264
-2.875

Prob> |t]

0.5287
0.3730

0.2468

|Stage 1 - Main Effect Estimates
Term Estimate Std Error tRatio Probo> |t)

Methanol  9.7133

Ethano! 23165
Time 4.07%8
Statistic  Value
RMSE 1.37487
DF -

0.3674

26438

03674 6.3055

0.3674

11,104

| Stage 2 - Even Order Effect Estimates

Term . Estimate Std Error
Intercept 34568 13430
Lotf1] 17w 0.7757
Methano!"Ethancl 0,367 07127
Methanc!*Time 0.52 0.7127
Ethano/"Time 9.8258 0.8534
Methanc!*Methanc! 7.637 14914
Ethanol*Ethancl -1.440 1477
Time*Time -3.297 1477

Statistic  Value
RMSE 2.0626
DF 2

: / Cth Run MOdCl

t Ratio
25.683
22.171
0515
0.73689
11.534
5.1208
-0.981

.3 333

Probo> [t]

0.6581
0.5369
04299
0.1552

Notes




Analyzing the Definitive Screening Design (cont'd)

A familiar report comes up

» Proceed as before: Check residuals and remove insignificant terms

« Note that interactions and quadratic terms are estimated!

« This 1s what is meant by Definitive Screening

* In this case, an additional optimization experiment is not necessary!

4 Effect Summary

Source

Lot
Methanol(0,10)
Ethanol*Time
Time(1,2)
Methanol*Methanel
Ethanol(0,10)
Time*Time
Ethanol*Ethanol
Methanol*Time
Methanol*Ethanol

Remove Add Edit

LogWorth
1.779 I !
7.087 ==l Se=—&= =5
5818 =
4,52 8
3.5
3.002 RN
1,623 [
0.608 Il
0.428 il
0.277 1)

[ ] FDR (~ denctes atecs with containing aMaces above them

PValue
0.00000
0.00000
0.00000

0.00003 »

0.00021

0.00700

0.02382
0.24682
0.37300
0.52873

213

ot

Notes




Full Factorial vs. Definitive Screening Design (not randomized)

| 214
—

Full Factorial Design with
4 Center Runs:
X1 X2 X3 X4 ¥
0 0 0 0
o 1] 0 0
0 0 0
3 0 0 ]

Defmitive Screening Design with
4 Extra Runs and 2 Center Runs:
X9 | X2 | X3 | % | X5 | X6 Y
™ !:I 4 ’ ¥ % -
- 0 S
. : g
. s 3 :
- ' o -1 !
- 1 -1 D 1
. 5 5 3
- 0 i} (1] 0 ) 0
. 0 0 0 0 0 0

@ @ @ @ & @ L # ® @ @ 8 @ @ ® w @ L]

Note the structural

differences in these two classes of designs.

Notes




Exercise 13.2

215

Using the same factors and levels as Exercise 201, create a Defimtive Screening
Design.

* When vou are ready to enter the factors:

7 Click the red tnangle next to Definitive Screening Design > Load Faclors
(select the file exrrusion design factors saved during Exercise 20.1)

* Be sure to add the recommended 4 runs!

* The previous experiment required 16 runs, but they used 24 runs. Further
experimentation would be needed with that screening design.

* How many runs does this Defimitive Screenmng Design require?

Notes




Factors from Exercise 13.1

218TI

Factors

Feasible ranges

Polymer variables
Smoother
Filler
Viscosity
Moisture

Process variables
Zone 1 temp
Zone 2 temp
Zone 3 temp
Zone 4 temp

Rate
RPM

0.0 to 05
20 to 40
60 to 80
0.1 to 025

260 to 320
260 to 320
260 to 320
260 to 320

100 to 200
150 to 300

Responses are Strength and Ductility of the extrusions

Notes
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